
IO in PostgreSQL: Past, Present, Future

Andres Freund
PostgreSQL Developer & Committer

Microsoft
andres@anarazel.de

andres.freund@microsoft.com
@AndresFreundTec

https://anarazel.de/talks/2022-05-02-vaccination-db-aio/2022-05-02-vaccination-db-aio.pdf

mailto:andres@anarazel.de
mailto:andres.freund@microsoft.com
https://anarazel.de/talks/2022-05-02-vaccination-db-aio/2022-05-02-vaccination-db-aio.pdf

Past → Current postgres IO
● data buffer pool in shared memory
● buffered IO ([p]read(), [p]write(), preadv(),
pwritev())

● WAL (sync log before data writes) buffered in shared memory
– group flush / commit, concurrent in-memory generation

● checkpointer, wal writer, background writer
● readahead via posix_fadvise(), OS
● postgres added control over dirty data in kernel page cache

– sync_file_range(SYNC_FILE_RANGE_WRITE), msync()

Application

Drive
S

ys
ca

ll Userspace

Kernel
Page Cache

IO

DM
A

IR
Q

S
yscall

copy_to_user

Buffered read()

Application

Drive

S
ys

ca
ll

Userspace

Kernel

IO

D
M

A
IR

Q

S
yscall

Direct IO (DIO) read()

Past → Current postgres IO
● WAL writer

– flushes WAL, also be done by backends
● Buffer Replacement uses variant of CLOCK

– state advanced by backends
– good concurrency, but not much else is good

● Background writer
– writes data buffers out before backends need to

● Checkpointer
– performs spread checkpoints, often near continuously
– syncs files, other tasks

Why could postgres still succeed?

Why could postgres still succeed?
● linux has ok-ish readahead, page-cache

– hides weaknesses of buffer replacement algorithm
● spinning disks are SLOW and not concurrent
● prefetching, parallelism hide costs / latency

Why O Why?

Why O Why?
● Pragmatism: A small team
● Hard to change due to some architectural reasons

– process based
– cache replacement algorithm not great, tree-walk executor

● Direct IO alone is not usable
● AIO platform dependent, significant investments needed to be

better than current state

In POSTGRES they are run as subprocesses managed by the POSTMASTER. A
last aspect of our design concerns the operating system process structure.
Currently, POSTGRES runs as one process for each active user. This
was done as an expedient to get a system operational as quickly as
possible. We plan on converting POSTGRES to use lightweight
processes available in the operating systems we are using. These
include PRESTO for the Sequent Symmetry and threads in Version 4 of Sun/OS.

The Implementation of POSTGRES
Stonebraker, Michael and Rowe, Lawrence A. and Hirohama, M.
April 1990

(hat-tip to Thomas Munro for finding this quote)

https://www2.eecs.berkeley.edu/Pubs/TechRpts/1990/ERL-90-34.pdf

Reads: synchronous, not cached

Time

Client

Postgres

OS

Disk

Reads: asynchronous, not cached

Time

Client

Postgres

OS

Disk

Why O Why?
● Lots of postgres use without elaborate tuning, not on dedicated

machines, on overcommitted hardware
– kernel management of page cache beneficial, AIO traditionally requires

DIO
● Bad reasons: Believing our own excuses too much

Why Change?

Hardware Trend: NVMe
● “Specification for accessing storage medium

– typically via PCIe, but also over network, fibre channel, etc
– multiple queues
– used for SSDs etc

● low dispatch overhead (single non-cacheable write)
– latency increase due to kernel page cache significant
– intra process / thread dispatch latency problematic
– ~3 orders of magnitude, while memory latency improved ~1.5x

Hardware Trend: NVMe
● bandwidth often limited by PCIe 4x (~3GB/s for PCIe 3, ~7GB/s for PCIe4)

– memory copy overhead due to copy of page cache a major limiting
factor

– kernel page cache allocation performance currently limiting factor
● getting improved in linux

