Age Owner Branch data TLA Line data Source code
1 : : /*-------------------------------------------------------------------------
2 : : *
3 : : * tableam.h
4 : : * POSTGRES table access method definitions.
5 : : *
6 : : *
7 : : * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
8 : : * Portions Copyright (c) 1994, Regents of the University of California
9 : : *
10 : : * src/include/access/tableam.h
11 : : *
12 : : * NOTES
13 : : * See tableam.sgml for higher level documentation.
14 : : *
15 : : *-------------------------------------------------------------------------
16 : : */
17 : : #ifndef TABLEAM_H
18 : : #define TABLEAM_H
19 : :
20 : : #include "access/relscan.h"
21 : : #include "access/sdir.h"
22 : : #include "access/xact.h"
23 : : #include "commands/vacuum.h"
24 : : #include "executor/tuptable.h"
25 : : #include "utils/rel.h"
26 : : #include "utils/snapshot.h"
27 : :
28 : :
29 : : #define DEFAULT_TABLE_ACCESS_METHOD "heap"
30 : :
31 : : /* GUCs */
32 : : extern PGDLLIMPORT char *default_table_access_method;
33 : : extern PGDLLIMPORT bool synchronize_seqscans;
34 : :
35 : :
36 : : struct BulkInsertStateData;
37 : : struct IndexInfo;
38 : : struct SampleScanState;
39 : : struct TBMIterateResult;
40 : : struct VacuumParams;
41 : : struct ValidateIndexState;
42 : :
43 : : /*
44 : : * Bitmask values for the flags argument to the scan_begin callback.
45 : : */
46 : : typedef enum ScanOptions
47 : : {
48 : : /* one of SO_TYPE_* may be specified */
49 : : SO_TYPE_SEQSCAN = 1 << 0,
50 : : SO_TYPE_BITMAPSCAN = 1 << 1,
51 : : SO_TYPE_SAMPLESCAN = 1 << 2,
52 : : SO_TYPE_TIDSCAN = 1 << 3,
53 : : SO_TYPE_TIDRANGESCAN = 1 << 4,
54 : : SO_TYPE_ANALYZE = 1 << 5,
55 : :
56 : : /* several of SO_ALLOW_* may be specified */
57 : : /* allow or disallow use of access strategy */
58 : : SO_ALLOW_STRAT = 1 << 6,
59 : : /* report location to syncscan logic? */
60 : : SO_ALLOW_SYNC = 1 << 7,
61 : : /* verify visibility page-at-a-time? */
62 : : SO_ALLOW_PAGEMODE = 1 << 8,
63 : :
64 : : /* unregister snapshot at scan end? */
65 : : SO_TEMP_SNAPSHOT = 1 << 9,
66 : :
67 : : /*
68 : : * At the discretion of the table AM, bitmap table scans may be able to
69 : : * skip fetching a block from the table if none of the table data is
70 : : * needed. If table data may be needed, set SO_NEED_TUPLES.
71 : : */
72 : : SO_NEED_TUPLES = 1 << 10,
73 : : } ScanOptions;
74 : :
75 : : /*
76 : : * Result codes for table_{update,delete,lock_tuple}, and for visibility
77 : : * routines inside table AMs.
78 : : */
79 : : typedef enum TM_Result
80 : : {
81 : : /*
82 : : * Signals that the action succeeded (i.e. update/delete performed, lock
83 : : * was acquired)
84 : : */
85 : : TM_Ok,
86 : :
87 : : /* The affected tuple wasn't visible to the relevant snapshot */
88 : : TM_Invisible,
89 : :
90 : : /* The affected tuple was already modified by the calling backend */
91 : : TM_SelfModified,
92 : :
93 : : /*
94 : : * The affected tuple was updated by another transaction. This includes
95 : : * the case where tuple was moved to another partition.
96 : : */
97 : : TM_Updated,
98 : :
99 : : /* The affected tuple was deleted by another transaction */
100 : : TM_Deleted,
101 : :
102 : : /*
103 : : * The affected tuple is currently being modified by another session. This
104 : : * will only be returned if table_(update/delete/lock_tuple) are
105 : : * instructed not to wait.
106 : : */
107 : : TM_BeingModified,
108 : :
109 : : /* lock couldn't be acquired, action skipped. Only used by lock_tuple */
110 : : TM_WouldBlock,
111 : : } TM_Result;
112 : :
113 : : /*
114 : : * Result codes for table_update(..., update_indexes*..).
115 : : * Used to determine which indexes to update.
116 : : */
117 : : typedef enum TU_UpdateIndexes
118 : : {
119 : : /* No indexed columns were updated (incl. TID addressing of tuple) */
120 : : TU_None,
121 : :
122 : : /* A non-summarizing indexed column was updated, or the TID has changed */
123 : : TU_All,
124 : :
125 : : /* Only summarized columns were updated, TID is unchanged */
126 : : TU_Summarizing,
127 : : } TU_UpdateIndexes;
128 : :
129 : : /*
130 : : * When table_tuple_update, table_tuple_delete, or table_tuple_lock fail
131 : : * because the target tuple is already outdated, they fill in this struct to
132 : : * provide information to the caller about what happened.
133 : : *
134 : : * ctid is the target's ctid link: it is the same as the target's TID if the
135 : : * target was deleted, or the location of the replacement tuple if the target
136 : : * was updated.
137 : : *
138 : : * xmax is the outdating transaction's XID. If the caller wants to visit the
139 : : * replacement tuple, it must check that this matches before believing the
140 : : * replacement is really a match.
141 : : *
142 : : * cmax is the outdating command's CID, but only when the failure code is
143 : : * TM_SelfModified (i.e., something in the current transaction outdated the
144 : : * tuple); otherwise cmax is zero. (We make this restriction because
145 : : * HeapTupleHeaderGetCmax doesn't work for tuples outdated in other
146 : : * transactions.)
147 : : */
148 : : typedef struct TM_FailureData
149 : : {
150 : : ItemPointerData ctid;
151 : : TransactionId xmax;
152 : : CommandId cmax;
153 : : bool traversed;
154 : : } TM_FailureData;
155 : :
156 : : /*
157 : : * State used when calling table_index_delete_tuples().
158 : : *
159 : : * Represents the status of table tuples, referenced by table TID and taken by
160 : : * index AM from index tuples. State consists of high level parameters of the
161 : : * deletion operation, plus two mutable palloc()'d arrays for information
162 : : * about the status of individual table tuples. These are conceptually one
163 : : * single array. Using two arrays keeps the TM_IndexDelete struct small,
164 : : * which makes sorting the first array (the deltids array) fast.
165 : : *
166 : : * Some index AM callers perform simple index tuple deletion (by specifying
167 : : * bottomup = false), and include only known-dead deltids. These known-dead
168 : : * entries are all marked knowndeletable = true directly (typically these are
169 : : * TIDs from LP_DEAD-marked index tuples), but that isn't strictly required.
170 : : *
171 : : * Callers that specify bottomup = true are "bottom-up index deletion"
172 : : * callers. The considerations for the tableam are more subtle with these
173 : : * callers because they ask the tableam to perform highly speculative work,
174 : : * and might only expect the tableam to check a small fraction of all entries.
175 : : * Caller is not allowed to specify knowndeletable = true for any entry
176 : : * because everything is highly speculative. Bottom-up caller provides
177 : : * context and hints to tableam -- see comments below for details on how index
178 : : * AMs and tableams should coordinate during bottom-up index deletion.
179 : : *
180 : : * Simple index deletion callers may ask the tableam to perform speculative
181 : : * work, too. This is a little like bottom-up deletion, but not too much.
182 : : * The tableam will only perform speculative work when it's practically free
183 : : * to do so in passing for simple deletion caller (while always performing
184 : : * whatever work is needed to enable knowndeletable/LP_DEAD index tuples to
185 : : * be deleted within index AM). This is the real reason why it's possible for
186 : : * simple index deletion caller to specify knowndeletable = false up front
187 : : * (this means "check if it's possible for me to delete corresponding index
188 : : * tuple when it's cheap to do so in passing"). The index AM should only
189 : : * include "extra" entries for index tuples whose TIDs point to a table block
190 : : * that tableam is expected to have to visit anyway (in the event of a block
191 : : * orientated tableam). The tableam isn't strictly obligated to check these
192 : : * "extra" TIDs, but a block-based AM should always manage to do so in
193 : : * practice.
194 : : *
195 : : * The final contents of the deltids/status arrays are interesting to callers
196 : : * that ask tableam to perform speculative work (i.e. when _any_ items have
197 : : * knowndeletable set to false up front). These index AM callers will
198 : : * naturally need to consult final state to determine which index tuples are
199 : : * in fact deletable.
200 : : *
201 : : * The index AM can keep track of which index tuple relates to which deltid by
202 : : * setting idxoffnum (and/or relying on each entry being uniquely identifiable
203 : : * using tid), which is important when the final contents of the array will
204 : : * need to be interpreted -- the array can shrink from initial size after
205 : : * tableam processing and/or have entries in a new order (tableam may sort
206 : : * deltids array for its own reasons). Bottom-up callers may find that final
207 : : * ndeltids is 0 on return from call to tableam, in which case no index tuple
208 : : * deletions are possible. Simple deletion callers can rely on any entries
209 : : * they know to be deletable appearing in the final array as deletable.
210 : : */
211 : : typedef struct TM_IndexDelete
212 : : {
213 : : ItemPointerData tid; /* table TID from index tuple */
214 : : int16 id; /* Offset into TM_IndexStatus array */
215 : : } TM_IndexDelete;
216 : :
217 : : typedef struct TM_IndexStatus
218 : : {
219 : : OffsetNumber idxoffnum; /* Index am page offset number */
220 : : bool knowndeletable; /* Currently known to be deletable? */
221 : :
222 : : /* Bottom-up index deletion specific fields follow */
223 : : bool promising; /* Promising (duplicate) index tuple? */
224 : : int16 freespace; /* Space freed in index if deleted */
225 : : } TM_IndexStatus;
226 : :
227 : : /*
228 : : * Index AM/tableam coordination is central to the design of bottom-up index
229 : : * deletion. The index AM provides hints about where to look to the tableam
230 : : * by marking some entries as "promising". Index AM does this with duplicate
231 : : * index tuples that are strongly suspected to be old versions left behind by
232 : : * UPDATEs that did not logically modify indexed values. Index AM may find it
233 : : * helpful to only mark entries as promising when they're thought to have been
234 : : * affected by such an UPDATE in the recent past.
