
PostgreSQL's IO subsystem: 
Problems, Workarounds, Solutions
Andres Freund

PostgreSQL Developer & Committer

Email: andres@anarazel.de

Email: andres.freund@enterprisedb.com

Twitter: @AndresFreundTec

anarazel.de/talks/2019-09-13-pgopen-orlando-io/io.pdf

mailto:andres@anarazel.de
mailto:andres.freund@enterprisedb.com


Postmaster

Background Writer

Checkpointer

Wal Writer

User Connection Backend

Shared Memory

Buffer Cache

Locking
Information

Transaction
State

…

Sorting

Plans

Temporary
Tables

Bitmap
Scans

Process local Memory

Memory Architecture



DiskPage Cache

Storage Manager (IO)

Buffer Manager Buffers

Table Access Manager

Executor DDL

Planner

Parser

Client

Kernel

Catalog

HeapAM ZHeapAMWhatAM

Black
Hole

Postgres



IO Performance
● Time till IO has finished
● CPU Overhead

– polling IO, lots of threads, … can be faster, but eat a lot of CPU

● Synchronous Blocking Operation
– buffered writes: often nonblocking
– buffered reads: commonly blocking
– non-buffered writes: blocking & asynchronously
– non-buffered read: blocking & asynchronously

● Efficiency of IO internally to the drive
– sequential writes faster than random writes
– operations covering larger “blocks” of data usually faster



What Is What
● Backends

– client connection, or “worker” 
for parallel query processing

● Checkpointer
– writes out dirty data once 

every checkpoint_timeout
– sorts data before writeout
– allows to remove / recycle 

WAL

● Background Writer
– tries to write out dirty buffers if 

needed by backends, i.e. 
working set bigger than 
memory

● WAL Writer
– tries to write out WAL 

generated by backends
– does most WAL writing when 

synchronous_commit = off
– may do a fair bit of WAL 

writing when most 
transactions are longer



IO Properties
● Backends

– Data:
● synchronous random reads
● read prefetches
● sequential journal writes
● under pressure: writeback

– WAL
● async append to pre-allocated 

journal
● fdatasync on commit

● Checkpointer
– Data:

● paced ordered writes (in file 
order, with lots of gaps)

● fsyncs all modified files

● Background Writer
– Data:

● “writeback”, allows cheap 
reuse of buffers

● random writes

● WAL Writer
– WAL

● pre flushes WAL
● commonly purely sequential 

(potential gaps)



Problem: Postgres Reads
● Very little prefetching

– partially a problem of the executor
– partially a problem of the available interfaces

● No concurrent IO
– especially bad on good SSDs, can process many many requests in IOs 

in parallel

● All reads are synchronous
– the less SQL level concurrency, the worse this is

– not that bad for nearly entirely cached or very concurrent workloads with 
just a read or two per “statement”

● Workarounds:
– NVMe SSDs (low latency)



Time

Client

Postgres

OS

Disk

Reads: synchronous, not cached



Time

Client

Postgres

OS

Disk

Reads: asynchronous, not cached



Time

Client

Postgres

OS

Disk

Reads: synchronous, OS cached



Time

Client

Postgres

OS

Disk

Reads: synchronous, postgres cached



Solution: Postgres Reads
● Add support for asynchronous reads

– Highly platform dependent
– typically only supports “direct IO”, i.e. IO bypassing the kernel page 

cache
– linux has new interface, io_uring, that is a lot more flexible
– lots of work

● Emit better prefetching requests
– not that hard in individual cases, but a lot of places



Problem: Background Writer
● Refresher for bgwriter:

– writes data back to OS when working set doesn’t fit in shared buffers
– reduces writes needing to be done by backends

● Background writer does not change recency information 
(perform clock sweep)
– when all blocks “recently” used → can’t do anything

– configuration complicated

● All IO buffered synchronous
– throughput / IO utilization too low, and thus falling behind

● A lot of random IO
– victim buffer selection usage and buffer pool position dependent
– hard to efficiently combine writes for neighboring blocks currently (hash 

mapping)



Clock-Sweep
0 1

2
3

4

5

6

35
CNT: 4CNT: 3

CNT: 0



Problem: Background Writer
● Consequences:

– backends to a lot of IO, a lot of it random (slow)
– high jitter, depending on bgwriter temporarily doing things or not

● Partial Workarounds
– reduce bgwriter_delay significantly

– increase shared_buffers and/or decrease checkpoint_timout (all 
sequential writes)

– sometimes: set backend_flush_after (for jitter reduction)



Solution: Background Writer
● Perform Clock Sweep

– avoids inability to find work

● Queue of clean buffers
– removes pacing requirements

● Asynchronous Writes / Writeback
– improves IO throughput / utilization, especially with random IO

● Write Combining
– reduces random IO
– requires shared_buffer mapping datastructure with ordering support

● Prototype seems to work well





Problem: Backend Writeback
● takes time away from query execution
● unpredictable latency 

– query - due to having to write
– write - due to kernel cache

● Diagnose:
– pg_stat_statements.blk_write_time etc, for readonly queries
– EXPLAIN (ANALYZE, BUFFERS)

● Workarounds:
– tune background writer to be aggressive
– set backend_flush_after

● Solutions:
– new bgwriter



Problem: Jitter
● query performance can be unpredictable
● Causes:

– kernel has a lot of dirty buffers → decides to write back
– postgres issues IOs at an unpredictable rate

– kernel readahead randomly makes reads take longer

● Workarounds:
– set backend_flush_after, reduce other *_flush_after settings

– disable kernel readahead (can be bad for sequential scans)

– make bgwriter more aggressive

● Solutions:
– disable kernel readahead, perform our own readahead / prefetching

– prioritize / throttle different IO causes differently

– improve cache hit ratio





Why Buffered IO?
● Parts of Postgres’ IO stack have, uh, baggage
● Portability
● Needs far less tuning

– PG buffer cache size less critical, extends to kernel page cache
– IO issue rate to drive doesn’t need to be controlled

● Why is having less tuning crucial:
– DBAs / sysadmins don’t exist for vast majority of systems (if they exist, they don’t 

know hardware that well)
– workloads continously change
– machines / OS instances are heavily overcommitted and shared
– adapting shared memory after start is hard (PG architecture, OS)

● Consequence
– PG defaults to 128MB shared buffers (“page cache”)
– works OK for low-medium heavy load



Why Direct IO?
● Much higher IO throughput, especially for writes
● locking for buffered writes limits concurrency
● no AIO without DIO for most platforms (but io_uring)
● No Double Buffering
● Writeback behavior of kernel leads to hard to predict 

performance
● kernel page cache scales badly for large amounts of memory
● kernel page cache lookups are not cheap, so need to be 

avoided anyway (copy_to_user + radix tree lookup, syscalls 
after security fixes)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

