
AIO in Postgres 18 and beyond

Andres Freund
PostgreSQL Developer & Committer

Email: andres@anarazel.de
Email: andres.freund@microsoft.com

https://anarazel.de/talks/2025-09-30-pgconf-nyc-aio-in-PG-18-and-beyond/aio-in-PG-18-and-beyond.pdf

Thanks
● A lot of work by a lot of folks
● Thomas, Melanie, Bilal, Noah, Heikki, Robert, …
● Microsoft
● Tomas and Peter G. for index prefetching work
● Lots of others

AIO?

Asynchronous Input/Output

Time

Client

Postgres

OS

Disk

synchronous, not cached

Time

Client

Postgres

OS

Disk

asynchronous, not cached

Predict the Future

…. Table

Sequential Scan

….

….

Btree Index

…. Table

Index Scan

16:
- Buffer Mangager
Infra
- Relation Extension

17:
- Read Streams
- Streamify

- Seq Scan
- Analyze
- Prewarm

- Experimental Direct I/O

18:
- AIO Infra
- AIO for buffered reads
- Streamify

- Bitmap Heap Scan
- Vacuum
- autoprewarm
- CREATE DATABASE
- amcheck

18: io_method = worker
● portable
● parallelizes checksums, memory copy
● limited I/O depth, particularly with high latency

storage
● global
● number of workers controlled by io_workers

18: io_method = io_uring
● linux specific, better with recent-ish kernels
● lower latency
● deep I/O queues
● per backend
● does not parallelize checksum computation
● requires tuning of file descriptor limits

18: io_method = sync
● don’t use AIO
● behaves as close as realistic to < 18
● “safety net”

18: When can AIO help?
● IO bound

– track_io_timing
– EXPLAIN (ANALYZE, BUFFERS)

● only for reads
● foreground: seqscan, bitmap heap scan
● background: vacuum
● Just the absolute basics!

Benchmark Setup
● 2x Gold 6442Y, 256GB RAM

● 2x Samsung SSD 2TB PM9A1, striped, XFS

● Linux 6.17

● Artificial 1ms latency added with dm_delay

● io_workers=32, effective_io_concurrency=32, shared_buffers=32GB

● checksums enabled on all branches

● 16 has support for cache clearing added

Benchmark Workload
● Large table with sequential and random columns
● Table populated in parallel
● PG & OS cache is cleared between queries

lat 0 lat 1
0

2

4

6

8

10

12

Seq Scan + OFFSET

16
17
18-worker
18-io_uring
WIP-worker
WIP-io_uring

se
c

18: AIO for Seq Scans

Checksums
not parallelized

● Latency has little
effect with AIO

● CPU bottlenecked
(query +
checksums)

18: AIO for prewarm
● bigger

difference
without
checksum

lat 0 lat 1
0

2

4

6

8

10

12

pg_prewarm

16
17
18-worker
18-io_uring
WIP-worker
WIP-io_uring

se
c

18: AIO for Vacuum
● huge effect
● only if small

portion of table
changed
● can be

generalized

lat 0 lat 1
0

5

10

15

20

25

Vacuum after small random delete

16
17
18-worker
18-io_uring
WIP-worker
WIP-io_uring

se
c

18: AIO for Vacuum
● AIO has no

effect → OS
readahead

● CPU efficiency
improvement in
17

lat 0 lat 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vacuum after small sequential delete

16
17
18-worker
18-io_uring
WIP-worker
WIP-io_uring

se
c

18: AIO for Bitmap Heap Scan

lat 0 lat 1
0

5

10

15

20

25

30

35

40

45

Bitmap Random Uncached

16
17
18-worker
18-io_uring
WIP-worker
WIP-io_uring

se
c

● already did
prefetching

● but now with
DIO

18: AIO for Bitmap Heap Scan

lat 0 lat 1
0

0.5

1

1.5

2

2.5

3

Bitmap Seq Uncached

16
17
18-worker
18-io_uring
WIP-worker
WIP-io_uring

se
c

Checksums
not parallelized

IO Depth vs io_method

19? 20?: Index Readahead
● Tomas Vondra w/ help from Peter Geoghegan
● Much harder than already-existing AIO users
● Other performance benefits plausible
● Some regression potential too

19? 20?: Index Readahead

lat 0 lat 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Index Scan, Sequential, Forward

16
17
18-worker
18-io_uring
WIP-worker
WIP-io_uring

19? 20?: Index Readahead

lat 0 lat 1
0

10

20

30

40

50

60

70

80

Index Scan, Sequential, Backward

16
17
18-worker
18-io_uring
WIP-worker
WIP-io_uring

19? 20?: Index Readahead

lat 0 lat 1
0

50

100

150

200

250

Index Scan, Random, Forward

16
17
18-worker
18-io_uring
WIP-worker
WIP-io_uring

19?: AIO writes in bgwriter & checkpointer

● Infrastructure for Buffered AIO writes required
● 2-3x checkpoint speed for sequential data
● bigger for large amounts of random data

19?: AIO for COPY & VACUUM
● Infrastructure for Buffered AIO writes required
● 2-4x speedup observable
● Bottleneck often elsewhere

– WAL
– index lookups

20, 21?: AIO for WAL writes
● Hard
● Huge wins possible
● Helpful for

– Bulk load
– Concurrent OLTP workloads

● Not helpful for
– low concurrency OLTP

Future AIO Users
● Recovery Readahead

– crucial for working without full-page-writes /
RWF_ATOMIC

● alter database set tablespace
● create database reads (strategy file_copy) & writes
● fsyncing files at end of checkpoint
● unlinking lots of files
● ...

Other Future Work
● Other IO methods

– Windows IOCP or io_uring
– FreeBSD (+others?) posix_aio

● Optimize existing code
– auto-tune number of workers
– registered buffers for io_uring

● Integrate async network IO

AIO in Postgres 18 and beyond

Andres Freund
PostgreSQL Developer & Committer

Email: andres@anarazel.de
Email: andres.freund@microsoft.com

https://anarazel.de/talks/2025-09-30-pgconf-nyc-aio-in-PG-18-and-beyond/aio-in-PG-18-and-beyond.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