235 : : *
236 : : * Bottom-up index deletion casts a wide net at first, usually by including
237 : : * all TIDs on a target index page. It is up to the tableam to worry about
238 : : * the cost of checking transaction status information. The tableam is in
239 : : * control, but needs careful guidance from the index AM. Index AM requests
240 : : * that bottomupfreespace target be met, while tableam measures progress
241 : : * towards that goal by tallying the per-entry freespace value for known
242 : : * deletable entries. (All !bottomup callers can just set these space related
243 : : * fields to zero.)
244 : : */
245 : : typedef struct TM_IndexDeleteOp
246 : : {
247 : : Relation irel; /* Target index relation */
248 : : BlockNumber iblknum; /* Index block number (for error reports) */
249 : : bool bottomup; /* Bottom-up (not simple) deletion? */
250 : : int bottomupfreespace; /* Bottom-up space target */
251 : :
252 : : /* Mutable per-TID information follows (index AM initializes entries) */
253 : : int ndeltids; /* Current # of deltids/status elements */
254 : : TM_IndexDelete *deltids;
255 : : TM_IndexStatus *status;
256 : : } TM_IndexDeleteOp;
257 : :
258 : : /* "options" flag bits for table_tuple_insert */
259 : : /* TABLE_INSERT_SKIP_WAL was 0x0001; RelationNeedsWAL() now governs */
260 : : #define TABLE_INSERT_SKIP_FSM 0x0002
261 : : #define TABLE_INSERT_FROZEN 0x0004
262 : : #define TABLE_INSERT_NO_LOGICAL 0x0008
263 : :
264 : : /* flag bits for table_tuple_lock */
265 : : /* Follow tuples whose update is in progress if lock modes don't conflict */
266 : : #define TUPLE_LOCK_FLAG_LOCK_UPDATE_IN_PROGRESS (1 << 0)
267 : : /* Follow update chain and lock latest version of tuple */
268 : : #define TUPLE_LOCK_FLAG_FIND_LAST_VERSION (1 << 1)
269 : :
270 : :
271 : : /* Typedef for callback function for table_index_build_scan */
272 : : typedef void (*IndexBuildCallback) (Relation index,
273 : : ItemPointer tid,
274 : : Datum *values,
275 : : bool *isnull,
276 : : bool tupleIsAlive,
277 : : void *state);
278 : :
279 : : /*
280 : : * API struct for a table AM. Note this must be allocated in a
281 : : * server-lifetime manner, typically as a static const struct, which then gets
282 : : * returned by FormData_pg_am.amhandler.
283 : : *
284 : : * In most cases it's not appropriate to call the callbacks directly, use the
285 : : * table_* wrapper functions instead.
286 : : *
287 : : * GetTableAmRoutine() asserts that required callbacks are filled in, remember
288 : : * to update when adding a callback.
289 : : */
290 : : typedef struct TableAmRoutine
291 : : {
292 : : /* this must be set to T_TableAmRoutine */
293 : : NodeTag type;
294 : :
295 : :
296 : : /* ------------------------------------------------------------------------
297 : : * Slot related callbacks.
298 : : * ------------------------------------------------------------------------
299 : : */
300 : :
301 : : /*
302 : : * Return slot implementation suitable for storing a tuple of this AM.
303 : : */
304 : : const TupleTableSlotOps *(*slot_callbacks) (Relation rel);
305 : :
306 : :
307 : : /* ------------------------------------------------------------------------
308 : : * Table scan callbacks.
309 : : * ------------------------------------------------------------------------
310 : : */
311 : :
312 : : /*
313 : : * Start a scan of `rel`. The callback has to return a TableScanDesc,
314 : : * which will typically be embedded in a larger, AM specific, struct.
315 : : *
316 : : * If nkeys != 0, the results need to be filtered by those scan keys.
317 : : *
318 : : * pscan, if not NULL, will have already been initialized with
319 : : * parallelscan_initialize(), and has to be for the same relation. Will
320 : : * only be set coming from table_beginscan_parallel().
321 : : *
322 : : * `flags` is a bitmask indicating the type of scan (ScanOptions's
323 : : * SO_TYPE_*, currently only one may be specified), options controlling
324 : : * the scan's behaviour (ScanOptions's SO_ALLOW_*, several may be
325 : : * specified, an AM may ignore unsupported ones) and whether the snapshot
326 : : * needs to be deallocated at scan_end (ScanOptions's SO_TEMP_SNAPSHOT).
327 : : */
328 : : TableScanDesc (*scan_begin) (Relation rel,
329 : : Snapshot snapshot,
330 : : int nkeys, struct ScanKeyData *key,
331 : : ParallelTableScanDesc pscan,
332 : : uint32 flags);
333 : :
334 : : /*
335 : : * Release resources and deallocate scan. If TableScanDesc.temp_snap,
336 : : * TableScanDesc.rs_snapshot needs to be unregistered.
337 : : */
338 : : void (*scan_end) (TableScanDesc scan);
339 : :
340 : : /*
341 : : * Restart relation scan. If set_params is set to true, allow_{strat,
342 : : * sync, pagemode} (see scan_begin) changes should be taken into account.
343 : : */
344 : : void (*scan_rescan) (TableScanDesc scan, struct ScanKeyData *key,
345 : : bool set_params, bool allow_strat,
346 : : bool allow_sync, bool allow_pagemode);
347 : :
348 : : /*
349 : : * Return next tuple from `scan`, store in slot.
350 : : */
351 : : bool (*scan_getnextslot) (TableScanDesc scan,
352 : : ScanDirection direction,
353 : : TupleTableSlot *slot);
354 : :
355 : : /*-----------
356 : : * Optional functions to provide scanning for ranges of ItemPointers.
357 : : * Implementations must either provide both of these functions, or neither
358 : : * of them.
359 : : *
360 : : * Implementations of scan_set_tidrange must themselves handle
361 : : * ItemPointers of any value. i.e, they must handle each of the following:
362 : : *
363 : : * 1) mintid or maxtid is beyond the end of the table; and
364 : : * 2) mintid is above maxtid; and
365 : : * 3) item offset for mintid or maxtid is beyond the maximum offset
366 : : * allowed by the AM.
367 : : *
368 : : * Implementations can assume that scan_set_tidrange is always called
369 : : * before scan_getnextslot_tidrange or after scan_rescan and before any
370 : : * further calls to scan_getnextslot_tidrange.
371 : : */
372 : : void (*scan_set_tidrange) (TableScanDesc scan,
373 : : ItemPointer mintid,
374 : : ItemPointer maxtid);
375 : :
376 : : /*
377 : : * Return next tuple from `scan` that's in the range of TIDs defined by
378 : : * scan_set_tidrange.
379 : : */
380 : : bool (*scan_getnextslot_tidrange) (TableScanDesc scan,
381 : : ScanDirection direction,
382 : : TupleTableSlot *slot);
383 : :
384 : : /* ------------------------------------------------------------------------
385 : : * Parallel table scan related functions.
386 : : * ------------------------------------------------------------------------
387 : : */
388 : :
389 : : /*
390 : : * Estimate the size of shared memory needed for a parallel scan of this
391 : : * relation. The snapshot does not need to be accounted for.
392 : : */
393 : : Size (*parallelscan_estimate) (Relation rel);
394 : :
395 : : /*
396 : : * Initialize ParallelTableScanDesc for a parallel scan of this relation.
397 : : * `pscan` will be sized according to parallelscan_estimate() for the same
398 : : * relation.
399 : : */
400 : : Size (*parallelscan_initialize) (Relation rel,
401 : : ParallelTableScanDesc pscan);
402 : :
403 : : /*
404 : : * Reinitialize `pscan` for a new scan. `rel` will be the same relation as
405 : : * when `pscan` was initialized by parallelscan_initialize.
406 : : */
407 : : void (*parallelscan_reinitialize) (Relation rel,
408 : : ParallelTableScanDesc pscan);
409 : :
410 : :
411 : : /* ------------------------------------------------------------------------
412 : : * Index Scan Callbacks
413 : : * ------------------------------------------------------------------------
414 : : */
415 : :
416 : : /*
417 : : * Prepare to fetch tuples from the relation, as needed when fetching
418 : : * tuples for an index scan. The callback has to return an
419 : : * IndexFetchTableData, which the AM will typically embed in a larger
420 : : * structure with additional information.
421 : : *
422 : : * Tuples for an index scan can then be fetched via index_fetch_tuple.
423 : : */
424 : : struct IndexFetchTableData *(*index_fetch_begin) (Relation rel);
425 : :
426 : : /*
427 : : * Reset index fetch. Typically this will release cross index fetch
428 : : * resources held in IndexFetchTableData.
429 : : */
430 : : void (*index_fetch_reset) (struct IndexFetchTableData *data);
431 : :
432 : : /*
433 : : * Release resources and deallocate index fetch.
434 : : */
435 : : void (*index_fetch_end) (struct IndexFetchTableData *data);
436 : :
437 : : /*
438 : : * Fetch tuple at `tid` into `slot`, after doing a visibility test
439 : : * according to `snapshot`. If a tuple was found and passed the visibility
440 : : * test, return true, false otherwise.
441 : : *
442 : : * Note that AMs that do not necessarily update indexes when indexed
443 : : * columns do not change, need to return the current/correct version of
444 : : * the tuple that is visible to the snapshot, even if the tid points to an
445 : : * older version of the tuple.
446 : : *
447 : : * *call_again is false on the first call to index_fetch_tuple for a tid.
448 : : * If there potentially is another tuple matching the tid, *call_again
449 : : * needs to be set to true by index_fetch_tuple, signaling to the caller
450 : : * that index_fetch_tuple should be called again for the same tid.
451 : : *
452 : : * *all_dead, if all_dead is not NULL, should be set to true by
453 : : * index_fetch_tuple iff it is guaranteed that no backend needs to see
454 : : * that tuple. Index AMs can use that to avoid returning that tid in
455 : : * future searches.
456 : : */
457 : : bool (*index_fetch_tuple) (struct IndexFetchTableData *scan,
458 : : ItemPointer tid,
459 : : Snapshot snapshot,
460 : : TupleTableSlot *slot,
461 : : bool *call_again, bool *all_dead);
462 : :
463 : :
464 : : /* ------------------------------------------------------------------------
465 : : * Callbacks for non-modifying operations on individual tuples
466 : : * ------------------------------------------------------------------------
467 : : */
468 : :
469 : : /*
470 : : * Fetch tuple at `tid` into `slot`, after doing a visibility test
471 : : * according to `snapshot`. If a tuple was found and passed the visibility
472 : : * test, returns true, false otherwise.
