
Email: andres@anarazel.de
Email: andres.freund@microsoft.com
anarazel.de/talks/2023-12-14-pgconf-eu-path-to-aio/path-to-aio.pdf

Andres Freund
PostgreSQL Developer & Committer

The path to using AIO in
Postgres

It’s Long

It’s Hard

Time

Client

Postgres

OS

Disk

Reads: synchronous, not cached

Time

Client

Postgres

OS

Disk

Reads: asynchronous, not cached

Client

Postgres

OS

Disk

Reads: synchronous, OS cached

Time

Client

Postgres

OS

Disk

Reads: synchronous, postgres cached

Time

Application

Drive

S
ys

ca
ll Userspace

Kernel

Page Cache

IO

D
M

A

IR
Q

S
yscall

co
py_

to_use
r

Buffered read()

Application

Drive

S
ys

ca
ll

Userspace

Kernel

IO

D
M

A
IR

Q

S
yscall

Direct IO (DIO) read()

15: Recovery Prefetching (Thomas Munro)

https://techcommunity.microsoft.com/t5/azure-database-for-postgresql/reducing-replication-lag-with-io-concurrency-in-postgres-15/ba-p/3673169

https://techcommunity.microsoft.com/t5/azure-database-for-postgresql/reducing-replication-lag-with-io-concurrency-in-postgres-15/ba-p/3673169

16: Bulk Relation Extension, Buffer Replacement

● Infrastructure for multiple “in progress”
Buffers

● Buffer Replacement – “Get a free buffer
when there are no free ones”

● Relation Extension - “Making a table bigger”

1 2 4 8 16 32 64 128 256 512
0

500

1000

1500

2000

2500

3000

3500

4000

4500

COPY into unlogged table

small files, ~10GB total, fits into s_b, 20c/40t machine

16-before

16-after

16-after-no-fsm

clients

M
B

/s

1 2 4 8 16 32 64 128 256 512
0

200

400

600

800

1000

1200

1400

1600

1800

COPY into logged table

small files, ~10GB total, fits into s_b, 20c/40t machine

16-before

16-after

16-after-no-fsm

clients

M
B

/s

16: “Add debug_io_direct setting for developer usage”

● Can be set to data, wal, wal_init

● NOT RECOMMENDED FOR PRODUCTION

● “data”

– relation IO

– is disastrous for performance

● “wal”

– can already show benefits, particularly with
wal_sync_method=open_datasync

● “wal_init”

– creation of new WAL files

17?: Streaming Read Abstraction

● Simple interface for most read IO
● Initially no AIO, just “fadvise” style prefetching
● Main Goal: Parallelize development
● Minor Goal: Small performance gains
● Convert some users to new interface
● See

https://postgr.es/m/CA+hUKGJkOiOCa+mag4BF+zHo7qo=o9CFheB8=g6uT5TUm2gkvA@mail.gmail.com

https://postgr.es/m/CA+hUKGJkOiOCa+mag4BF+zHo7qo=o9CFheB8=g6uT5TUm2gkvA@mail.gmail.com

17-18 ??: AIO infrastructure

● io_method=(worker|io_uring|posix_aio)
● goal: can use AIO infrastructure without loss

of performance, even when no AIO support
present, to avoid duplicating code

● Not yet used

17-18 ?: sequential scans

● Problem:
– Only use OS readahead
– Double Buffering
– Can get confused (skipped blocks, segments)
– Not guaranteed to be present on all OSs
– OS readahead doesn't know workload / not aggressive

enough
– Simple patch due to “streaming read” interface

master AIO AIO+DIO
0

10

20

30

40

50

60

70

Sequential Scan Performance, Cloud Storage

12GB table, clean OS and PG cache

tim
e

 in
 s

master AIO AIO+DIO
0

5

10

15

20

25

Sequential read via pg_prewarm

34GB on 2 striped PCIe v3 SSDs

tim
e

 in
 s

17-18?: checkpointer, bgwriter

● Throughput limited due to CPU overhead
● Limited control over latency impact with

buffered IO

master AIO AIO+DIO
0

1000

2000

3000

4000

5000

6000

checkpoint 35GB of dirty data

stripe of 2 PCIe 3x SSDs, io_uring

M
B

/s

18?: WAL writes

● benefit #1: Do something else during WAL write /
flush
– could get rid of bgwriter (often overloaded, not

adaptive)
● benefit #2: Multiple WAL flushes concurrently

– we have group commit
– but only one flush in progress

● Hard, gains only very partially realized right now

1 2 4 8 16 32
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

sync operations/sec, using fio

on cloud storage device with decent latency

dsync

fdatasync

iodepth

sy
n

cs
/s

e
c

18?: WAL writes

● pgbench transaction: ~450 bytes
● default WAL page size: 8kB
● in-write page cannot be written again before

completion
● Problem: to-be-flushed-page is rarely full
● Solution (?): optionally pad partial pages

1 2 4 8 16
0

2000

4000

6000

8000

10000

12000

14000

16000

pgbench TPS

full_page_writes=off, scale 2000

head

aio

aio + pad

clients

tp
s

1 2 4 8 16 32 64 128 256 512 1024
0

20000

40000

60000

80000

100000

120000

pgbench TPS

full_page_writes=off, scale 2000

head

aio

aio + pad

clients

tp
s

17-18?: VACUUM

● improved read performance
● improved *write* performance

– due to asynchronous WAL flushing
– due to DIO

● better control over latency effects
high lat cloud disk lower lat cloud disk

master 94.673 s 33.37 s

aio 12.349 s 7.737 s

17, 18: Other working AIO conversions

● ProcessSyncRequests() - checkpoints
● Acquire victim buffers in background
● SyncDataDirectory() - startup
● Bitmap heap scans

Potential future AIO users

● various index scans

– Tomas Vondra is working on some bits

● More vacuuming

● Temp table support

● More everything

● lower-level operations

– create database

– vacuum full

– on startup cleanups

– filesystem directory iteration

Thanks!

● Colleagues working with me on this

– David, Melanie, Thomas and others

● Others working on related important pieces

– Tomas Vondra is working index prefetching

– Bharath Rupireddy is working feelding walsender from buffers

– ...

● Heikki Linnakangas has been reviewing parts

● ...

● github.com/anarazel/postgres/tree/aio

● http://wiki.postgresql.org/wiki/AIO

http://wiki.postgresql.org/wiki/AIO

Email: andres@anarazel.de
Email: andres.freund@microsoft.com
anarazel.de/talks/2023-12-14-pgconf-eu-path-to-aio/path-to-aio.pdf

Andres Freund
PostgreSQL Developer & Committer

The path to using AIO in
Postgres

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

