What went wrong with AlO

Andres Freund
PostgreSQL Developer & Committer
Email: andres@anarazel.de
Email: andres.freund@microsoft.com

https://anarazel.de/talks/2025-05-15-pgconf-dev-what-went-wrong-aio/what-went-wrong-aio.pdf



core AlIO

oldest Infrastructure

first

perf results
of prototype

oldest first
surviving

prototype of rewrite

~2019-06 ~2020-01 2020-05-26 2021-02-23 2024-09-01 2025-03-17

sssss———)

B Microsoft



https://anarazel.de/talks/2020-01-31-fosdem-aio/aio.pdf
https://postgr.es/m/20210223100344.llw5an2aklengrmn@alap3.anarazel.de
https://postgr.es/m/uvrtrknj4kdytuboidbhwclo4gxhswwcpgadptsjvjqcluzmah%40brqs62irg4dt
https://postgr.es/m/E1tuJo6-0030Bd-0C%40gemulon.postgresql.org

AlO Performance Effects - 17 and 18 beta 1

DELETE of sequential 0.1% + VACUUM 112

DELETE of random 0.1% +vacuuM TN 160

6.06

Parallel Seq Scan . 1.06

2.03

Seq Sca |
eq Scan 1.39

Parallel Bitmap Scan of random 5% - LS 15.59

Bitmap Scan of random 1% _ 1.30 171

Bitmap Scan of random 0.1% 111

index creation - A

VACUUM FREEZE after load L 1-111 5

1.00 10.00

Relative Perf Improvement -> 1.0 is equal

m fast NVMe networked storage (latency ~3ms)

Workload: Bigger than memory

shared_buffers: 10GB
remaining memory: 14GB
table size: 28GB
index size: 8.6GB

PG / OS cache cleared between
queries




Connectior

Executor

Thread, s | ‘e

Resourc

contrc

am Microsoft




Project Level Issues

 AIO Interacts with some of the least tested areas of
postgres

* Lots of basic assumptions need to be changed

* hard to get architectural review / hard to
understand architectural issues without working on
AlO

* Postgres not a project doing a lot of in-core
iteration

i |
u



Prototype

l0_uring only first
worker and then posix_aio (Thomas)

AlO for reads, checkpointer, bgwriter, backend buffer
replacement, sync request queue, WAL writes, ...

lots of unknowns - lots of experimentation / redesign
Different AlO uses have different design implications

B |
-



Basic AlO AP

/* Acquire an AlO Handle, ioret will get result upon completion. */
PgAioHandle *ioh = pgaio_io_acquire(CurrentResourceOwner, &ioret);

pgaio_io_get_wref(ioh, &iow);

[* update buffer desc state on completion */

pgaio_io_register_callbacks(ioh, PGAIO_HCB_SHARED_ BUFFER_READYV, 0);

/* start 10 on lower level */

smgrstartreadv(ioh, operation->smgr, forknum, blkno,

BufferGetBlock(buffer), 1);

/* now block waiting for IO */

pgaio_wref_wait(&iow);



I0_uring

New linux AlO interface, added in 5.1

Generic, quite a few operations supported
- open/ close / readv / writev / fsync, statx, ...
— send/recv/accept/connect/..., including polling

One single-reader / single writer ring for 10 submission, one SPSC ring for
completion

- allows batched “syscalls”

Operations that aren’t fully asynchronous are made asynchronous via
kernel threads



|0_uring basics

Application

Userspace

Kernel

N\

l0_uring

~——__spand) uona|dwo

am Microsoft




Time Sink: Prototype Perf Issues

* Prototype had too high lock overhead

* WAL tuning fscking hard
— some drives iodepth 1 fastest, others need high
— some drives small blocks fastest, others largest
— very latency dependent
— very workload dependent

* weird perf issues around reads from page cache w/
strategies (SMAP causing slowdowns)

i |
u



Time Sink: Architecture Mistakes

* limited number of io_uring rings
- was too concerned with FD limits
 arbitrary # of IOs can be reserved

* |O merging purely inside AlO layer, rather than
users

* AlO buffer replacement
* POSIX_alo support

i |
u



Lessons: Prototype

Prototype was absolutely crucial
Code quality went down
Don’t optimize all exploratory things as much

Actually tackle architectural mistakes when they
come up

|
u



Subprojects

replace buffer I/O locks with condition variables
(Robert, Thomas, 2021)

bulk relation extension (PG 16/ 2023)
— Includes crucial redesign of buffer management

aligned allocation (David R, PG 16 / 2023)
scatter / gather reads & writes (Thomas, PG 17/ 2024)

read streams & read stream conversions (Thomas et
al, PG 17/ 2024)

B |
-



Time Sink: Arguable Dependencies

* Adding CI
— Hindsight: definitely the right call

* Adding meson based build system (test runs)

— before
* no way to run all tests on windows

* test parallelism really low
 hard to find test failures

- Hindsight: ???

B |
-



Coincidental Important Developments

 postmaster child & state management

* backend startup refactoring
* procnumber "unification”

|
u



A Personal View

* Life sometimes <bleep>

 Committer vs Path Author responsibility
* Maintaining motivation for 6+ years Is hard

B |
-



Parallelize Development

* Architectural work was very hard to parallelize

* Parallel work added dependency bubbles

* Focusing on other AlO users not In critical paths for
core AlO infra

|
u



AlO In PG 18

e Core AlO infrastructure

* "sync”, "worker", "lo_uring" io methods

* buffered reads via streaming read interface use
AlO

- seqscans, pg_prewarm (17)
- bitmap heap scans, vacuum, ... (18)

e no writes in 18!

B |
-



AlO Future

bufmgr infrastructure for writes
~ race free exclusive lock vs io-in-progress check

critical section safe sync request handling
don't set hint bits on buffers being written out

redesign bulk strategy interface to be smarter

about writes
make 10 methods smarter
other 10 methods

|
u



AlO Future

* use AIO for
— checkpointer, bgwriter writes
— writes in backends
- table tuples index scans

* Integrate Network IO with AlO



Thanks!

Thomas (read streams, vectored 10, workers, ...)
Melanie (read stream users, readahead logic)
Bilal (CI, meson, read stream users, ...)

Noah (review)

Heikki (review)

Many others

Microsoft (5 years of work)



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