473 : : */
474 : : bool (*tuple_fetch_row_version) (Relation rel,
475 : : ItemPointer tid,
476 : : Snapshot snapshot,
477 : : TupleTableSlot *slot);
478 : :
479 : : /*
480 : : * Is tid valid for a scan of this relation.
481 : : */
482 : : bool (*tuple_tid_valid) (TableScanDesc scan,
483 : : ItemPointer tid);
484 : :
485 : : /*
486 : : * Return the latest version of the tuple at `tid`, by updating `tid` to
487 : : * point at the newest version.
488 : : */
489 : : void (*tuple_get_latest_tid) (TableScanDesc scan,
490 : : ItemPointer tid);
491 : :
492 : : /*
493 : : * Does the tuple in `slot` satisfy `snapshot`? The slot needs to be of
494 : : * the appropriate type for the AM.
495 : : */
496 : : bool (*tuple_satisfies_snapshot) (Relation rel,
497 : : TupleTableSlot *slot,
498 : : Snapshot snapshot);
499 : :
500 : : /* see table_index_delete_tuples() */
501 : : TransactionId (*index_delete_tuples) (Relation rel,
502 : : TM_IndexDeleteOp *delstate);
503 : :
504 : :
505 : : /* ------------------------------------------------------------------------
506 : : * Manipulations of physical tuples.
507 : : * ------------------------------------------------------------------------
508 : : */
509 : :
510 : : /* see table_tuple_insert() for reference about parameters */
511 : : void (*tuple_insert) (Relation rel, TupleTableSlot *slot,
512 : : CommandId cid, int options,
513 : : struct BulkInsertStateData *bistate);
514 : :
515 : : /* see table_tuple_insert_speculative() for reference about parameters */
516 : : void (*tuple_insert_speculative) (Relation rel,
517 : : TupleTableSlot *slot,
518 : : CommandId cid,
519 : : int options,
520 : : struct BulkInsertStateData *bistate,
521 : : uint32 specToken);
522 : :
523 : : /* see table_tuple_complete_speculative() for reference about parameters */
524 : : void (*tuple_complete_speculative) (Relation rel,
525 : : TupleTableSlot *slot,
526 : : uint32 specToken,
527 : : bool succeeded);
528 : :
529 : : /* see table_multi_insert() for reference about parameters */
530 : : void (*multi_insert) (Relation rel, TupleTableSlot **slots, int nslots,
531 : : CommandId cid, int options, struct BulkInsertStateData *bistate);
532 : :
533 : : /* see table_tuple_delete() for reference about parameters */
534 : : TM_Result (*tuple_delete) (Relation rel,
535 : : ItemPointer tid,
536 : : CommandId cid,
537 : : Snapshot snapshot,
538 : : Snapshot crosscheck,
539 : : bool wait,
540 : : TM_FailureData *tmfd,
541 : : bool changingPart);
542 : :
543 : : /* see table_tuple_update() for reference about parameters */
544 : : TM_Result (*tuple_update) (Relation rel,
545 : : ItemPointer otid,
546 : : TupleTableSlot *slot,
547 : : CommandId cid,
548 : : Snapshot snapshot,
549 : : Snapshot crosscheck,
550 : : bool wait,
551 : : TM_FailureData *tmfd,
552 : : LockTupleMode *lockmode,
553 : : TU_UpdateIndexes *update_indexes);
554 : :
555 : : /* see table_tuple_lock() for reference about parameters */
556 : : TM_Result (*tuple_lock) (Relation rel,
557 : : ItemPointer tid,
558 : : Snapshot snapshot,
559 : : TupleTableSlot *slot,
560 : : CommandId cid,
561 : : LockTupleMode mode,
562 : : LockWaitPolicy wait_policy,
563 : : uint8 flags,
564 : : TM_FailureData *tmfd);
565 : :
566 : : /*
567 : : * Perform operations necessary to complete insertions made via
568 : : * tuple_insert and multi_insert with a BulkInsertState specified. In-tree
569 : : * access methods ceased to use this.
570 : : *
571 : : * Typically callers of tuple_insert and multi_insert will just pass all
572 : : * the flags that apply to them, and each AM has to decide which of them
573 : : * make sense for it, and then only take actions in finish_bulk_insert for
574 : : * those flags, and ignore others.
575 : : *
576 : : * Optional callback.
577 : : */
578 : : void (*finish_bulk_insert) (Relation rel, int options);
579 : :
580 : :
581 : : /* ------------------------------------------------------------------------
582 : : * DDL related functionality.
583 : : * ------------------------------------------------------------------------
584 : : */
585 : :
586 : : /*
587 : : * This callback needs to create new relation storage for `rel`, with
588 : : * appropriate durability behaviour for `persistence`.
589 : : *
590 : : * Note that only the subset of the relcache filled by
591 : : * RelationBuildLocalRelation() can be relied upon and that the relation's
592 : : * catalog entries will either not yet exist (new relation), or will still
593 : : * reference the old relfilelocator.
594 : : *
595 : : * As output *freezeXid, *minmulti must be set to the values appropriate
596 : : * for pg_class.{relfrozenxid, relminmxid}. For AMs that don't need those
597 : : * fields to be filled they can be set to InvalidTransactionId and
598 : : * InvalidMultiXactId, respectively.
599 : : *
600 : : * See also table_relation_set_new_filelocator().
601 : : */
602 : : void (*relation_set_new_filelocator) (Relation rel,
603 : : const RelFileLocator *newrlocator,
604 : : char persistence,
605 : : TransactionId *freezeXid,
606 : : MultiXactId *minmulti);
607 : :
608 : : /*
609 : : * This callback needs to remove all contents from `rel`'s current
610 : : * relfilelocator. No provisions for transactional behaviour need to be
611 : : * made. Often this can be implemented by truncating the underlying
612 : : * storage to its minimal size.
613 : : *
614 : : * See also table_relation_nontransactional_truncate().
615 : : */
616 : : void (*relation_nontransactional_truncate) (Relation rel);
617 : :
618 : : /*
619 : : * See table_relation_copy_data().
620 : : *
621 : : * This can typically be implemented by directly copying the underlying
622 : : * storage, unless it contains references to the tablespace internally.
623 : : */
624 : : void (*relation_copy_data) (Relation rel,
625 : : const RelFileLocator *newrlocator);
626 : :
627 : : /* See table_relation_copy_for_cluster() */
628 : : void (*relation_copy_for_cluster) (Relation OldTable,
629 : : Relation NewTable,
630 : : Relation OldIndex,
631 : : bool use_sort,
632 : : TransactionId OldestXmin,
633 : : TransactionId *xid_cutoff,
634 : : MultiXactId *multi_cutoff,
635 : : double *num_tuples,
636 : : double *tups_vacuumed,
637 : : double *tups_recently_dead);
638 : :
639 : : /*
640 : : * React to VACUUM command on the relation. The VACUUM can be triggered by
641 : : * a user or by autovacuum. The specific actions performed by the AM will
642 : : * depend heavily on the individual AM.
643 : : *
644 : : * On entry a transaction is already established, and the relation is
645 : : * locked with a ShareUpdateExclusive lock.
646 : : *
647 : : * Note that neither VACUUM FULL (and CLUSTER), nor ANALYZE go through
648 : : * this routine, even if (for ANALYZE) it is part of the same VACUUM
649 : : * command.
650 : : *
651 : : * There probably, in the future, needs to be a separate callback to
652 : : * integrate with autovacuum's scheduling.
653 : : */
654 : : void (*relation_vacuum) (Relation rel,
655 : : struct VacuumParams *params,
656 : : BufferAccessStrategy bstrategy);
657 : :
658 : : /* see table_index_build_range_scan for reference about parameters */
659 : : double (*index_build_range_scan) (Relation table_rel,
660 : : Relation index_rel,
661 : : struct IndexInfo *index_info,
662 : : bool allow_sync,
663 : : bool anyvisible,
664 : : bool progress,
665 : : BlockNumber start_blockno,
666 : : BlockNumber numblocks,
667 : : IndexBuildCallback callback,
668 : : void *callback_state,
669 : : TableScanDesc scan);
670 : :
671 : : /* see table_index_validate_scan for reference about parameters */
672 : : void (*index_validate_scan) (Relation table_rel,
673 : : Relation index_rel,
674 : : struct IndexInfo *index_info,
675 : : Snapshot snapshot,
676 : : struct ValidateIndexState *state);
677 : :
678 : : /* See table_relation_analyze() */
679 : : void (*relation_analyze) (Relation relation,
680 : : AcquireSampleRowsFunc *func,
681 : : BlockNumber *totalpages,
682 : : BufferAccessStrategy bstrategy);
683 : :
684 : :
685 : : /* ------------------------------------------------------------------------
686 : : * Miscellaneous functions.
687 : : * ------------------------------------------------------------------------
688 : : */
689 : :
690 : : /*
691 : : * See table_relation_size().
692 : : *
693 : : * Note that currently a few callers use the MAIN_FORKNUM size to figure
694 : : * out the range of potentially interesting blocks (brin, analyze). It's
695 : : * probable that we'll need to revise the interface for those at some
696 : : * point.
697 : : */
698 : : uint64 (*relation_size) (Relation rel, ForkNumber forkNumber);
699 : :
700 : :
701 : : /*
702 : : * This callback should return true if the relation requires a TOAST table
703 : : * and false if it does not. It may wish to examine the relation's tuple
704 : : * descriptor before making a decision, but if it uses some other method
705 : : * of storing large values (or if it does not support them) it can simply
706 : : * return false.
707 : : */
708 : : bool (*relation_needs_toast_table) (Relation rel);
709 : :
710 : : /*
711 : : * This callback should return the OID of the table AM that implements
712 : : * TOAST tables for this AM. If the relation_needs_toast_table callback
713 : : * always returns false, this callback is not required.
714 : : */
715 : : Oid (*relation_toast_am) (Relation rel);
716 : :
717 : : /*
718 : : * This callback is invoked when detoasting a value stored in a toast
719 : : * table implemented by this AM. See table_relation_fetch_toast_slice()
720 : : * for more details.
721 : : */
722 : : void (*relation_fetch_toast_slice) (Relation toastrel, Oid valueid,
723 : : int32 attrsize,
724 : : int32 sliceoffset,
725 : : int32 slicelength,
726 : : struct varlena *result);
727 : :
728 : :
729 : : /* ------------------------------------------------------------------------
730 : : * Planner related functions.
