

NUMA vs PostgreSQL

Andres Freund
PostgreSQL Developer & Committer

Email: andres@anarazel.de
Email: andres.freund@microsoft.com

https://anarazel.de/talks/2024-10-23-pgconf-eu-numa-vs-postgresql/numa-vs-postgresql.pdf

What are we doing here?
● NUMA aware postgres has been discussed a lot – but

without concrete projects being identified
● I tend to waste a lot of time with low level hardware

stuff
● Don’t have cycles to implement all the fixes
● Tried to prototype changes, everything very hacky
● NOT claiming any identified projects as my own

Why should we work on this?
● “Moore’s law is dead”

– everyone is moving to “chiplet” style hardware
architectures

– core counts are increasing
● Throughput has improved, latency has effectively gotten
worse
– same or worse absolute time, faster clock speeds
– cross-chiplet / socket latencies have increased

Socket

Chiplet / Tile

Memory
Controller

Core Core

Core Core
...

L3 Cache

IO
(PCIe, SoC, …)

Chiplet / Tile

Memory
Controller

Core Core

Core Core
...

L3 Cache ...

...Socket

Chiplet / Tile

Memory
Controller

Core Core

Core Core
...

L3 Cache

IO
(PCIe, SoC, …)

Chiplet / Tile

Memory
Controller

Core Core

Core Core
...

L3 Cache ...

NUMA

VERY APPROXIMATE – DETAILS VARY

Impact
● Increased Latency

– base memory latency: ~ 80-140ns
– cross socket: + ~~ 80-100ns
– cross tile: + ~~ 30ns
– Biggest issue: Contended Lock
– Also bad: Latency sensitive data like hashtables

● Decreased Throughput
● Cached in L1-3 – there is no perf difference for cached

accesses

VERY APPROXIMATE

 https://github.com/nviennot/core-to-core-latency
https://chipsandcheese.com/p/amds-turin-5th-gen-epyc-launched

https://github.com/nviennot/core-to-core-latency
https://chipsandcheese.com/p/amds-turin-5th-gen-epyc-launched

“Official” vs “Inofficial”
● official

– NUMA visible to OS / applications
– can be addressed using NUMA aware code

● inofficial
– some latency difference without being visible
– throughput less affected
– can be addressed by making code more scalable in

generic ways

Numa on Linux
● default allocation policy: local node
● allocation on first use (not mmap()/malloc()!)

– pg_prewarm() etc will lead to unbalanced memory!
● NUMA balancing tries to move memory around

– /proc/sys/kernel/numa_balancing

Problem #1 – Visibility
● Currently no postgres level insights available
● Minimum: add NUMA information to pg_buffercache
● Also important:

– NUMA information for other parts of shared memory
– NUMA information for memory context stats
– NUMA information for dynamic shared memory

● Maybe: NUMA information for EXPLAIN (BUFFERS, …)?
● Maybe: Functions to pin backends?

Workaround #1 - Visibility
● OS level stats, via /proc/$pid/numa_maps

Problem #2 – Imbalance
● Allocation on first use: pg_prewarm(), CREATE

INDEX, COPY lead to memory on one node being
overused

● numactl –interleave=all => also interleaves malloc()
style memory allocations

● Secondary issue: First use of memory much slower
– Forcing pre-allocation with MAP_POPULATE

triggers memory to be allocated on postmaster’s
node

Problem #2 – Imbalance
● Workload: #ncpu concurrent sequential scans of independent

tables, fits in s_b, --interleave=all, prewarmed

● default:

– latency average: 382.700 ms

– latency stddev: 68.596 ms

● interleave=all:

– latency average: 352.581 ms

– latency stddev: 7.276 ms

Problem #2 – Imbalance
● Workload: CPU intensive parallel seqscan
● --interleave=all: 1679.224ms
● --interleave=all + numa_set_localalloc(): 1597.208ms

Solution #2 – Imbalance
● Use libnuma to explicitly spread shared_buffers across

nodes
● Use libnuma to set default policy for memory

allocations to local
● Configuration needed?
● Portability?

