Asynchronous 10 for PostgreSQL

Andres Freund
PostgreSQL Developer & Committer
Microsoft

andres@anarazel.de
andres.freund@ microsoft.com
@AndresFreundTec

mailto:andres@anarazel.de
mailto:andres.freund@microsoft.com

Why AIO?

Buffered 1O Is a major limitation.

Why AIO?

tpch_100[1575595] [1]=# EXPLAIN (ANALYZE, BUFFERS) SELECT sum(l_gquantity) FROM lineitem ;

QUERY PLAN
Finalize Aggregate (cost=11439442.89..11439442.90 rows=1 width=8) (actual time=46264.524..46264.524 rows=1 loops=1)
Buffers: shared hit=2503 read=10602553
I/0 Timings: read=294514.747
-> Gather (cost=11439441.95..11439442.86 rows=9 width=8) (actual time=46250.927..46278.690 rows=9 loops=1)
Workers Planned: 9
wWorkers Launched: 8
Buffers: shared hit=2503 read=10602553
I/0 Timings: read=294514.747
-> Partial Aggregate (cost=11438441.95..11438441.96 rows=1 width=8) (actual time=46201.154..46201.154 rows=1 loops=9)
Buffers: shared hit=2503 read=10602553
I/0 Timings: read=294514.747
-> Parallel Seq Scan on lineitem (cost=0.00..11271764.76 rows=66670876 width=8) (actual time=0.021..40497.515 rows=66670878 loops=9)
Buffers: shared hit=2503 read=10602553

I/0 Timings: read=294514.747
Planning Time: 0.139 ms

JIT:
Functions: 29

Options: Inlining true, Optimization true, Expressions true, Deforming true

Timing: Generation 5.209 ms, Inlining 550.852 ms, Optimization 266.074 ms, Emission 163.010 ms, Total 985.145 ms
| Execution Time: 46279.595 ms
L

(20 rows)

Samples: BK of event 'cycles', Event count (approx.): 6458392526
Overhead Command Shared Object Symbol
postgres elf [k] ¢
B jitted-1216148-2.s0
DUSTGIPS

DUSTGIPS

puSTGIPS])

elf <] get paqP from freelist
postgres .] hash search with hash value
postgres .] MemoryConte set

pos : .] fetch input tuple

postgres .] WWLockRelease

elf <] xas load

postgres L] LW :

postgres : PPadBuf 2 _common

elf < agevec lru add fn

elf <] gene file read iter
puSTGIPS : eckForSerializableConflictOutNeeded

che locked

+
+
+
+
+
-
+
+
+
+
+
+
+
+
+
+
-
+
+
+
+
-
+
+
Ti

$ perf stat -a -e cycles:u,cycles:k,ref-cycles:u,ref-cycles:k sleep 5
Performance counter stats for 'system wide'

52,886,023,568 cycles:u (49.99%)
50,676,736,054 cycles:k (74.99%)
47,563,244,024 ref-cycles:u (75.00%)
46,187,922,930 ref-cycles:k (25.00%)

5.002662309 seconds time elapsed

Why AIO?

Type Workers Time
from disk 0) 59.94s
from disk 3 48.56s
from disk 9 37.84s
from os cache 0 47.28s
from os cache 9 8.13s
from PG cache 0 34s
from PG cache 9 5.37s

* With no amount of concurrency the disk bandwith for streaming reads
(~3.2GB/s) can be reached.
* Kernel pagecache is not much faster than doing the IO for single process

Buffered uncached read()

Userspace

Kernel

Direct 1O read()

Userspace

Kernel

“Direct 10”

Kernel <-> Userspace buffer transfer, without a separate pagecache
— Ofen using DMA, i.e. not using CPU cycles

- Very little buffering in kernel
Userspace has much much more control / responsibility when using DIO
No readahead, no buffered writes => read(), write() are synchronous

Synchronous use unusably slow for most purposes

Why AIO?