731 : : * ------------------------------------------------------------------------
732 : : */
733 : :
734 : : /*
735 : : * See table_relation_estimate_size().
736 : : *
737 : : * While block oriented, it shouldn't be too hard for an AM that doesn't
738 : : * internally use blocks to convert into a usable representation.
739 : : *
740 : : * This differs from the relation_size callback by returning size
741 : : * estimates (both relation size and tuple count) for planning purposes,
742 : : * rather than returning a currently correct estimate.
743 : : */
744 : : void (*relation_estimate_size) (Relation rel, int32 *attr_widths,
745 : : BlockNumber *pages, double *tuples,
746 : : double *allvisfrac);
747 : :
748 : :
749 : : /* ------------------------------------------------------------------------
750 : : * Executor related functions.
751 : : * ------------------------------------------------------------------------
752 : : */
753 : :
754 : : /*
755 : : * Prepare to fetch / check / return tuples from `tbmres->blockno` as part
756 : : * of a bitmap table scan. `scan` was started via table_beginscan_bm().
757 : : * Return false if there are no tuples to be found on the page, true
758 : : * otherwise.
759 : : *
760 : : * This will typically read and pin the target block, and do the necessary
761 : : * work to allow scan_bitmap_next_tuple() to return tuples (e.g. it might
762 : : * make sense to perform tuple visibility checks at this time). For some
763 : : * AMs it will make more sense to do all the work referencing `tbmres`
764 : : * contents here, for others it might be better to defer more work to
765 : : * scan_bitmap_next_tuple.
766 : : *
767 : : * If `tbmres->blockno` is -1, this is a lossy scan and all visible tuples
768 : : * on the page have to be returned, otherwise the tuples at offsets in
769 : : * `tbmres->offsets` need to be returned.
770 : : *
771 : : * XXX: Currently this may only be implemented if the AM uses md.c as its
772 : : * storage manager, and uses ItemPointer->ip_blkid in a manner that maps
773 : : * blockids directly to the underlying storage. nodeBitmapHeapscan.c
774 : : * performs prefetching directly using that interface. This probably
775 : : * needs to be rectified at a later point.
776 : : *
777 : : * XXX: Currently this may only be implemented if the AM uses the
778 : : * visibilitymap, as nodeBitmapHeapscan.c unconditionally accesses it to
779 : : * perform prefetching. This probably needs to be rectified at a later
780 : : * point.
781 : : *
782 : : * Optional callback, but either both scan_bitmap_next_block and
783 : : * scan_bitmap_next_tuple need to exist, or neither.
784 : : */
785 : : bool (*scan_bitmap_next_block) (TableScanDesc scan,
786 : : struct TBMIterateResult *tbmres);
787 : :
788 : : /*
789 : : * Fetch the next tuple of a bitmap table scan into `slot` and return true
790 : : * if a visible tuple was found, false otherwise.
791 : : *
792 : : * For some AMs it will make more sense to do all the work referencing
793 : : * `tbmres` contents in scan_bitmap_next_block, for others it might be
794 : : * better to defer more work to this callback.
795 : : *
796 : : * Optional callback, but either both scan_bitmap_next_block and
797 : : * scan_bitmap_next_tuple need to exist, or neither.
798 : : */
799 : : bool (*scan_bitmap_next_tuple) (TableScanDesc scan,
800 : : struct TBMIterateResult *tbmres,
801 : : TupleTableSlot *slot);
802 : :
803 : : /*
804 : : * Prepare to fetch tuples from the next block in a sample scan. Return
805 : : * false if the sample scan is finished, true otherwise. `scan` was
806 : : * started via table_beginscan_sampling().
807 : : *
808 : : * Typically this will first determine the target block by calling the
809 : : * TsmRoutine's NextSampleBlock() callback if not NULL, or alternatively
810 : : * perform a sequential scan over all blocks. The determined block is
811 : : * then typically read and pinned.
812 : : *
813 : : * As the TsmRoutine interface is block based, a block needs to be passed
814 : : * to NextSampleBlock(). If that's not appropriate for an AM, it
815 : : * internally needs to perform mapping between the internal and a block
816 : : * based representation.
817 : : *
818 : : * Note that it's not acceptable to hold deadlock prone resources such as
819 : : * lwlocks until scan_sample_next_tuple() has exhausted the tuples on the
820 : : * block - the tuple is likely to be returned to an upper query node, and
821 : : * the next call could be off a long while. Holding buffer pins and such
822 : : * is obviously OK.
823 : : *
824 : : * Currently it is required to implement this interface, as there's no
825 : : * alternative way (contrary e.g. to bitmap scans) to implement sample
826 : : * scans. If infeasible to implement, the AM may raise an error.
827 : : */
828 : : bool (*scan_sample_next_block) (TableScanDesc scan,
829 : : struct SampleScanState *scanstate);
830 : :
831 : : /*
832 : : * This callback, only called after scan_sample_next_block has returned
833 : : * true, should determine the next tuple to be returned from the selected
834 : : * block using the TsmRoutine's NextSampleTuple() callback.
835 : : *
836 : : * The callback needs to perform visibility checks, and only return
837 : : * visible tuples. That obviously can mean calling NextSampleTuple()
838 : : * multiple times.
839 : : *
840 : : * The TsmRoutine interface assumes that there's a maximum offset on a
841 : : * given page, so if that doesn't apply to an AM, it needs to emulate that
842 : : * assumption somehow.
843 : : */
844 : : bool (*scan_sample_next_tuple) (TableScanDesc scan,
845 : : struct SampleScanState *scanstate,
846 : : TupleTableSlot *slot);
847 : :
848 : : } TableAmRoutine;
849 : :
850 : :
851 : : /* ----------------------------------------------------------------------------
852 : : * Slot functions.
853 : : * ----------------------------------------------------------------------------
854 : : */
855 : :
856 : : /*
857 : : * Returns slot callbacks suitable for holding tuples of the appropriate type
858 : : * for the relation. Works for tables, views, foreign tables and partitioned
859 : : * tables.
860 : : */
861 : : extern const TupleTableSlotOps *table_slot_callbacks(Relation relation);
862 : :
863 : : /*
864 : : * Returns slot using the callbacks returned by table_slot_callbacks(), and
865 : : * registers it on *reglist.
866 : : */
867 : : extern TupleTableSlot *table_slot_create(Relation relation, List **reglist);
868 : :
869 : :
870 : : /* ----------------------------------------------------------------------------
871 : : * Table scan functions.
872 : : * ----------------------------------------------------------------------------
873 : : */
874 : :
875 : : /*
876 : : * Start a scan of `rel`. Returned tuples pass a visibility test of
877 : : * `snapshot`, and if nkeys != 0, the results are filtered by those scan keys.
878 : : */
879 : : static inline TableScanDesc
1861 andres@anarazel.de 880 :CBC 85591 : table_beginscan(Relation rel, Snapshot snapshot,
881 : : int nkeys, struct ScanKeyData *key)
882 : : {
1792 883 : 85591 : uint32 flags = SO_TYPE_SEQSCAN |
884 : : SO_ALLOW_STRAT | SO_ALLOW_SYNC | SO_ALLOW_PAGEMODE;
885 : :
886 : 85591 : return rel->rd_tableam->scan_begin(rel, snapshot, nkeys, key, NULL, flags);
887 : : }
888 : :
889 : : /*
890 : : * Like table_beginscan(), but for scanning catalog. It'll automatically use a
891 : : * snapshot appropriate for scanning catalog relations.
892 : : */
893 : : extern TableScanDesc table_beginscan_catalog(Relation relation, int nkeys,
894 : : struct ScanKeyData *key);
895 : :
896 : : /*
897 : : * Like table_beginscan(), but table_beginscan_strat() offers an extended API
898 : : * that lets the caller control whether a nondefault buffer access strategy
899 : : * can be used, and whether syncscan can be chosen (possibly resulting in the
900 : : * scan not starting from block zero). Both of these default to true with
901 : : * plain table_beginscan.
902 : : */
903 : : static inline TableScanDesc
1861 904 : 173459 : table_beginscan_strat(Relation rel, Snapshot snapshot,
905 : : int nkeys, struct ScanKeyData *key,
906 : : bool allow_strat, bool allow_sync)
907 : : {
1792 908 : 173459 : uint32 flags = SO_TYPE_SEQSCAN | SO_ALLOW_PAGEMODE;
909 : :
910 [ + - ]: 173459 : if (allow_strat)
911 : 173459 : flags |= SO_ALLOW_STRAT;
912 [ + + ]: 173459 : if (allow_sync)
913 : 23772 : flags |= SO_ALLOW_SYNC;
914 : :
915 : 173459 : return rel->rd_tableam->scan_begin(rel, snapshot, nkeys, key, NULL, flags);
916 : : }
917 : :
918 : : /*
919 : : * table_beginscan_bm is an alternative entry point for setting up a
920 : : * TableScanDesc for a bitmap heap scan. Although that scan technology is
921 : : * really quite unlike a standard seqscan, there is just enough commonality to
922 : : * make it worth using the same data structure.
923 : : */
924 : : static inline TableScanDesc
1861 925 : 7329 : table_beginscan_bm(Relation rel, Snapshot snapshot,
926 : : int nkeys, struct ScanKeyData *key, bool need_tuple)
927 : : {
1792 928 : 7329 : uint32 flags = SO_TYPE_BITMAPSCAN | SO_ALLOW_PAGEMODE;
929 : :
7 tomas.vondra@postgre 930 [ + + ]:GNC 7329 : if (need_tuple)
931 : 5897 : flags |= SO_NEED_TUPLES;
932 : :
1792 andres@anarazel.de 933 :CBC 7329 : return rel->rd_tableam->scan_begin(rel, snapshot, nkeys, key, NULL, flags);
934 : : }
935 : :
936 : : /*
937 : : * table_beginscan_sampling is an alternative entry point for setting up a
938 : : * TableScanDesc for a TABLESAMPLE scan. As with bitmap scans, it's worth
939 : : * using the same data structure although the behavior is rather different.
940 : : * In addition to the options offered by table_beginscan_strat, this call
941 : : * also allows control of whether page-mode visibility checking is used.
