NUMA vs PostgreSQL

Andres Freund
PostgreSQL Developer & Committer
Email: andres@anarazel.de
Email: andres.freund@microsoft.com

https://anarazel.de/talks/2024-10-23-pgconf-eu-numa-vs-postgresgl/numa-vs-postgresql.pdf

a Microsoft

What are we doing here?

NUMA aware postgres has been discussed a lot — but

without concrete projects being identified

| tend to waste a lot of time with low level hardware

Stuff
Don’t have cycles to implement all the fixes

Tried to prototype changes, everything very hacky

NOT claiming any identified projects as my own

Microsoft

Why should we work on this?

* “Moore’s law Is dead”

~ everyone Is moving to “chiplet” style hardware
architectures

core counts are increasing

* Throughput has improved, latency has effectively gotten
worse

~ same or worse absolute time, faster clock speeds
cross-chiplet / socket latencies have increased

B Microsoft

HE pa:
VERY APPROXIMATE — DETAILS VARY m Microsoft

Impact

* Increased Latency
~ base memory latency: ~ 80-140ns
~ cross socket: + ~~ 80-100ns < VERY APPROXIMATE
— cross tile: + ~~ 30ns «
— Biggest issue: Contended Lock
— Also bad: Latency sensitive data like hashtables

* Decreased Throughput

* Cached in L1-3 —there is no perf difference for cached

aCCesSsSes

a Microsoft

https://github.com/nviennot/core-to-core-latency
https://chipsandcheese.com/p/amds-turin-5th-gen-epyc-launched

B Microsoft

https://github.com/nviennot/core-to-core-latency
https://chipsandcheese.com/p/amds-turin-5th-gen-epyc-launched

“Official” vs “Inofficial’

* official
~ NUMA visible to OS / applications
~ can be addressed using NUMA aware code
* inofficial
~ some latency difference without being visible
~ throughput less affected

~ can be addressed by making code more scalable in
generic ways

B Microsoft

Numa on Linux

» default allocation policy: local node
 allocation on first use (not mmap()/malloc()!)
- pg_prewarm() etc will lead to unbalanced memory!

* NUMA balancing tries to move memory around
- /proc/sys/kernel/numa_balancing

B Microsoft

Problem #1 — Visibility

Currently no postgres level insights available

Minimum: add NUMA information to pg_buffercache

Also important:

- NUMA information for other parts of shared memory

- NUMA information for memory context stats

- NUMA information for dynamic shared memory
Maybe: NUMA information for EXPLAIN (BUFFERS, ...)?
Maybe: Functions to pin backends?

B Microsoft

Workaround #1 - Visibility

* OS level stats, via /proc/$pid/numa_maps

B Microsoft

Problem #2 — Imbalance

« Allocation on first use: pg_prewarm(), CREATE
INDEX, COPY lead to memory on one node being
overused

* numactl —interleave=all => also interleaves malloc()
style memory allocations

e Secondary issue: First use of memory much slower

- Forcing pre-allocation with MAP_POPULATE
triggers memory to be allocated on postmaster’s
node

B Microsoft

Problem #2 — Imbalance

* Workload: #ncpu concurrent sequential scans of independent
tables, fits in s_b, --interleave=all, prewarmed

e default:
- latency average: 382.700 ms
- latency stddev: 68.596 ms
* Interleave=all:
- latency average: 352.581 ms
- latency stddev: 7.276 ms

B Microsoft

Problem #2 — Imbalance

* Workload: CPU intensive parallel seqscan
 —-Interleave=all: 1679.224ms
* --interleave=all + numa_set_localalloc(): 1597.208ms

B Microsoft

Solution #2 — Imbalance

Use libnuma to explicitly spread shared buffers across
nodes

Use libnuma to set default policy for memory
allocations to local

Configuration needed?
Portability?