Throughput problems:
- background writer quickly saturated (leaving algorithmic issues aside)
- checkpointer can’t keep up
- WAL write flushes too slow / latency too high

CPU Overhead
- memory copy for each 10 (CPU time & cache effects)
- pagecache management
- overhead of filesystem + pagecache lookup for small 10s

Lack of good control

- Frequent large latency spikes due to kernel dirty writeback management

- Kernel readahead fails often (segment boundary, concurrent accesses, low QD for too fast / too high latency
drives)

- Our “manual” readahead comes at high costs (double shared_buffers lookup, double OS pagecache lookup,
unwanted blocking when queue depth is reached, ...)

Buffered vs Direct

Query Branch Times Avg CPU Avg MB/s
%

select pg_prewarm('lineitem', ‘read’); master 34.6 ~78 ~2550

select pg_prewarm('lineitem', 'read_aio'); aio 27.0 ~51 ~3100

select pg_prewarm('lineitem', ‘buffer’); master 56.6 ~05 ~1520

select pg_prewarm('lineitem', 'buffer_aio'); aio 20 3 ~75 ~2900

Why not yet?

Linux AlO didn’t use to support buffered 10
Not everyone can use DIO

Synchronous DIO very slow (latency)

It's a large project / most people are sane

Adds / Requires complexity

postgres[1583389][1]=# SHOW io_data_direct ;

io_data_direct

on

tpch_100[1583290][1]=# select pg_prewarm('lineitem', 'read');

pg_prewarm

10605056

(1 row)

Time: 160227.904 ms (02:40.228)

Device r/s rMB/s rrqm/s %rrqgm r_await rareq-sz aqu-sz %util
nvmelnl 71070.00 0.00 0.00 0.01 0.00 100.00

I0_uring

New linux AlO interface, added in 5.1

Generic, quite a few operations supported
- open / close / readv / writev / fsync, statx, ...
- send/recv/accept/connect/..., including polling

One single-reader / single writer ring for IO submission, one SPSC ring
for completion

- allows batched “syscalls”

Operations that aren’t fully asynchronous are made asynchronous via
kernel threads

|0_uring basics

ona|dwod /

Userspace

g Kernel

ﬂ k
ananQ lloissiudns

/*

|0_uring operations

enum {

* I0 submission data structure (Submission Queue Entry)

*/

struct io_uring_sqge {

union {

u8
u8
ul6
s32

_u32

union {

i

time */

u64

opcode; /* type of operation for this sqge */
flags; /* IOSQE_ flags */

ioprio; /* ioprio for the request */

fd; /* file descriptor to do IO on */

__u64 off; /* offset into file */
__u64 addr2;

u64 addr; /* pointer to buffer or iovecs */
u64 splice_off_in;
len; /* buffer size or number of iovecs */

__kernel_rwf_t rw_flags;

_u32 fsync_flags;

__ulé poll_events;

_u32 sync_range_flags;

user_data; /* data to be passed back at completion

};

IORING_OP_NOP,
IORING_OP_READV,
IORING_OP_WRITEV,
IORING_OP_FSYNC,
IORING_OP_READ_FIXED,
IORING_OP_WRITE_FIXED,
IORING_OP_POLL_ADD,
IORING_OP_POLL_REMOVE,
IORING_OP_SYNC_FILE_RANGE,
IORING_OP_SENDMSG,
IORING_OP_RECVMSG,
IORING_OP_TIMEOUT,
IORING_OP_TIMEOUT_REMOVE,
IORING_OP_ACCEPT,
IORING_OP_ASYNC_CANCEL,
IORING_OP_LINK_TIMEOUT,
IORING_OP_CONNECT,
IORING_OP_FALLOCATE,
IORING_OP_OPENAT,
IORING_OP_CLOSE,
IORING_OP_FILES_UPDATE,
IORING_OP_STATX,

/* this goes last, obviously */
IORING_OP_LAST,

Constraints on AlIO for PG

* Buffered 10 needs to continue to be feasible
* Platform specific implementation details need to be abstracted