942 : : */
943 : : static inline TableScanDesc
1861 944 : 73 : table_beginscan_sampling(Relation rel, Snapshot snapshot,
945 : : int nkeys, struct ScanKeyData *key,
946 : : bool allow_strat, bool allow_sync,
947 : : bool allow_pagemode)
948 : : {
1792 949 : 73 : uint32 flags = SO_TYPE_SAMPLESCAN;
950 : :
951 [ + + ]: 73 : if (allow_strat)
952 : 67 : flags |= SO_ALLOW_STRAT;
953 [ + + ]: 73 : if (allow_sync)
954 : 33 : flags |= SO_ALLOW_SYNC;
955 [ + + ]: 73 : if (allow_pagemode)
956 : 61 : flags |= SO_ALLOW_PAGEMODE;
957 : :
958 : 73 : return rel->rd_tableam->scan_begin(rel, snapshot, nkeys, key, NULL, flags);
959 : : }
960 : :
961 : : /*
962 : : * table_beginscan_tid is an alternative entry point for setting up a
963 : : * TableScanDesc for a Tid scan. As with bitmap scans, it's worth using
964 : : * the same data structure although the behavior is rather different.
965 : : */
966 : : static inline TableScanDesc
1528 fujii@postgresql.org 967 : 326 : table_beginscan_tid(Relation rel, Snapshot snapshot)
968 : : {
969 : 326 : uint32 flags = SO_TYPE_TIDSCAN;
970 : :
971 : 326 : return rel->rd_tableam->scan_begin(rel, snapshot, 0, NULL, NULL, flags);
972 : : }
973 : :
974 : : /*
975 : : * table_beginscan_analyze is an alternative entry point for setting up a
976 : : * TableScanDesc for an ANALYZE scan. As with bitmap scans, it's worth using
977 : : * the same data structure although the behavior is rather different.
978 : : */
979 : : static inline TableScanDesc
6 akorotkov@postgresql 980 : 6819 : table_beginscan_analyze(Relation rel)
981 : : {
982 : 6819 : uint32 flags = SO_TYPE_ANALYZE;
983 : :
984 : 6819 : return rel->rd_tableam->scan_begin(rel, NULL, 0, NULL, NULL, flags);
985 : : }
986 : :
987 : : /*
988 : : * End relation scan.
989 : : */
990 : : static inline void
1861 andres@anarazel.de 991 : 317491 : table_endscan(TableScanDesc scan)
992 : : {
993 : 317491 : scan->rs_rd->rd_tableam->scan_end(scan);
994 : 317491 : }
995 : :
996 : : /*
997 : : * Restart a relation scan.
998 : : */
999 : : static inline void
1000 : 499448 : table_rescan(TableScanDesc scan,
1001 : : struct ScanKeyData *key)
1002 : : {
1003 : 499448 : scan->rs_rd->rd_tableam->scan_rescan(scan, key, false, false, false, false);
1004 : 499448 : }
1005 : :
1006 : : /*
1007 : : * Restart a relation scan after changing params.
1008 : : *
1009 : : * This call allows changing the buffer strategy, syncscan, and pagemode
1010 : : * options before starting a fresh scan. Note that although the actual use of
1011 : : * syncscan might change (effectively, enabling or disabling reporting), the
1012 : : * previously selected startblock will be kept.
1013 : : */
1014 : : static inline void
1015 : 15 : table_rescan_set_params(TableScanDesc scan, struct ScanKeyData *key,
1016 : : bool allow_strat, bool allow_sync, bool allow_pagemode)
1017 : : {
1018 : 15 : scan->rs_rd->rd_tableam->scan_rescan(scan, key, true,
1019 : : allow_strat, allow_sync,
1020 : : allow_pagemode);
1021 : 15 : }
1022 : :
1023 : : /*
1024 : : * Return next tuple from `scan`, store in slot.
1025 : : */
1026 : : static inline bool
1027 : 38107872 : table_scan_getnextslot(TableScanDesc sscan, ScanDirection direction, TupleTableSlot *slot)
1028 : : {
1029 : 38107872 : slot->tts_tableOid = RelationGetRelid(sscan->rs_rd);
1030 : :
1031 : : /* We don't expect actual scans using NoMovementScanDirection */
438 drowley@postgresql.o 1032 [ + + - + ]: 38107872 : Assert(direction == ForwardScanDirection ||
1033 : : direction == BackwardScanDirection);
1034 : :
1035 : : /*
1036 : : * We don't expect direct calls to table_scan_getnextslot with valid
1037 : : * CheckXidAlive for catalog or regular tables. See detailed comments in
1038 : : * xact.c where these variables are declared.
1039 : : */
1345 akapila@postgresql.o 1040 [ + + - + : 38107872 : if (unlikely(TransactionIdIsValid(CheckXidAlive) && !bsysscan))
- + ]
1345 akapila@postgresql.o 1041 [ # # ]:UBC 0 : elog(ERROR, "unexpected table_scan_getnextslot call during logical decoding");
1042 : :
1861 andres@anarazel.de 1043 :CBC 38107872 : return sscan->rs_rd->rd_tableam->scan_getnextslot(sscan, direction, slot);
1044 : : }
1045 : :
1046 : : /* ----------------------------------------------------------------------------
1047 : : * TID Range scanning related functions.
1048 : : * ----------------------------------------------------------------------------
1049 : : */
1050 : :
1051 : : /*
1052 : : * table_beginscan_tidrange is the entry point for setting up a TableScanDesc
1053 : : * for a TID range scan.
1054 : : */
1055 : : static inline TableScanDesc
1142 drowley@postgresql.o 1056 : 56 : table_beginscan_tidrange(Relation rel, Snapshot snapshot,
1057 : : ItemPointer mintid,
1058 : : ItemPointer maxtid)
1059 : : {
1060 : : TableScanDesc sscan;
1061 : 56 : uint32 flags = SO_TYPE_TIDRANGESCAN | SO_ALLOW_PAGEMODE;
1062 : :
1063 : 56 : sscan = rel->rd_tableam->scan_begin(rel, snapshot, 0, NULL, NULL, flags);
1064 : :
1065 : : /* Set the range of TIDs to scan */
1066 : 56 : sscan->rs_rd->rd_tableam->scan_set_tidrange(sscan, mintid, maxtid);
1067 : :
1068 : 56 : return sscan;
1069 : : }
1070 : :
1071 : : /*
1072 : : * table_rescan_tidrange resets the scan position and sets the minimum and
1073 : : * maximum TID range to scan for a TableScanDesc created by
1074 : : * table_beginscan_tidrange.
1075 : : */
1076 : : static inline void
1077 : 33 : table_rescan_tidrange(TableScanDesc sscan, ItemPointer mintid,
1078 : : ItemPointer maxtid)
1079 : : {
1080 : : /* Ensure table_beginscan_tidrange() was used. */
1081 [ - + ]: 33 : Assert((sscan->rs_flags & SO_TYPE_TIDRANGESCAN) != 0);
1082 : :
1083 : 33 : sscan->rs_rd->rd_tableam->scan_rescan(sscan, NULL, false, false, false, false);
1084 : 33 : sscan->rs_rd->rd_tableam->scan_set_tidrange(sscan, mintid, maxtid);
1085 : 33 : }
1086 : :
1087 : : /*
1088 : : * Fetch the next tuple from `sscan` for a TID range scan created by
1089 : : * table_beginscan_tidrange(). Stores the tuple in `slot` and returns true,
1090 : : * or returns false if no more tuples exist in the range.
1091 : : */
1092 : : static inline bool
1093 : 2970 : table_scan_getnextslot_tidrange(TableScanDesc sscan, ScanDirection direction,
1094 : : TupleTableSlot *slot)
1095 : : {
1096 : : /* Ensure table_beginscan_tidrange() was used. */
1097 [ - + ]: 2970 : Assert((sscan->rs_flags & SO_TYPE_TIDRANGESCAN) != 0);
1098 : :
1099 : : /* We don't expect actual scans using NoMovementScanDirection */
438 1100 [ + + - + ]: 2970 : Assert(direction == ForwardScanDirection ||
1101 : : direction == BackwardScanDirection);
1102 : :
1142 1103 : 2970 : return sscan->rs_rd->rd_tableam->scan_getnextslot_tidrange(sscan,
1104 : : direction,
1105 : : slot);
1106 : : }
1107 : :
1108 : :
1109 : : /* ----------------------------------------------------------------------------
1110 : : * Parallel table scan related functions.
1111 : : * ----------------------------------------------------------------------------
1112 : : */
1113 : :
1114 : : /*
1115 : : * Estimate the size of shared memory needed for a parallel scan of this
1116 : : * relation.
1117 : : */
1118 : : extern Size table_parallelscan_estimate(Relation rel, Snapshot snapshot);
1119 : :
1120 : : /*
1121 : : * Initialize ParallelTableScanDesc for a parallel scan of this
1122 : : * relation. `pscan` needs to be sized according to parallelscan_estimate()
1123 : : * for the same relation. Call this just once in the leader process; then,
1124 : : * individual workers attach via table_beginscan_parallel.
1125 : : */
1126 : : extern void table_parallelscan_initialize(Relation rel,
1127 : : ParallelTableScanDesc pscan,
1128 : : Snapshot snapshot);
1129 : :
1130 : : /*
1131 : : * Begin a parallel scan. `pscan` needs to have been initialized with
1132 : : * table_parallelscan_initialize(), for the same relation. The initialization
1133 : : * does not need to have happened in this backend.
1134 : : *
1135 : : * Caller must hold a suitable lock on the relation.
1136 : : */
1137 : : extern TableScanDesc table_beginscan_parallel(Relation relation,
1138 : : ParallelTableScanDesc pscan);
1139 : :
1140 : : /*
1141 : : * Restart a parallel scan. Call this in the leader process. Caller is
1142 : : * responsible for making sure that all workers have finished the scan
1143 : : * beforehand.
1144 : : */
1145 : : static inline void
1861 andres@anarazel.de 1146 : 114 : table_parallelscan_reinitialize(Relation rel, ParallelTableScanDesc pscan)
1147 : : {
1148 : 114 : rel->rd_tableam->parallelscan_reinitialize(rel, pscan);
1149 : 114 : }
1150 : :
1151 : :
1152 : : /* ----------------------------------------------------------------------------
1153 : : * Index scan related functions.
1154 : : * ----------------------------------------------------------------------------
1155 : : */
1156 : :
1157 : : /*
1158 : : * Prepare to fetch tuples from the relation, as needed when fetching tuples
1159 : : * for an index scan.
1160 : : *
1161 : : * Tuples for an index scan can then be fetched via table_index_fetch_tuple().
