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Thanks
● A lot of work by a lot of folks
● Thomas, Melanie, Bilal, Noah, Heikki, Robert, …
● Microsoft
● Tomas and Peter G. for index prefetching work
● Lots of others



AIO?
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Predict the Future
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16:
- Buffer Mangager 
Infra
- Relation  Extension

17:
- Read Streams
- Streamify

- Seq Scan
- Analyze
- Prewarm

- Experimental Direct I/O

18:
- AIO Infra
- AIO for buffered reads
- Streamify

- Bitmap Heap Scan
- Vacuum
- autoprewarm
- CREATE DATABASE
- amcheck



18: io_method = worker
● portable
● parallelizes checksums, memory copy
● limited I/O depth, particularly with high latency 

storage
● global
● number of workers controlled by io_workers



18: io_method = io_uring
● linux specific, better with recent-ish kernels
● lower latency
● deep I/O queues
● per backend
● does not parallelize checksum computation
● requires tuning of file descriptor limits



18: io_method = sync
● don’t use AIO
● behaves as close as realistic to < 18
● “safety net”



18: When can AIO help?
● IO bound

– track_io_timing
– EXPLAIN (ANALYZE, BUFFERS)

● only for reads
● foreground: seqscan, bitmap heap scan
● background: vacuum
● Just the absolute basics!



Benchmark Setup
● 2x Gold 6442Y, 256GB RAM

● 2x Samsung SSD 2TB PM9A1, striped, XFS

● Linux 6.17

● Artificial 1ms latency added with dm_delay

● io_workers=32, effective_io_concurrency=32, shared_buffers=32GB

● checksums enabled on all branches

● 16 has support for cache clearing added



Benchmark Workload
● Large table with sequential and random columns
● Table populated in parallel
● PG & OS cache is cleared between queries
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18: AIO for Seq Scans

Checksums 
not parallelized

● Latency has little 
effect with AIO

● CPU bottlenecked 
(query + 
checksums)



18: AIO for prewarm
● bigger 

difference 
without 
checksum
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18: AIO for Vacuum
● huge effect
● only if small 

portion of table 
changed
● can be 

generalized
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18: AIO for Vacuum
● AIO has no 

effect → OS 
readahead

● CPU efficiency 
improvement in 
17
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18: AIO for Bitmap Heap Scan
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● already did 
prefetching 

● but now with 
DIO



18: AIO for Bitmap Heap Scan
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Checksums 
not parallelized



IO Depth vs io_method



19? 20?: Index Readahead
● Tomas Vondra w/ help from Peter Geoghegan
● Much harder than already-existing AIO users
● Other performance benefits plausible
● Some regression potential too



19? 20?: Index Readahead
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19? 20?: Index Readahead
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19? 20?: Index Readahead
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19?: AIO writes in bgwriter & checkpointer

● Infrastructure for Buffered AIO writes required
● 2-3x checkpoint speed for sequential data
● bigger for large amounts of random data



19?: AIO for COPY & VACUUM
● Infrastructure for Buffered AIO writes required
● 2-4x speedup observable
● Bottleneck often elsewhere

– WAL
– index lookups



20, 21?: AIO for WAL writes
● Hard
● Huge wins possible
● Helpful for

– Bulk load
– Concurrent OLTP workloads

● Not helpful for
– low concurrency OLTP



Future AIO Users
● Recovery Readahead

– crucial for working without full-page-writes / 
RWF_ATOMIC

● alter database set tablespace
● create database reads (strategy file_copy) & writes
● fsyncing files at end of checkpoint
● unlinking lots of files
● ...



Other Future Work
● Other IO methods

– Windows IOCP or io_uring
– FreeBSD (+others?) posix_aio

● Optimize existing code
– auto-tune number of workers
– registered buffers for io_uring

● Integrate async network IO
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