B Microsoft

Problem #3

* Workload: #ncpu concurrent sequential scans of
Independent tables, fits in s_b, --interleave=all

* Zen 4 laptop (7840U)

- “naturally filled”: avg 559.658ms

~ “prewarmed”: avg 539.189ms (3.8% faster)
* 2x Xeon Gold 6442Y

- “naturally filled”: avg 413.757ms

~ “prewarmed”: avg 375.201ms (10.2% faster)

m= Microsoft

2X Xeon Gold 6442Y

“naturally filled”

931, 652,902,170
28, 666, 216
1,264,689, 154
1,144,084, 854
790,249,841, 952
2,865,494,242,052

“prewarmed”

931, 414,147,893
8,868, 946
654,284,801
534,562,990
723,453,968, 846
2,864,166,151, 433

dTLB- loads
dTLB-load-misses
LLC- loads
LLC-load-misses
cycles
instructions

dTLB- loads
dTLB-load-misses
LLC- loads
LLC-load-misses
cycles
instructions

0.00% of all dTLB cache accesses

90.46% of all LL-cache accesses

3.63

insn per cycle

0.00% of all dTLB cache accesses

81.70% of all LL-cache accesses

3.96

insn per cycle

Microsoft

Problem #3 — Buffer Replacement

clocksweep in Buffer ID order — victim buffer IDs often

have “sequential chunks”

concurrent C|OCkSW€€p = concurrent scans are less

often consecutive

= |ess dense buffer accesses = more TLB misses

= fewer reads can be combined into shorter readv()

vectors = slower reads

Microsoft

Solution #3 — Buffer Replacement

Partition freelist & clock sweep by the number of cores

Partition boundaries at huge_page_size boundaries

Occasionally balance between freelist & clock sweeps

If one backend / core Is busier
Co-locate BufferDesc and buffer data

- huge page size=2MB=+256MB on one node
(((2 * 1024 * 1024) / 64) * 8192) / (1024 * 1024) = 256

Microsoft

Problem #4 — Buffer Lock
Contention

* SELECT abalance, bbalance
FROM pgbench_accounts

JOIN pgbench_branches USING (bid)
WHERE aid = :aid;

10 statements pipelined

* Patch to avoid needing to re-find btree root page applied
* Pinned to 1-4 NUMA nodes

#Nodes

1

2

3

4

TPS:

131,912

167,361

94,236

62,357

Sep DBs

131,915

256,811

378,540

515,292

Microsoft

Solution #4 — “Fast Path Buffer Locks”

* Hotly accessed, rarely modified pages are often the
worst contended

 Mark buffer as super-locked = no need to pin, lock

* Super-locked page get pinned & locked in per-
backend state

* To exclusively lock, all backend-local locks need to be
re-acquired

 Hard part. When to acquire super-locks

B Microsoft

Outlook — PG Optimizations

 Read-mostly and frequently changing data on same
cacheline

- example: TransamVariablesData, quick fix: 50%
Increased throughput with lots of subxids

* Procarray: “too dense”, pad and have per-numa node
freelists?

* Use huge pages more selectively (e.g. not procarray)

B Microsoft

Outlook

* |0O: Faster to do 10 on NUMA node that has PCle
device attached

* CXL: Memory via PCle (slower, cheaper, more)
~ + ~~ 200ns latency
— Secondary bufferpool?

* CXL: Loan Memory from other nodes
~ + ~~ 350ns latency

B Microsoft

Add-On: Profiling

* perf c2c can be helpful
https://anarazel.de/talks/2024-05-29-pgconf-dev-c2c/postgres-perf-c2c.pdf

* Perf events
E.g. on Intel HW:

perf stat --per-node -a -e
mem_load I3 _miss_retired.remote_dram,
mem_load I3 _miss_retired.remote_fwd,
mem_load I3 _miss_retired.remote_hitm,
mem_load I3 _miss_retired.local _dram,
uncore_imc/cas_count_read/,
uncore_imc/cas_count_write/
-r0

sleep 1 B Microsoft

https://anarazel.de/talks/2024-05-29-pgconf-dev-c2c/postgres-perf-c2c.pdf

NUMA vs PostgreSQL

Andres Freund
PostgreSQL Developer & Committer
Email: andres@anarazel.de
Email: andres.freund@microsoft.com

https://anarazel.de/talks/2024-10-23-pgconf-eu-numa-vs-postgresgl/numa-vs-postgresql.pdf

a Microsoft

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