1162 : : */
1163 : : static inline IndexFetchTableData *
1164 : 11905750 : table_index_fetch_begin(Relation rel)
1165 : : {
1166 : 11905750 : return rel->rd_tableam->index_fetch_begin(rel);
1167 : : }
1168 : :
1169 : : /*
1170 : : * Reset index fetch. Typically this will release cross index fetch resources
1171 : : * held in IndexFetchTableData.
1172 : : */
1173 : : static inline void
1174 : 9358733 : table_index_fetch_reset(struct IndexFetchTableData *scan)
1175 : : {
1176 : 9358733 : scan->rel->rd_tableam->index_fetch_reset(scan);
1177 : 9358733 : }
1178 : :
1179 : : /*
1180 : : * Release resources and deallocate index fetch.
1181 : : */
1182 : : static inline void
1183 : 11905007 : table_index_fetch_end(struct IndexFetchTableData *scan)
1184 : : {
1185 : 11905007 : scan->rel->rd_tableam->index_fetch_end(scan);
1186 : 11905007 : }
1187 : :
1188 : : /*
1189 : : * Fetches, as part of an index scan, tuple at `tid` into `slot`, after doing
1190 : : * a visibility test according to `snapshot`. If a tuple was found and passed
1191 : : * the visibility test, returns true, false otherwise. Note that *tid may be
1192 : : * modified when we return true (see later remarks on multiple row versions
1193 : : * reachable via a single index entry).
1194 : : *
1195 : : * *call_again needs to be false on the first call to table_index_fetch_tuple() for
1196 : : * a tid. If there potentially is another tuple matching the tid, *call_again
1197 : : * will be set to true, signaling that table_index_fetch_tuple() should be called
1198 : : * again for the same tid.
1199 : : *
1200 : : * *all_dead, if all_dead is not NULL, will be set to true by
1201 : : * table_index_fetch_tuple() iff it is guaranteed that no backend needs to see
1202 : : * that tuple. Index AMs can use that to avoid returning that tid in future
1203 : : * searches.
1204 : : *
1205 : : * The difference between this function and table_tuple_fetch_row_version()
1206 : : * is that this function returns the currently visible version of a row if
1207 : : * the AM supports storing multiple row versions reachable via a single index
1208 : : * entry (like heap's HOT). Whereas table_tuple_fetch_row_version() only
1209 : : * evaluates the tuple exactly at `tid`. Outside of index entry ->table tuple
1210 : : * lookups, table_tuple_fetch_row_version() is what's usually needed.
1211 : : */
1212 : : static inline bool
1213 : 16629064 : table_index_fetch_tuple(struct IndexFetchTableData *scan,
1214 : : ItemPointer tid,
1215 : : Snapshot snapshot,
1216 : : TupleTableSlot *slot,
1217 : : bool *call_again, bool *all_dead)
1218 : : {
1219 : : /*
1220 : : * We don't expect direct calls to table_index_fetch_tuple with valid
1221 : : * CheckXidAlive for catalog or regular tables. See detailed comments in
1222 : : * xact.c where these variables are declared.
1223 : : */
1345 akapila@postgresql.o 1224 [ + + - + : 16629064 : if (unlikely(TransactionIdIsValid(CheckXidAlive) && !bsysscan))
- + ]
1345 akapila@postgresql.o 1225 [ # # ]:UBC 0 : elog(ERROR, "unexpected table_index_fetch_tuple call during logical decoding");
1226 : :
1861 andres@anarazel.de 1227 :CBC 16629064 : return scan->rel->rd_tableam->index_fetch_tuple(scan, tid, snapshot,
1228 : : slot, call_again,
1229 : : all_dead);
1230 : : }
1231 : :
1232 : : /*
1233 : : * This is a convenience wrapper around table_index_fetch_tuple() which
1234 : : * returns whether there are table tuple items corresponding to an index
1235 : : * entry. This likely is only useful to verify if there's a conflict in a
1236 : : * unique index.
1237 : : */
1238 : : extern bool table_index_fetch_tuple_check(Relation rel,
1239 : : ItemPointer tid,
1240 : : Snapshot snapshot,
1241 : : bool *all_dead);
1242 : :
1243 : :
1244 : : /* ------------------------------------------------------------------------
1245 : : * Functions for non-modifying operations on individual tuples
1246 : : * ------------------------------------------------------------------------
1247 : : */
1248 : :
1249 : :
1250 : : /*
1251 : : * Fetch tuple at `tid` into `slot`, after doing a visibility test according to
1252 : : * `snapshot`. If a tuple was found and passed the visibility test, returns
1253 : : * true, false otherwise.
1254 : : *
1255 : : * See table_index_fetch_tuple's comment about what the difference between
1256 : : * these functions is. It is correct to use this function outside of index
1257 : : * entry->table tuple lookups.
1258 : : */
1259 : : static inline bool
1788 1260 : 312393 : table_tuple_fetch_row_version(Relation rel,
1261 : : ItemPointer tid,
1262 : : Snapshot snapshot,
1263 : : TupleTableSlot *slot)
1264 : : {
1265 : : /*
1266 : : * We don't expect direct calls to table_tuple_fetch_row_version with
1267 : : * valid CheckXidAlive for catalog or regular tables. See detailed
1268 : : * comments in xact.c where these variables are declared.
1269 : : */
1345 akapila@postgresql.o 1270 [ - + - - : 312393 : if (unlikely(TransactionIdIsValid(CheckXidAlive) && !bsysscan))
- + ]
1345 akapila@postgresql.o 1271 [ # # ]:UBC 0 : elog(ERROR, "unexpected table_tuple_fetch_row_version call during logical decoding");
1272 : :
1847 andres@anarazel.de 1273 :CBC 312393 : return rel->rd_tableam->tuple_fetch_row_version(rel, tid, snapshot, slot);
1274 : : }
1275 : :
1276 : : /*
1277 : : * Verify that `tid` is a potentially valid tuple identifier. That doesn't
1278 : : * mean that the pointed to row needs to exist or be visible, but that
1279 : : * attempting to fetch the row (e.g. with table_tuple_get_latest_tid() or
1280 : : * table_tuple_fetch_row_version()) should not error out if called with that
1281 : : * tid.
1282 : : *
1283 : : * `scan` needs to have been started via table_beginscan().
1284 : : */
1285 : : static inline bool
1794 1286 : 139 : table_tuple_tid_valid(TableScanDesc scan, ItemPointer tid)
1287 : : {
1288 : 139 : return scan->rs_rd->rd_tableam->tuple_tid_valid(scan, tid);
1289 : : }
1290 : :
1291 : : /*
1292 : : * Return the latest version of the tuple at `tid`, by updating `tid` to
1293 : : * point at the newest version.
1294 : : */
1295 : : extern void table_tuple_get_latest_tid(TableScanDesc scan, ItemPointer tid);
1296 : :
1297 : : /*
1298 : : * Return true iff tuple in slot satisfies the snapshot.
1299 : : *
1300 : : * This assumes the slot's tuple is valid, and of the appropriate type for the
1301 : : * AM.
1302 : : *
1303 : : * Some AMs might modify the data underlying the tuple as a side-effect. If so
1304 : : * they ought to mark the relevant buffer dirty.
1305 : : */
1306 : : static inline bool
1842 1307 : 102471 : table_tuple_satisfies_snapshot(Relation rel, TupleTableSlot *slot,
1308 : : Snapshot snapshot)
1309 : : {
1861 1310 : 102471 : return rel->rd_tableam->tuple_satisfies_snapshot(rel, slot, snapshot);
1311 : : }
1312 : :
1313 : : /*
1314 : : * Determine which index tuples are safe to delete based on their table TID.
1315 : : *
1316 : : * Determines which entries from index AM caller's TM_IndexDeleteOp state
1317 : : * point to vacuumable table tuples. Entries that are found by tableam to be
1318 : : * vacuumable are naturally safe for index AM to delete, and so get directly
1319 : : * marked as deletable. See comments above TM_IndexDelete and comments above
1320 : : * TM_IndexDeleteOp for full details.
1321 : : *
1322 : : * Returns a snapshotConflictHorizon transaction ID that caller places in
1323 : : * its index deletion WAL record. This might be used during subsequent REDO
1324 : : * of the WAL record when in Hot Standby mode -- a recovery conflict for the
1325 : : * index deletion operation might be required on the standby.
1326 : : */
1327 : : static inline TransactionId
1187 pg@bowt.ie 1328 : 4985 : table_index_delete_tuples(Relation rel, TM_IndexDeleteOp *delstate)
1329 : : {
1330 : 4985 : return rel->rd_tableam->index_delete_tuples(rel, delstate);
1331 : : }
1332 : :
1333 : :
1334 : : /* ----------------------------------------------------------------------------
1335 : : * Functions for manipulations of physical tuples.
1336 : : * ----------------------------------------------------------------------------
1337 : : */
1338 : :
1339 : : /*
1340 : : * Insert a tuple from a slot into table AM routine.
1341 : : *
1342 : : * The options bitmask allows the caller to specify options that may change the
1343 : : * behaviour of the AM. The AM will ignore options that it does not support.
1344 : : *
1345 : : * If the TABLE_INSERT_SKIP_FSM option is specified, AMs are free to not reuse
1346 : : * free space in the relation. This can save some cycles when we know the
1347 : : * relation is new and doesn't contain useful amounts of free space.
1348 : : * TABLE_INSERT_SKIP_FSM is commonly passed directly to
1349 : : * RelationGetBufferForTuple. See that method for more information.
1350 : : *
1351 : : * TABLE_INSERT_FROZEN should only be specified for inserts into
1352 : : * relation storage created during the current subtransaction and when
1353 : : * there are no prior snapshots or pre-existing portals open.
1354 : : * This causes rows to be frozen, which is an MVCC violation and
1355 : : * requires explicit options chosen by user.
1356 : : *
1357 : : * TABLE_INSERT_NO_LOGICAL force-disables the emitting of logical decoding
1358 : : * information for the tuple. This should solely be used during table rewrites
1359 : : * where RelationIsLogicallyLogged(relation) is not yet accurate for the new
1360 : : * relation.
1361 : : *
1362 : : * Note that most of these options will be applied when inserting into the
1363 : : * heap's TOAST table, too, if the tuple requires any out-of-line data.
1364 : : *
1365 : : * The BulkInsertState object (if any; bistate can be NULL for default
1366 : : * behavior) is also just passed through to RelationGetBufferForTuple. If
1367 : : * `bistate` is provided, table_finish_bulk_insert() needs to be called.
