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IO Performance
● Time till IO has finished
● CPU Overhead

– polling IO, lots of threads, … can be faster, but eat a lot of CPU

● Synchronous Blocking Operation
– buffered writes: often nonblocking
– buffered reads: commonly blocking
– non-buffered writes: blocking & asynchronously
– non-buffered read: blocking & asynchronously

● Efficiency of IO internally to the drive
– sequential writes faster than random writes
– operations covering larger “blocks” of data usually faster



What Is What
● Backends

– client connection, or “worker” 
for parallel query processing

● Checkpointer
– writes out dirty data once 

every checkpoint_timeout
– sorts data before writeout
– allows to remove / recycle 

WAL

● Background Writer
– tries to write out dirty buffers if 

needed by backends, i.e. 
working set bigger than 
memory

● WAL Writer
– tries to write out WAL 

generated by backends
– does most WAL writing when 

synchronous_commit = off
– may do a fair bit of WAL 

writing when most 
transactions are longer



IO Properties
● Backends

– Data:
● synchronous random reads
● read prefetches
● sequential journal writes
● under pressure: writeback

– WAL
● async append to pre-allocated 

journal
● fdatasync on commit

● Checkpointer
– Data:

● paced ordered writes (in file 
order, with lots of gaps)

● fsyncs all modified files

● Background Writer
– Data:

● “writeback”, allows cheap 
reuse of buffers

● random writes

● WAL Writer
– WAL

● pre flushes WAL
● commonly purely sequential 

(potential gaps)



Problem: Postgres Reads
● Very little prefetching

– partially a problem of the executor
– partially a problem of the available interfaces

● No concurrent IO
– especially bad on good SSDs, can process many many requests in IOs 

in parallel

● All reads are synchronous
– the less SQL level concurrency, the worse this is

– not that bad for nearly entirely cached or very concurrent workloads with 
just a read or two per “statement”

● Workarounds:
– NVMe SSDs (low latency)
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Solution: Postgres Reads
● Add support for asynchronous reads

– Highly platform dependent
– typically only supports “direct IO”, i.e. IO bypassing the kernel page 

cache
– linux has new interface, io_uring, that is a lot more flexible
– lots of work

● Emit better prefetching requests
– not that hard in individual cases, but a lot of places



Problem: Background Writer
● Refresher for bgwriter:

– writes data back to OS when working set doesn’t fit in shared buffers
– reduces writes needing to be done by backends

● Background writer does not change recency information 
(perform clock sweep)
– when all blocks “recently” used → can’t do anything

– configuration complicated

● All IO buffered synchronous
– throughput / IO utilization too low, and thus falling behind

● A lot of random IO
– victim buffer selection usage and buffer pool position dependent
– hard to efficiently combine writes for neighboring blocks currently (hash 

mapping)
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Problem: Background Writer
● Consequences:

– backends to a lot of IO, a lot of it random (slow)
– high jitter, depending on bgwriter temporarily doing things or not

● Partial Workarounds
– reduce bgwriter_delay significantly

– increase shared_buffers and/or decrease checkpoint_timout (all 
sequential writes)

– sometimes: set backend_flush_after (for jitter reduction)



Solution: Background Writer
● Perform Clock Sweep

– avoids inability to find work

● Queue of clean buffers
– removes pacing requirements

● Asynchronous Writes / Writeback
– improves IO throughput / utilization, especially with random IO

● Write Combining
– reduces random IO
– requires shared_buffer mapping datastructure with ordering support

● Prototype seems to work well





Problem: Backend Writeback
● takes time away from query execution
● unpredictable latency 

– query - due to having to write
– write - due to kernel cache

● Diagnose:
– pg_stat_statements.blk_write_time etc, for readonly queries
– EXPLAIN (ANALYZE, BUFFERS)

● Workarounds:
– tune background writer to be aggressive
– set backend_flush_after

● Solutions:
– new bgwriter



Problem: Jitter
● query performance can be unpredictable
● Causes:

– kernel has a lot of dirty buffers → decides to write back
– postgres issues IOs at an unpredictable rate

– kernel readahead randomly makes reads take longer

● Workarounds:
– set backend_flush_after, reduce other *_flush_after settings

– disable kernel readahead (can be bad for sequential scans)

– make bgwriter more aggressive

● Solutions:
– disable kernel readahead, perform our own readahead / prefetching

– prioritize / throttle different IO causes differently

– improve cache hit ratio





Why Buffered IO?
● Parts of Postgres’ IO stack have, uh, baggage
● Portability
● Needs far less tuning

– PG buffer cache size less critical, extends to kernel page cache
– IO issue rate to drive doesn’t need to be controlled

● Why is having less tuning crucial:
– DBAs / sysadmins don’t exist for vast majority of systems (if they exist, they don’t 

know hardware that well)
– workloads continously change
– machines / OS instances are heavily overcommitted and shared
– adapting shared memory after start is hard (PG architecture, OS)

● Consequence
– PG defaults to 128MB shared buffers (“page cache”)
– works OK for low-medium heavy load



Why Direct IO?
● Much higher IO throughput, especially for writes
● locking for buffered writes limits concurrency
● no AIO without DIO for most platforms (but io_uring)
● No Double Buffering
● Writeback behavior of kernel leads to hard to predict 

performance
● kernel page cache scales badly for large amounts of memory
● kernel page cache lookups are not cheap, so need to be 

avoided anyway (copy_to_user + radix tree lookup, syscalls 
after security fixes)
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