=DB

POSTGRES

PostgreSQL's |10 subsystem:
Problems, Workarounds, Solutions

Andres Freund
PostgreSQL Developer & Committer

Email: andres@anarazel.de

Email: andres.freund@enterprisedb.com

Twitter: @AndresFreundTec
anarazel.deftalks/2019-10-16-pgconf-milan-io/io.pdf

mailto:andres@anarazel.de
mailto:andres.freund@enterprisedb.com

Memory Architecture

Process local Memory -

wared Memory

DB

POSTGRES

|O Performance

 Time till IO has finished
e CPU Overhead

- polling 10, lots of threads, ... can be faster, but eat a lot of CPU

* Synchronous Blocking Operation
- Dbuffered writes: often non-blocking
- buffered reads: commonly blocking
— non-buffered writes: blocking & asynchronously
- non-buffered read: blocking & asynchronously

* Efficiency of 10 internally to the drive
- sequential writes faster than random writes
— operations covering larger “blocks” of data usually faster
- deeper queues - higher throughput, higher latency

=DB

POSTGRES

What Is What

« Backends

client connection, or “worker”
for parallel query processing

* Checkpointer

writes out dirty data once
every checkpoint_timeout

sorts data before writeout

allows to remove / recycle
WAL

* Background Writer

tries to write out dirty buffers if
needed by backends, i.e.
working set bigger than
memory

e WAL Writer

tries to write out WAL
generated by backends

does most WAL writing when
synchronous_commit = off

may do a fair bit of WAL
writing when most
transactions are longer

=DB

POSTGRES

IO Properties

* Backends Background Writer

- Data: - Data:
* synchronous random reads * ‘“writeback”, allows cheap
* triggers read prefetches reuse of bu.ffers
- sequential journal writes * random writes

« under pressure: writeback WAL Writer
- WAL - WAL
* async append to pre- * pre flushes WAL
allocated journal .
_ commonly purely sequential
* fdatasync on commit (potential gaps)

* Checkpointer

- Data:

* paced ordered writes (in file
order, potentially with lots of

gaps)

+ fsyncs all modified files - m

POSTGRES

Problem: Postgres Reads

Very little prefetching
- partially a problem of the executor
- partially a problem of the available interfaces

No concurrent 1O

- especially bad on good SSDs, which can process many many requests in
|IOs in parallel

All reads are synchronous
- the less SQL level concurrency, the worse this is

- not that bad for nearly entirely cached or very concurrent workloads with
just a read or two per “statement”

- kernel/device to postgres copies are expensive, and not done in parallel

Workarounds:
- NVMe SSDs (low latency)

=DB

POSTGRES

Reads: synchronous, not cached

\ /]

Time Em

POSTGRES

Reads: asynchronous, not cached

\

g

Time EEI:]E;{

POSTGRES

Reads: synchronous, OS cached

/)
T

Time Em

POSTGRES

Reads: synchronous, postgres cached

\

Time EEI:’E;"

POSTGRES

Solution: Postgres Reads

* Add support for asynchronous reads
— Highly platform dependent

- typically only supports “direct 10", i.e. 10 bypassing the kernel page
cache

* emulation via fadvise() currently done, but still does kernel - userspace
copy

- linux has new interface, io_uring, that is a lot more flexible
* including fewer syscalls (important after intel security “fixes”)

- lots of work
* including executor architecture

* Emit better prefetching requests
- not that hard in individual cases, but a lot of places

=DB

POSTGRES

Problem: Background Writer

Refresher for bgwriter:
- writes data back to OS when working set doesn't fit in shared buffers
- reduces writes needing to be done by backends

Background writer does not change recency information
(perform clock sweep)

- when all blocks “recently” used - can’t do anything
— configuration complicated & not meaningful

All 1O buffered synchronous
— throughput / IO utilization too low, and thus falling behind
- flushes can be disabled, but often causes massive latency issues

A lot of random 10
- victim buffer selection usage and buffer pool position dependent

- hard to efficiently combine writes for neighboring blocks currently (hash
mapping)

=DB

POSTGRES

POSTGRES

REANERE D8

Problem: Background Writer

* Consequences:
- backends to a lot of 10, a lot of it random (slow)
— high jitter, depending on bgwriter temporarily doing things or not

 Partial Workarounds

— reduce bgwriter_delay significantly

— increase shared_buffers and/or decrease checkpoint_timout (all
sequential writes)

- sometimes: set backend_flush_after (for jitter reduction)

=DB

POSTGRES

Solution: Background Writer

Perform Clock Sweep
— avoids inability to find work
— can actually improve recency accuracy (less saturation)

Queue of clean buffers
— removes pacing requirements
— reduces average cost of getting clean buffer

Asynchronous Writes / Writeback
— Improves IO throughput / utilization, especially with random IO

Write Combining
- reduces random 10
- requires shared_buffer mapping datastructure with ordering support

Prototype seems to work well

=DB

POSTGRES

3
=
==

\1| ; lw«_)(
NI Ak PIALUAL i i
WAARY AL i i

‘ il
5000 I 'I ” ” " |H I‘i“\|‘“”|”| | ‘ | .J\l'w\mll f I i
"ﬁ w n | d W ”Yuw’l-”n T il