1368 : : *
1369 : : * On return the slot's tts_tid and tts_tableOid are updated to reflect the
1370 : : * insertion. But note that any toasting of fields within the slot is NOT
1371 : : * reflected in the slots contents.
1372 : : */
1373 : : static inline void
1788 andres@anarazel.de 1374 : 6900697 : table_tuple_insert(Relation rel, TupleTableSlot *slot, CommandId cid,
1375 : : int options, struct BulkInsertStateData *bistate)
1376 : : {
3 akorotkov@postgresql 1377 : 6900697 : rel->rd_tableam->tuple_insert(rel, slot, cid, options,
1378 : : bistate);
1849 andres@anarazel.de 1379 : 6900682 : }
1380 : :
1381 : : /*
1382 : : * Perform a "speculative insertion". These can be backed out afterwards
1383 : : * without aborting the whole transaction. Other sessions can wait for the
1384 : : * speculative insertion to be confirmed, turning it into a regular tuple, or
1385 : : * aborted, as if it never existed. Speculatively inserted tuples behave as
1386 : : * "value locks" of short duration, used to implement INSERT .. ON CONFLICT.
1387 : : *
1388 : : * A transaction having performed a speculative insertion has to either abort,
1389 : : * or finish the speculative insertion with
1390 : : * table_tuple_complete_speculative(succeeded = ...).
1391 : : */
1392 : : static inline void
1788 1393 : 2013 : table_tuple_insert_speculative(Relation rel, TupleTableSlot *slot,
1394 : : CommandId cid, int options,
1395 : : struct BulkInsertStateData *bistate,
1396 : : uint32 specToken)
1397 : : {
1849 1398 : 2013 : rel->rd_tableam->tuple_insert_speculative(rel, slot, cid, options,
1399 : : bistate, specToken);
1400 : 2013 : }
1401 : :
1402 : : /*
1403 : : * Complete "speculative insertion" started in the same transaction. If
1404 : : * succeeded is true, the tuple is fully inserted, if false, it's removed.
1405 : : */
1406 : : static inline void
1788 1407 : 2010 : table_tuple_complete_speculative(Relation rel, TupleTableSlot *slot,
1408 : : uint32 specToken, bool succeeded)
1409 : : {
1849 1410 : 2010 : rel->rd_tableam->tuple_complete_speculative(rel, slot, specToken,
1411 : : succeeded);
1412 : 2010 : }
1413 : :
1414 : : /*
1415 : : * Insert multiple tuples into a table.
1416 : : *
1417 : : * This is like table_tuple_insert(), but inserts multiple tuples in one
1418 : : * operation. That's often faster than calling table_tuple_insert() in a loop,
1419 : : * because e.g. the AM can reduce WAL logging and page locking overhead.
1420 : : *
1421 : : * Except for taking `nslots` tuples as input, and an array of TupleTableSlots
1422 : : * in `slots`, the parameters for table_multi_insert() are the same as for
1423 : : * table_tuple_insert().
1424 : : *
1425 : : * Note: this leaks memory into the current memory context. You can create a
1426 : : * temporary context before calling this, if that's a problem.
1427 : : */
1428 : : static inline void
1837 1429 : 1259 : table_multi_insert(Relation rel, TupleTableSlot **slots, int nslots,
1430 : : CommandId cid, int options, struct BulkInsertStateData *bistate)
1431 : : {
1432 : 1259 : rel->rd_tableam->multi_insert(rel, slots, nslots,
1433 : : cid, options, bistate);
1434 : 1259 : }
1435 : :
1436 : : /*
1437 : : * Delete a tuple.
1438 : : *
1439 : : * NB: do not call this directly unless prepared to deal with
1440 : : * concurrent-update conditions. Use simple_table_tuple_delete instead.
1441 : : *
1442 : : * Input parameters:
1443 : : * relation - table to be modified (caller must hold suitable lock)
1444 : : * tid - TID of tuple to be deleted
1445 : : * cid - delete command ID (used for visibility test, and stored into
1446 : : * cmax if successful)
1447 : : * crosscheck - if not InvalidSnapshot, also check tuple against this
1448 : : * wait - true if should wait for any conflicting update to commit/abort
1449 : : * Output parameters:
1450 : : * tmfd - filled in failure cases (see below)
1451 : : * changingPart - true iff the tuple is being moved to another partition
1452 : : * table due to an update of the partition key. Otherwise, false.
1453 : : *
1454 : : * Normal, successful return value is TM_Ok, which means we did actually
1455 : : * delete it. Failure return codes are TM_SelfModified, TM_Updated, and
1456 : : * TM_BeingModified (the last only possible if wait == false).
1457 : : *
1458 : : * In the failure cases, the routine fills *tmfd with the tuple's t_ctid,
1459 : : * t_xmax, and, if possible, t_cmax. See comments for struct
1460 : : * TM_FailureData for additional info.
1461 : : */
1462 : : static inline TM_Result
1788 1463 : 860794 : table_tuple_delete(Relation rel, ItemPointer tid, CommandId cid,
1464 : : Snapshot snapshot, Snapshot crosscheck, bool wait,
1465 : : TM_FailureData *tmfd, bool changingPart)
1466 : : {
1849 1467 : 860794 : return rel->rd_tableam->tuple_delete(rel, tid, cid,
1468 : : snapshot, crosscheck,
1469 : : wait, tmfd, changingPart);
1470 : : }
1471 : :
1472 : : /*
1473 : : * Update a tuple.
1474 : : *
1475 : : * NB: do not call this directly unless you are prepared to deal with
1476 : : * concurrent-update conditions. Use simple_table_tuple_update instead.
1477 : : *
1478 : : * Input parameters:
1479 : : * relation - table to be modified (caller must hold suitable lock)
1480 : : * otid - TID of old tuple to be replaced
1481 : : * slot - newly constructed tuple data to store
1482 : : * cid - update command ID (used for visibility test, and stored into
1483 : : * cmax/cmin if successful)
1484 : : * crosscheck - if not InvalidSnapshot, also check old tuple against this
1485 : : * wait - true if should wait for any conflicting update to commit/abort
1486 : : * Output parameters:
1487 : : * tmfd - filled in failure cases (see below)
1488 : : * lockmode - filled with lock mode acquired on tuple
1489 : : * update_indexes - in success cases this is set to true if new index entries
1490 : : * are required for this tuple
1491 : : *
1492 : : * Normal, successful return value is TM_Ok, which means we did actually
1493 : : * update it. Failure return codes are TM_SelfModified, TM_Updated, and
1494 : : * TM_BeingModified (the last only possible if wait == false).
1495 : : *
1496 : : * On success, the slot's tts_tid and tts_tableOid are updated to match the new
1497 : : * stored tuple; in particular, slot->tts_tid is set to the TID where the
1498 : : * new tuple was inserted, and its HEAP_ONLY_TUPLE flag is set iff a HOT
1499 : : * update was done. However, any TOAST changes in the new tuple's
1500 : : * data are not reflected into *newtup.
1501 : : *
1502 : : * In the failure cases, the routine fills *tmfd with the tuple's t_ctid,
1503 : : * t_xmax, and, if possible, t_cmax. See comments for struct TM_FailureData
1504 : : * for additional info.
1505 : : */
1506 : : static inline TM_Result
1788 1507 : 188146 : table_tuple_update(Relation rel, ItemPointer otid, TupleTableSlot *slot,
1508 : : CommandId cid, Snapshot snapshot, Snapshot crosscheck,
1509 : : bool wait, TM_FailureData *tmfd, LockTupleMode *lockmode,
1510 : : TU_UpdateIndexes *update_indexes)
1511 : : {
1849 1512 : 188146 : return rel->rd_tableam->tuple_update(rel, otid, slot,
1513 : : cid, snapshot, crosscheck,
1514 : : wait, tmfd,
1515 : : lockmode, update_indexes);
1516 : : }
1517 : :
1518 : : /*
1519 : : * Lock a tuple in the specified mode.
1520 : : *
1521 : : * Input parameters:
1522 : : * relation: relation containing tuple (caller must hold suitable lock)
1523 : : * tid: TID of tuple to lock
1524 : : * snapshot: snapshot to use for visibility determinations
1525 : : * cid: current command ID (used for visibility test, and stored into
1526 : : * tuple's cmax if lock is successful)
1527 : : * mode: lock mode desired
1528 : : * wait_policy: what to do if tuple lock is not available
1529 : : * flags:
1530 : : * If TUPLE_LOCK_FLAG_LOCK_UPDATE_IN_PROGRESS, follow the update chain to
1531 : : * also lock descendant tuples if lock modes don't conflict.
1532 : : * If TUPLE_LOCK_FLAG_FIND_LAST_VERSION, follow the update chain and lock
1533 : : * latest version.
1534 : : *
1535 : : * Output parameters:
1536 : : * *slot: contains the target tuple
1537 : : * *tmfd: filled in failure cases (see below)
1538 : : *
1539 : : * Function result may be:
1540 : : * TM_Ok: lock was successfully acquired
1541 : : * TM_Invisible: lock failed because tuple was never visible to us
1542 : : * TM_SelfModified: lock failed because tuple updated by self
1543 : : * TM_Updated: lock failed because tuple updated by other xact
1544 : : * TM_Deleted: lock failed because tuple deleted by other xact
1545 : : * TM_WouldBlock: lock couldn't be acquired and wait_policy is skip
1546 : : *
1547 : : * In the failure cases other than TM_Invisible and TM_Deleted, the routine
1548 : : * fills *tmfd with the tuple's t_ctid, t_xmax, and, if possible, t_cmax. See
1549 : : * comments for struct TM_FailureData for additional info.
1550 : : */
1551 : : static inline TM_Result
1788 1552 : 82555 : table_tuple_lock(Relation rel, ItemPointer tid, Snapshot snapshot,
1553 : : TupleTableSlot *slot, CommandId cid, LockTupleMode mode,
1554 : : LockWaitPolicy wait_policy, uint8 flags,
1555 : : TM_FailureData *tmfd)
1556 : : {
1849 1557 : 82555 : return rel->rd_tableam->tuple_lock(rel, tid, snapshot, slot,
1558 : : cid, mode, wait_policy,
1559 : : flags, tmfd);
1560 : : }
1561 : :
1562 : : /*
1563 : : * Perform operations necessary to complete insertions made via
1564 : : * tuple_insert and multi_insert with a BulkInsertState specified.