● very high IO concurrency
– OS can't feed it from page cache / readahead

“Hardware” Trend:
"Cloud" networked storage

● medium-high latency
– 0.3ms for more expensive storage
– 1-4ms for more commonly used storage, higher for spinning disk backed

storage)
● but lots of IO concurrency and random access characteristics

– lots of IO need to be in flight for decent performance - hard to do via
buffered IO

– WAL write latency a major issue
● decent bandwidth

Moving towards AIO / DIO

AIO in PG
● I started working on it 2019, with lots of other project

interrupting it
– long interested in topic, re-invigorated due to io_uring supporting

buffered AIO
● since then have had help, most prominently by Thomas Munro

and Melanie Plageman

AIO in PG: Design Constraints
● Process Model
● Avoid deadlocks due to processes that submitted IO blocking

on lock, holder of lock blocked on completing IO
● Avoid intra-process context switches for IOs when possible
● OS / IO method abstraction from most code
● Individual AIO users shouldn’t need to know much about AIO

AIO in PG: Architecture
● AIO completions can be processed in any process
● base AIO layer doesn't know about buffers etc
● IO combining etc done in AIO layer, using scatter / gather IO
● lots of boring infrastructure improvements, some committed

● “Accurate” readahead, via "streaming read" interface
– requires just a callback providing details about IO needed in future

AIO in PG: Backends
● io_uring

– IO submission / completion handling doesn't require intra-process
context switches, even syscalls can be optimized away

– supports AIO with buffered IO
● "worker" fallback

– crucial so we don’t need AIO and non-AIO paths
● posix AIO (ugh)
● windows iocp (some issues remain)

AIO in PG: Converted Subystems
● readahead during WAL replay

– potentially *disastrous* recovery performance when not using DIO otherwise
● checkpointer (data file writes, concurrent file flushes), bgwriter
● WAL writes: multiple in-flight writes, potentially using using

O_DSYNC
● vacuum (heap, indexes)
● sequential scans, bitmap index scans
● asynchronous writeback by backends
● file extensions

AIO in PG: Result, Good
● checkpointing at disk limits (~12GB/s in my workstation,

unfortunately PCIe3)
● sequential scans up to 2.5x faster per core, scaling much better to

larger amounts of memory
● concurrent COPY much faster
● concurrent write-heavy OLTP much faster due to concurrent

flushes IF concurrent enough, or padding of WAL records enabled
– padding can cause vast increase in WAL volume

● …

AIO in PG: Result, Ugly
● file extension with DIO still leads to fragmented files
● too many paths still not optimized for DIO
● implementation of asynchronous writeback by backends is, uh, not great
● slowdowns with io_uring in edge-cases

– single process vs multiple kernel threads doing work; use heuristics?
● Buffer replacement weaknesses show

● Non-AIO bottlenecks preventing bigger gains
– "SLRUs" for transaction status
– memory access patterns in VACUUM

AIO in PG: Next Steps
● Polish, polish, polish
● Starting merging prerequisites into PG 16
● lots of OS specific improvements, collaboration with kernel folks

– FreeBSD (avoid kernel thread, IO completion processing, DMA
improvements)

– Linux (improve buffered IO perf, general perf work)
– Windows (evaluate IO uring equivalent API)

AIO in PG: Bigger TODOs
● Algorithm for adaptive prefetch distance / concurrency

– working on a simulator for playing with algorithms
● Executor (& Planner) improvements

– most importantly: non-bitmap index scans
● Improve / Switch Buffer Replacement Algorithm
● Heuristic prefetching needed?

– nice experimental results with reading in neighboring pages
● Write out neighboring pages in background writer (backends?

Userspace

Kernel
SQE

Head

Tail

SQE

SQE

SQE

S
ubm

ission Q
ueue CQE

Head

Tail

CQE

CQE

C
om

pletion Q
ueue

Application

io_uring

Network
SubsystemBuffered IO Direct IO ...

io_uring basics

CQE

Clock-Sweep

0 1 2
3

4
5

6

35
CNT: 4CNT: 3

CNT: 0

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