* Cross process AlO completions are needed:
1) backend a: lock database object x exclusively
2) backend b: submit read for block y
3) backend b: submit read for block z
4) backend a: try to access block y, IO _IN_PROGRESS causes wait
5) backend b: try to lock database object x

1)

2)

3)

4)

5)

Lower-Level AlO Interface

Acquire a shared “lO” handle
alo = pgaio_io_get();

Optionally register callback to be called when IO completes
pgaio_io_on_completion_local(aio, prefetch_more_and_other_things)

Stage some form of 10 locally:
pgaio_io_start_read_buffer(aio, ..)

a) Go back to 1) many times if useful

Cause pending IO to be submitted
a) By waiting for an individual IO:
pgaio_io_wait()
b) By explicitly issuing individual 1O:
pgaio_submit_pending()

aio.c submits 10 via io_uring

Higher Level AlO Interface

Streaming Read helper
- Tries to maintain N requests in flight, up to a certain distance from current point
- Caller users pg_streaming_read_get_next(pgsr); to get the next block
- Uses provided callback to inquire which 10 is the next needed

* heapam fetches sequentially
* vacuum checks VM which is next

- Uses pgaio_io_on_completion_local() callback to promptly issue new IOs

Streaming Write
— Controls the number of outstanding writes

- allows to wait for all pending 10s (at end, or before a potentially blocking action)

Prototype Architecture

Shared Memory

==

- attached

Backend / Helper Process

b
-

Prototype Results

Helps most with very high throughput low latency drives and with high latency & high throughput

analytics style queries:

- often considerably faster (TPCH 100 has all faster, several > 2x)
- highly parallel bulk reads scale poorly, known cause (one io_uring + locks)
- seqscan ringbuffer + hot pruning can cause problems: Ring buffers don’t use streaming write yet

OLTP style reads/writes: A good bit better, to a bit slower
- WAL AIO needs work
- Better prefetching: See earlier talk by Thomas Munro

VACUUM:
— Much faster heap scan (~2x on low lat, >5x on high lat high throughput)
- DIO noticably slower for e.qg. btree index scans: readahead helper not yet used, but trivial
- Sometimes slower when creating a lot of dirty pages:

Checkpointer: >2x

Bgwriter: >3x

Next Big Things

Use AlO helpers in more places
- index vacuums
- non-bufmgr page replacement
- Dbetter use in bitmap heap scans
- COPY & VACUUM streaming writes

Scalability improvements (actually use more than one io_uring)
Efficient AIO use in WAL

Evaluate if process based fallback is feasible?

Resources

e (Qittree
- https://github.com/anarazel/postgres/tree/aio
- https://git.postgresqgl.org/gitweb/?p=users/andresfreund/postgres.git;a=shortlog;h=refs/heads/aio

» Earlier talks related to AlO in PG
- https://anarazel.de/talks/2020-01-31-fosdem-aio/aio.pdf
- https://anarazel.de/talks/2019-10-16-pgconf-milan-io/io.pdf

* io_uring

- “design” document: https://kernel.dk/io_uring.pdf

- LWN atrticles:
e https://lwn.net/Articles/776703/
* https://lwn.net/Articles/810414/

— man pages:
* https://manpages.debian.org/unstable/liburing-dev/io_uring_setup.2.en.html
* https://manpages.debian.org/unstable/liburing-dev/io_uring_enter.2.en.html

https://github.com/anarazel/postgres/tree/aio
https://git.postgresql.org/gitweb/?p=users/andresfreund/postgres.git;a=shortlog;h=refs/heads/aio
https://anarazel.de/talks/2020-01-31-fosdem-aio/aio.pdf
https://anarazel.de/talks/2019-10-16-pgconf-milan-io/io.pdf
https://kernel.dk/io_uring.pdf
https://lwn.net/Articles/776703/
https://lwn.net/Articles/810414/
https://manpages.debian.org/unstable/liburing-dev/io_uring_setup.2.en.html
https://manpages.debian.org/unstable/liburing-dev/io_uring_enter.2.en.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