Problem #3
● Workload: #ncpu concurrent sequential scans of

independent tables, fits in s_b, --interleave=all
● Zen 4 laptop (7840U)

– “naturally filled”: avg 559.658ms
– “prewarmed”: avg 539.189ms (3.8% faster)

● 2x Xeon Gold 6442Y
– “naturally filled”: avg 413.757ms
– “prewarmed”: avg 375.201ms (10.2% faster)

 931,652,902,170 dTLB-loads
 28,666,216 dTLB-load-misses # 0.00% of all dTLB cache accesses
 1,264,689,154 LLC-loads
 1,144,084,854 LLC-load-misses # 90.46% of all LL-cache accesses
 790,249,841,952 cycles
 2,865,494,242,052 instructions # 3.63 insn per cycle

 931,414,147,893 dTLB-loads
 8,868,946 dTLB-load-misses # 0.00% of all dTLB cache accesses
 654,284,801 LLC-loads
 534,562,990 LLC-load-misses # 81.70% of all LL-cache accesses
 723,453,968,846 cycles
 2,864,166,151,433 instructions # 3.96 insn per cycle

“naturally filled”

“prewarmed”

2x Xeon Gold 6442Y

Problem #3 – Buffer Replacement
● clocksweep in Buffer ID order→ victim buffer IDs often

have “sequential chunks”
● concurrent clocksweep ⮕ concurrent scans are less

often consecutive
● ⮕ less dense buffer accesses more TLB misses⮕
● ⮕ fewer reads can be combined into shorter readv()

vectors ⮕ slower reads

Solution #3 – Buffer Replacement
● Partition freelist & clock sweep by the number of cores
● Partition boundaries at huge_page_size boundaries
● Occasionally balance between freelist & clock sweeps

if one backend / core is busier
● Co-locate BufferDesc and buffer data

– huge_page_size=2MB 256MB on one node⮕
(((2 * 1024 * 1024) / 64) * 8192) / (1024 * 1024) = 256

Problem #4 – Buffer Lock
Contention

● SELECT abalance, bbalance
FROM pgbench_accounts

JOIN pgbench_branches USING (bid)
WHERE aid = :aid;
10 statements pipelined

● Patch to avoid needing to re-find btree root page applied
● Pinned to 1-4 NUMA nodes

#Nodes 1 2 3 4

TPS: 131,912 167,361 94,236 62,357

Sep DBs 131,915 256,811 378,540 515,292

Solution #4 – “Fast Path Buffer Locks”
● Hotly accessed, rarely modified pages are often the

worst contended
● Mark buffer as super-locked no need to pin, lock⮕
● Super-locked page get pinned & locked in per-

backend state
● To exclusively lock, all backend-local locks need to be

re-acquired
● Hard part: When to acquire super-locks

Outlook – PG Optimizations
● Read-mostly and frequently changing data on same

cacheline
– example: TransamVariablesData, quick fix: 50%

increased throughput with lots of subxids
● Procarray: “too dense”, pad and have per-numa node

freelists?
● Use huge pages more selectively (e.g. not procarray)

Outlook
● IO: Faster to do IO on NUMA node that has PCIe

device attached
● CXL: Memory via PCIe (slower, cheaper, more)

– + ~~ 200ns latency
– Secondary bufferpool?

● CXL: Loan Memory from other nodes
– + ~~ 350ns latency

Add-On: Profiling
● perf c2c can be helpful

https://anarazel.de/talks/2024-05-29-pgconf-dev-c2c/postgres-perf-c2c.pdf
● Perf events

E.g. on Intel HW:
perf stat --per-node -a -e

mem_load_l3_miss_retired.remote_dram,

mem_load_l3_miss_retired.remote_fwd,

mem_load_l3_miss_retired.remote_hitm,

mem_load_l3_miss_retired.local_dram,

uncore_imc/cas_count_read/,

uncore_imc/cas_count_write/

-r 0

sleep 1

https://anarazel.de/talks/2024-05-29-pgconf-dev-c2c/postgres-perf-c2c.pdf

NUMA vs PostgreSQL

Andres Freund
PostgreSQL Developer & Committer

Email: andres@anarazel.de
Email: andres.freund@microsoft.com

https://anarazel.de/talks/2024-10-23-pgconf-eu-numa-vs-postgresql/numa-vs-postgresql.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

