
What went wrong with AIO

Andres Freund
PostgreSQL Developer & Committer

Email: andres@anarazel.de
Email: andres.freund@microsoft.com

https://anarazel.de/talks/2025-05-15-pgconf-dev-what-went-wrong-aio/what-went-wrong-aio.pdf

~ 2019-06 ~ 2020-01 2020-05-26 2021-02-23 2024-09-01 2025-03-17

first
hacking

oldest
 surviving

perf results

oldest
surviving
prototype

first
 submission
of prototype

first
submission

of rewrite

core AIO
infrastructure

merged

https://anarazel.de/talks/2020-01-31-fosdem-aio/aio.pdf
https://postgr.es/m/20210223100344.llw5an2aklengrmn@alap3.anarazel.de
https://postgr.es/m/uvrtrknj4kdytuboidbhwclo4gxhswwcpgadptsjvjqcluzmah%40brqs62irg4dt
https://postgr.es/m/E1tuJo6-0030Bd-0C%40gemulon.postgresql.org

Workload: Bigger than memory

shared_buffers: 10GB

remaining memory: 14GB

table size: 28GB

index size: 8.6GB

PG / OS cache cleared between
queries

Threading

Connection

Model

Executor

Architecture

Resource

Control
AIO

Project Level Issues
● AIO interacts with some of the least tested areas of

postgres
● Lots of basic assumptions need to be changed
● hard to get architectural review / hard to

understand architectural issues without working on
AIO

● Postgres not a project doing a lot of in-core
iteration

Prototype
● io_uring only first
● worker and then posix_aio (Thomas)
● AIO for reads, checkpointer, bgwriter, backend buffer

replacement, sync request queue, WAL writes, …
● lots of unknowns → lots of experimentation / redesign
● Different AIO uses have different design implications

Basic AIO API
/* Acquire an AIO Handle, ioret will get result upon completion. */

PgAioHandle *ioh = pgaio_io_acquire(CurrentResourceOwner, &ioret);

pgaio_io_get_wref(ioh, &iow);

/* update buffer desc state on completion */

pgaio_io_register_callbacks(ioh, PGAIO_HCB_SHARED_BUFFER_READV, 0);

/* start IO on lower level */

smgrstartreadv(ioh, operation->smgr, forknum, blkno,

 BufferGetBlock(buffer), 1);

...

/* now block waiting for IO */

pgaio_wref_wait(&iow);

io_uring
● New linux AIO interface, added in 5.1

● Generic, quite a few operations supported

– open / close / readv / writev / fsync, statx, …

– send/recv/accept/connect/…, including polling

● One single-reader / single writer ring for IO submission, one SPSC ring for
completion

– allows batched “syscalls”

● Operations that aren’t fully asynchronous are made asynchronous via
kernel threads

Userspace

Kernel
SQE

H
ea
d

Ta
il

SQE

SQE

SQE

S
ub

m
ission

 Q
ueu

e

CQE

Hea
d

Tail

CQE

CQE

C
o

m
p

letion
 Q

ue
ue

Application

io_uring

io_uring basics

CQE

Time Sink: Prototype Perf Issues
● Prototype had too high lock overhead
● WAL tuning fscking hard

– some drives iodepth 1 fastest, others need high
– some drives small blocks fastest, others largest
– very latency dependent
– very workload dependent

● weird perf issues around reads from page cache w/
strategies (SMAP causing slowdowns)

Time Sink: Architecture Mistakes
● limited number of io_uring rings

– was too concerned with FD limits

● arbitrary # of IOs can be reserved
● IO merging purely inside AIO layer, rather than

users
● AIO buffer replacement
● posix_aio support

Lessons: Prototype
● Prototype was absolutely crucial
● Code quality went down
● Don’t optimize all exploratory things as much
● Actually tackle architectural mistakes when they

come up

Subprojects
● replace buffer I/O locks with condition variables

(Robert, Thomas, 2021)
● bulk relation extension (PG 16 / 2023)

– includes crucial redesign of buffer management
● aligned allocation (David R, PG 16 / 2023)
● scatter / gather reads & writes (Thomas, PG 17 / 2024)
● read streams & read stream conversions (Thomas et

al, PG 17 / 2024)

Time Sink: Arguable Dependencies
● Adding CI

– Hindsight: definitely the right call

● Adding meson based build system (test runs)
– before

● no way to run all tests on windows
● test parallelism really low
● hard to find test failures

– Hindsight: ???

Coincidental Important Developments
● postmaster child & state management
● backend startup refactoring
● procnumber "unification"

A Personal View
● Life sometimes <bleep>
● Committer vs Path Author responsibility
● Maintaining motivation for 6+ years is hard

Parallelize Development
● Architectural work was very hard to parallelize
● Parallel work added dependency bubbles
● Focusing on other AIO users not in critical paths for

core AIO infra

AIO in PG 18
● Core AIO infrastructure
● "sync", "worker", "io_uring" io methods
● buffered reads via streaming read interface use

AIO
– seqscans, pg_prewarm (17)
– bitmap heap scans, vacuum, ... (18)

● no writes in 18!

AIO Future
● bufmgr infrastructure for writes

– race free exclusive lock vs io-in-progress check
● critical section safe sync request handling
● don't set hint bits on buffers being written out
● redesign bulk strategy interface to be smarter

about writes
● make IO methods smarter
● other IO methods

AIO Future
● use AIO for

– checkpointer, bgwriter writes
– writes in backends
– table tuples index scans
– ...

● Integrate Network IO with AIO

Thanks!
● Thomas (read streams, vectored IO, workers, ...)

● Melanie (read stream users, readahead logic)

● Bilal (CI, meson, read stream users, ...)

● Noah (review)

● Heikki (review)

● Many others

● Microsoft (5 years of work)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

