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|O Performance

 Time till IO has finished
e CPU Overhead

- polling 10, lots of threads, ... can be faster, but eat a lot of CPU

* Synchronous Blocking Operation
- Dbuffered writes: often non-blocking
- buffered reads: commonly blocking
— non-buffered writes: blocking & asynchronously
- non-buffered read: blocking & asynchronously

* Efficiency of 10 internally to the drive
- sequential writes faster than random writes
— operations covering larger “blocks” of data usually faster
- deeper queues - higher throughput, higher latency
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What Is What

« Backends

client connection, or “worker”
for parallel query processing

* Checkpointer

writes out dirty data once
every checkpoint_timeout

sorts data before writeout

allows to remove / recycle
WAL

* Background Writer

tries to write out dirty buffers if
needed by backends, i.e.
working set bigger than
memory

e WAL Writer

tries to write out WAL
generated by backends

does most WAL writing when
synchronous_commit = off

may do a fair bit of WAL
writing when most
transactions are longer

=DB

POSTGRES



IO Properties

* Backends Background Writer

- Data: - Data:
* synchronous random reads * ‘“writeback”, allows cheap
* triggers read prefetches reuse of bu.ffers
- sequential journal writes * random writes

« under pressure: writeback WAL Writer
- WAL - WAL
* async append to pre- * pre flushes WAL
allocated journal .
_  commonly purely sequential
* fdatasync on commit (potential gaps)

* Checkpointer

-  Data:

* paced ordered writes (in file
order, potentially with lots of

gaps)

+  fsyncs all modified files - m
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Problem: Postgres Reads

Very little prefetching
- partially a problem of the executor
- partially a problem of the available interfaces

No concurrent 1O

- especially bad on good SSDs, which can process many many requests in
|IOs in parallel

All reads are synchronous
- the less SQL level concurrency, the worse this is

- not that bad for nearly entirely cached or very concurrent workloads with
just a read or two per “statement”

- kernel/device to postgres copies are expensive, and not done in parallel

Workarounds:
- NVMe SSDs (low latency)
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Reads: synchronous, not cached
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Reads: asynchronous, not cached
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Reads: synchronous, OS cached
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Reads: synchronous, postgres cached
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Solution: Postgres Reads

* Add support for asynchronous reads
— Highly platform dependent

- typically only supports “direct 10", i.e. 10 bypassing the kernel page
cache

* emulation via fadvise() currently done, but still does kernel - userspace
copy

- linux has new interface, io_uring, that is a lot more flexible
* including fewer syscalls (important after intel security “fixes”)

- lots of work
* including executor architecture

* Emit better prefetching requests
- not that hard in individual cases, but a lot of places
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Problem: Background Writer

Refresher for bgwriter:
- writes data back to OS when working set doesn't fit in shared buffers
- reduces writes needing to be done by backends

Background writer does not change recency information
(perform clock sweep)

- when all blocks “recently” used - can’t do anything
— configuration complicated & not meaningful

All 1O buffered synchronous
— throughput / IO utilization too low, and thus falling behind
- flushes can be disabled, but often causes massive latency issues

A lot of random 10
- victim buffer selection usage and buffer pool position dependent

- hard to efficiently combine writes for neighboring blocks currently (hash
mapping)
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Problem: Background Writer

* Consequences:
- backends to a lot of 10, a lot of it random (slow)
— high jitter, depending on bgwriter temporarily doing things or not

 Partial Workarounds

— reduce bgwriter_delay significantly

— increase shared_buffers and/or decrease checkpoint_timout (all
sequential writes)

- sometimes: set backend_flush_after (for jitter reduction)
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Solution: Background Writer

Perform Clock Sweep
— avoids inability to find work
— can actually improve recency accuracy (less saturation)

Queue of clean buffers
— removes pacing requirements
— reduces average cost of getting clean buffer

Asynchronous Writes / Writeback
— Improves IO throughput / utilization, especially with random IO

Write Combining
- reduces random 10
- requires shared_buffer mapping datastructure with ordering support

Prototype seems to work well
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Problem: Backend Writeback

takes time away from query execution

unpredictable latency
— query - due to having to write
- write - due to kernel cache

Diagnose:
- pg_stat_statements.blk write_time etc, for readonly queries
- EXPLAIN (ANALYZE, BUFFERYS)

Workarounds:
- tune background writer to be aggressive
- set backend_flush_after

Solutions:
- new bgwriter
— asynchronous direct-IO write submissions
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Problem: Jitter

guery performance can be unpredictable

Causes:
- kernel has a lot of dirty buffers — decides to write back
- postgres issues 10s at an unpredictable rate
- kernel readahead randomly makes reads take longer

Workarounds:
- set backend_flush_after, reduce other *_flush_after settings
- disable kernel readahead (can be bad for sequential scans)
- make bgwriter more aggressive

Solutions:
- disable kernel readahead, perform our own readahead / prefetching
— prioritize / throttle different IO causes differently
— improve cache hit ratio
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Why Buffered 10?

* Parts of Postgres’ 10 stack have, uh, baggage
* Portability

* Needs far less tuning
- PG buffer cache size less critical, extends to kernel page cache
- 10O issue rate to drive doesn’t need to be controlled

* Why is having less tuning crucial:

- DBAs / sysadmins don’t exist for vast majority of systems (if they exist, they don’t
know hardware that well)

- workloads continuously change
- machines / OS instances are heavily over-committed and shared
- adapting shared memory after start is hard (PG architecture, OS)

* Consequence
- PG defaults to 128MB shared buffers (“page cache”)
- works OK for low-medium heavy load
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Why Direct 107

* Much higher 10 throughput, especially for writes

* locking for buffered writes limits concurrency

* no AlO without DIO for most platforms (except now io_uring)
* No Double Buffering

* Writeback behavior of various OS kernels leads to hard to
predict performance

* Kkernel page cache scales badly for large amounts of memory

* kernel page cache lookups are not cheap, so need to be
avoided anyway (copy_to user + radix tree lookup, syscalls
after security fixes)
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Further Problems

* Avalilable postgres level monitoring incomplete and confusing

— pg_stat_bgwriter has stats not about bgwriter

- buffers_backend includes relation extension, which cannot be done by
any other process

- write times of different processes not recorded (checkpoint_write _time
useless, includes sleeps)

* Ring Buffers for sequential reads, vacuum, COPY can cause
very significant slowdowns

- data never cached
— writes quickly trigger blocking

* Double Buffering

- trigger posix fadvise(POSIX FADV DONTNEED) when
dirtying?
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