A AL A LA 1 | RN
AR |

RPN ' .
JNIJ'”MU“'JM l4| (LA | | | i |

latency avg

10 JWI “\fﬂ H!|' 1% Ih”llﬁ{ iHA Illlww M ‘ | | B
. LG “i‘u\'ﬂ,'dﬂ\ LRI “h.ﬁu\h m L

sl e A i

AT nmqulu el 1 w', AW WU

E=
=
-

= |
—
—

—
=

S
e
{;_f

=

stddev avg

6000000

5000000

4000000

#
3000000

2000000 -

1000000 — =

o

00:01:40 00:03:20 00:05:00 00:06:40 00:08:20 00:10:00 00:11:40 00:13:20

w— Other:

VI Wwrw

Problem: Backend Writeback

takes time away from query execution

unpredictable latency
— query - due to having to write
- write - due to kernel cache

Diagnose:
- pg_stat_statements.blk write_time etc, for readonly queries
- EXPLAIN (ANALYZE, BUFFERYS)

Workarounds:
- tune background writer to be aggressive
- set backend_flush_after

Solutions:
- new bgwriter
— asynchronous direct-IO write submissions

=DB

POSTGRES

Problem: Jitter

guery performance can be unpredictable

Causes:
- kernel has a lot of dirty buffers — decides to write back
- postgres issues 10s at an unpredictable rate
- kernel readahead randomly makes reads take longer

Workarounds:
- set backend_flush_after, reduce other *_flush_after settings
- disable kernel readahead (can be bad for sequential scans)
- make bgwriter more aggressive

Solutions:
- disable kernel readahead, perform our own readahead / prefetching
— prioritize / throttle different IO causes differently
— improve cache hit ratio

=DB

POSTGRES

16000

14000

12000

10000

6000

12

10

08

4 06

0.4

0.2

0o

TPS

=] - o o
|

e r!qﬁvi Iﬁmll‘l ’ﬂ!'.“‘l IM“I IMP | JM F'N.ml IFM
4] . i
.mW | Wl ‘Wq it Wﬂ_ iill‘{1 VM‘ | [%%W \ ,:'|l~]"l| J1|hj.| | M iﬂd)]w s i i'lvl YRR A
™ l it A i b .
Ll IR | 1J "W'”' '-!"W I W '“W‘Jl] LIS HJW " WU W LS r] hr‘u'hlhl N!ﬂ
WO I J
|
Jld i L . il\
t|] I "Illw M iwl - ! lll , HIW Y | \ﬂ‘ ‘ | 0l Mﬂ\l L %Uﬂ }“ [
Mﬁ I} '. |"|“"P‘I|| i‘u Nhl ‘”' 'M! [J | L‘L#JW l! i . i F‘tﬁwﬂ q \ |~| Ay i JN._ - b nu h i].L][| w“Lk Mll "ﬁl!l M‘ M’I
Ml Niii bl Wy W |
” |l Ll I W W -y
|
| T ﬂ ;UI I Il ol
I | | \ IH‘ Hi| I. i r';' | | | i } ; | |i\H ’ ||M ‘ |H “i li, \~ ll IR % || | li“l ll : Ll
| ! I ‘ ' ' S ‘ |
| | |
M\A Jll'll "‘MM”W Wl I | N il "
e

m— other:

m— hase

s other:

Why Buffered 10?

* Parts of Postgres’ 10 stack have, uh, baggage
* Portability

* Needs far less tuning
- PG buffer cache size less critical, extends to kernel page cache
- 10O issue rate to drive doesn’t need to be controlled

* Why is having less tuning crucial:

- DBAs / sysadmins don’t exist for vast majority of systems (if they exist, they don’t
know hardware that well)

- workloads continuously change
- machines / OS instances are heavily over-committed and shared
- adapting shared memory after start is hard (PG architecture, OS)

* Consequence
- PG defaults to 128MB shared buffers (“page cache”)
- works OK for low-medium heavy load

=DB

POSTGRES

Why Direct 107

* Much higher 10 throughput, especially for writes

* locking for buffered writes limits concurrency

* no AlO without DIO for most platforms (except now io_uring)
* No Double Buffering

* Writeback behavior of various OS kernels leads to hard to
predict performance

* Kkernel page cache scales badly for large amounts of memory

* kernel page cache lookups are not cheap, so need to be
avoided anyway (copy_to user + radix tree lookup, syscalls
after security fixes)

=DB

POSTGRES

Further Problems

* Avalilable postgres level monitoring incomplete and confusing

— pg_stat_bgwriter has stats not about bgwriter

- buffers_backend includes relation extension, which cannot be done by
any other process

- write times of different processes not recorded (checkpoint_write _time
useless, includes sleeps)

* Ring Buffers for sequential reads, vacuum, COPY can cause
very significant slowdowns

- data never cached
— writes quickly trigger blocking

* Double Buffering

- trigger posix fadvise(POSIX FADV DONTNEED) when
dirtying?

=DB

POSTGRES

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

