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15: Recovery Prefetching (Thomas Munro)

https://techcommunity.microsoft.com/t5/azure-database-for-postgresql/reducing-replication-lag-with-io-concurrency-in-postgres-15/ba-p/3673169

https://techcommunity.microsoft.com/t5/azure-database-for-postgresql/reducing-replication-lag-with-io-concurrency-in-postgres-15/ba-p/3673169


16: Bulk Relation Extension, Buffer Replacement

● Infrastructure for multiple “in progress” 
Buffers

● Buffer Replacement – “Get a free buffer 
when there are no free ones”

● Relation Extension - “Making a table bigger”
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16: “Add debug_io_direct setting for developer usage”

● Can be set to data, wal, wal_init

● NOT RECOMMENDED FOR PRODUCTION

● “data”

– relation IO

– is disastrous for performance

● “wal”

– can already show benefits, particularly with 
wal_sync_method=open_datasync

● “wal_init”

– creation of new WAL files



17?: Streaming Read Abstraction

● Simple interface for most read IO
● Initially no AIO, just “fadvise” style prefetching
● Main Goal: Parallelize development
● Minor Goal: Small performance gains
● Convert some users to new interface
● See

https://postgr.es/m/CA+hUKGJkOiOCa+mag4BF+zHo7qo=o9CFheB8=g6uT5TUm2gkvA@mail.gmail.com

https://postgr.es/m/CA+hUKGJkOiOCa+mag4BF+zHo7qo=o9CFheB8=g6uT5TUm2gkvA@mail.gmail.com


17-18 ??: AIO infrastructure

● io_method=(worker|io_uring|posix_aio)
● goal: can use AIO infrastructure without loss 

of performance, even when no AIO support 
present, to avoid duplicating code

● Not yet used



17-18 ?: sequential scans

● Problem:
– Only use OS readahead
– Double Buffering
– Can get confused (skipped blocks, segments)
– Not guaranteed to be present on all OSs
– OS readahead doesn't know workload / not aggressive 

enough
– Simple patch due to “streaming read” interface
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17-18?: checkpointer, bgwriter 

● Throughput limited due to CPU overhead
● Limited control over latency impact with 

buffered IO
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18?: WAL writes

● benefit #1: Do something else during WAL write / 
flush
– could get rid of bgwriter (often overloaded, not 

adaptive)
● benefit #2: Multiple WAL flushes concurrently

– we have group commit
– but only one flush in progress 

● Hard, gains only very partially realized right now
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18?: WAL writes

● pgbench transaction: ~450 bytes
● default WAL page size: 8kB
● in-write page cannot be written again before 

completion
● Problem: to-be-flushed-page is rarely full
● Solution (?): optionally pad partial pages
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17-18?: VACUUM

● improved read performance
● improved *write* performance

– due to asynchronous WAL flushing
– due to DIO

● better control over latency effects
high lat cloud disk lower lat cloud disk

master 94.673 s 33.37 s

aio 12.349 s 7.737 s



17, 18: Other working AIO conversions

● ProcessSyncRequests() - checkpoints
● Acquire victim buffers in background
● SyncDataDirectory() - startup
● Bitmap heap scans



Potential future AIO users

● various index scans

– Tomas Vondra is working on some bits

● More vacuuming

● Temp table support

● More everything

● lower-level operations

– create database

– vacuum full

– on startup cleanups

– filesystem directory iteration



Thanks!

● Colleagues working with me on this

– David, Melanie, Thomas and others

● Others working on related important pieces

– Tomas Vondra is working index prefetching

– Bharath Rupireddy is working feelding walsender from buffers

– ...

● Heikki Linnakangas has been reviewing parts

● ...

● github.com/anarazel/postgres/tree/aio

● http://wiki.postgresql.org/wiki/AIO

http://wiki.postgresql.org/wiki/AIO
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