1565 : : */
1566 : : static inline void
1840 1567 : 2098 : table_finish_bulk_insert(Relation rel, int options)
1568 : : {
1569 : : /* optional callback */
1570 [ + - - + ]: 2098 : if (rel->rd_tableam && rel->rd_tableam->finish_bulk_insert)
1840 andres@anarazel.de 1571 :UBC 0 : rel->rd_tableam->finish_bulk_insert(rel, options);
1840 andres@anarazel.de 1572 :CBC 2098 : }
1573 : :
1574 : :
1575 : : /* ------------------------------------------------------------------------
1576 : : * DDL related functionality.
1577 : : * ------------------------------------------------------------------------
1578 : : */
1579 : :
1580 : : /*
1581 : : * Create storage for `rel` in `newrlocator`, with persistence set to
1582 : : * `persistence`.
1583 : : *
1584 : : * This is used both during relation creation and various DDL operations to
1585 : : * create new rel storage that can be filled from scratch. When creating
1586 : : * new storage for an existing relfilelocator, this should be called before the
1587 : : * relcache entry has been updated.
1588 : : *
1589 : : * *freezeXid, *minmulti are set to the xid / multixact horizon for the table
1590 : : * that pg_class.{relfrozenxid, relminmxid} have to be set to.
1591 : : */
1592 : : static inline void
648 rhaas@postgresql.org 1593 : 29123 : table_relation_set_new_filelocator(Relation rel,
1594 : : const RelFileLocator *newrlocator,
1595 : : char persistence,
1596 : : TransactionId *freezeXid,
1597 : : MultiXactId *minmulti)
1598 : : {
1599 : 29123 : rel->rd_tableam->relation_set_new_filelocator(rel, newrlocator,
1600 : : persistence, freezeXid,
1601 : : minmulti);
1844 andres@anarazel.de 1602 : 29123 : }
1603 : :
1604 : : /*
1605 : : * Remove all table contents from `rel`, in a non-transactional manner.
1606 : : * Non-transactional meaning that there's no need to support rollbacks. This
1607 : : * commonly only is used to perform truncations for relation storage created in
1608 : : * the current transaction.
1609 : : */
1610 : : static inline void
1611 : 262 : table_relation_nontransactional_truncate(Relation rel)
1612 : : {
1613 : 262 : rel->rd_tableam->relation_nontransactional_truncate(rel);
1614 : 262 : }
1615 : :
1616 : : /*
1617 : : * Copy data from `rel` into the new relfilelocator `newrlocator`. The new
1618 : : * relfilelocator may not have storage associated before this function is
1619 : : * called. This is only supposed to be used for low level operations like
1620 : : * changing a relation's tablespace.
1621 : : */
1622 : : static inline void
648 rhaas@postgresql.org 1623 : 49 : table_relation_copy_data(Relation rel, const RelFileLocator *newrlocator)
1624 : : {
1625 : 49 : rel->rd_tableam->relation_copy_data(rel, newrlocator);
1844 andres@anarazel.de 1626 : 49 : }
1627 : :
1628 : : /*
1629 : : * Copy data from `OldTable` into `NewTable`, as part of a CLUSTER or VACUUM
1630 : : * FULL.
1631 : : *
1632 : : * Additional Input parameters:
1633 : : * - use_sort - if true, the table contents are sorted appropriate for
1634 : : * `OldIndex`; if false and OldIndex is not InvalidOid, the data is copied
1635 : : * in that index's order; if false and OldIndex is InvalidOid, no sorting is
1636 : : * performed
1637 : : * - OldIndex - see use_sort
1638 : : * - OldestXmin - computed by vacuum_get_cutoffs(), even when
1639 : : * not needed for the relation's AM
1640 : : * - *xid_cutoff - ditto
1641 : : * - *multi_cutoff - ditto
1642 : : *
1643 : : * Output parameters:
1644 : : * - *xid_cutoff - rel's new relfrozenxid value, may be invalid
1645 : : * - *multi_cutoff - rel's new relminmxid value, may be invalid
1646 : : * - *tups_vacuumed - stats, for logging, if appropriate for AM
1647 : : * - *tups_recently_dead - stats, for logging, if appropriate for AM
1648 : : */
1649 : : static inline void
1776 michael@paquier.xyz 1650 : 263 : table_relation_copy_for_cluster(Relation OldTable, Relation NewTable,
1651 : : Relation OldIndex,
1652 : : bool use_sort,
1653 : : TransactionId OldestXmin,
1654 : : TransactionId *xid_cutoff,
1655 : : MultiXactId *multi_cutoff,
1656 : : double *num_tuples,
1657 : : double *tups_vacuumed,
1658 : : double *tups_recently_dead)
1659 : : {
1660 : 263 : OldTable->rd_tableam->relation_copy_for_cluster(OldTable, NewTable, OldIndex,
1661 : : use_sort, OldestXmin,
1662 : : xid_cutoff, multi_cutoff,
1663 : : num_tuples, tups_vacuumed,
1664 : : tups_recently_dead);
1844 andres@anarazel.de 1665 : 263 : }
1666 : :
1667 : : /*
1668 : : * Perform VACUUM on the relation. The VACUUM can be triggered by a user or by
1669 : : * autovacuum. The specific actions performed by the AM will depend heavily on
1670 : : * the individual AM.
1671 : : *
1672 : : * On entry a transaction needs to already been established, and the
1673 : : * table is locked with a ShareUpdateExclusive lock.
1674 : : *
1675 : : * Note that neither VACUUM FULL (and CLUSTER), nor ANALYZE go through this
1676 : : * routine, even if (for ANALYZE) it is part of the same VACUUM command.
1677 : : */
1678 : : static inline void
1842 1679 : 83700 : table_relation_vacuum(Relation rel, struct VacuumParams *params,
1680 : : BufferAccessStrategy bstrategy)
1681 : : {
1682 : 83700 : rel->rd_tableam->relation_vacuum(rel, params, bstrategy);
1683 : 83700 : }
1684 : :
1685 : : /*
1686 : : * table_index_build_scan - scan the table to find tuples to be indexed
1687 : : *
1688 : : * This is called back from an access-method-specific index build procedure
1689 : : * after the AM has done whatever setup it needs. The parent table relation
1690 : : * is scanned to find tuples that should be entered into the index. Each
1691 : : * such tuple is passed to the AM's callback routine, which does the right
1692 : : * things to add it to the new index. After we return, the AM's index
1693 : : * build procedure does whatever cleanup it needs.
1694 : : *
1695 : : * The total count of live tuples is returned. This is for updating pg_class
1696 : : * statistics. (It's annoying not to be able to do that here, but we want to
1697 : : * merge that update with others; see index_update_stats.) Note that the
1698 : : * index AM itself must keep track of the number of index tuples; we don't do
1699 : : * so here because the AM might reject some of the tuples for its own reasons,
1700 : : * such as being unable to store NULLs.
1701 : : *
1702 : : * If 'progress', the PROGRESS_SCAN_BLOCKS_TOTAL counter is updated when
1703 : : * starting the scan, and PROGRESS_SCAN_BLOCKS_DONE is updated as we go along.
1704 : : *
1705 : : * A side effect is to set indexInfo->ii_BrokenHotChain to true if we detect
1706 : : * any potentially broken HOT chains. Currently, we set this if there are any
1707 : : * RECENTLY_DEAD or DELETE_IN_PROGRESS entries in a HOT chain, without trying
1708 : : * very hard to detect whether they're really incompatible with the chain tip.
1709 : : * This only really makes sense for heap AM, it might need to be generalized
1710 : : * for other AMs later.
1711 : : */
1712 : : static inline double
1776 michael@paquier.xyz 1713 : 23961 : table_index_build_scan(Relation table_rel,
1714 : : Relation index_rel,
1715 : : struct IndexInfo *index_info,
1716 : : bool allow_sync,
1717 : : bool progress,
1718 : : IndexBuildCallback callback,
1719 : : void *callback_state,
1720 : : TableScanDesc scan)
1721 : : {
1722 : 23961 : return table_rel->rd_tableam->index_build_range_scan(table_rel,
1723 : : index_rel,
1724 : : index_info,
1725 : : allow_sync,
1726 : : false,
1727 : : progress,
1728 : : 0,
1729 : : InvalidBlockNumber,
1730 : : callback,
1731 : : callback_state,
1732 : : scan);
1733 : : }
1734 : :
1735 : : /*
1736 : : * As table_index_build_scan(), except that instead of scanning the complete
1737 : : * table, only the given number of blocks are scanned. Scan to end-of-rel can
1738 : : * be signaled by passing InvalidBlockNumber as numblocks. Note that
1739 : : * restricting the range to scan cannot be done when requesting syncscan.
1740 : : *
1741 : : * When "anyvisible" mode is requested, all tuples visible to any transaction
1742 : : * are indexed and counted as live, including those inserted or deleted by
1743 : : * transactions that are still in progress.
1744 : : */
1745 : : static inline double
1746 : 1473 : table_index_build_range_scan(Relation table_rel,
1747 : : Relation index_rel,
1748 : : struct IndexInfo *index_info,
1749 : : bool allow_sync,
1750 : : bool anyvisible,
1751 : : bool progress,
1752 : : BlockNumber start_blockno,
1753 : : BlockNumber numblocks,
1754 : : IndexBuildCallback callback,
1755 : : void *callback_state,
1756 : : TableScanDesc scan)
1757 : : {
1758 : 1473 : return table_rel->rd_tableam->index_build_range_scan(table_rel,
1759 : : index_rel,
1760 : : index_info,
1761 : : allow_sync,
1762 : : anyvisible,
1763 : : progress,
1764 : : start_blockno,
1765 : : numblocks,
1766 : : callback,
1767 : : callback_state,
1768 : : scan);
1769 : : }
1770 : :
1771 : : /*
1772 : : * table_index_validate_scan - second table scan for concurrent index build
1773 : : *
1774 : : * See validate_index() for an explanation.
1775 : : */
1776 : : static inline void
1777 : 299 : table_index_validate_scan(Relation table_rel,
1778 : : Relation index_rel,
1779 : : struct IndexInfo *index_info,
1780 : : Snapshot snapshot,
1781 : : struct ValidateIndexState *state)
1782 : : {
1783 : 299 : table_rel->rd_tableam->index_validate_scan(table_rel,
1784 : : index_rel,
1785 : : index_info,
1786 : : snapshot,
1787 : : state);
1845 andres@anarazel.de 1788 : 299 : }
1789 : :
1790 : : /*
1791 : : * table_relation_analyze - fill the infromation for a sampling statistics
1792 : : * acquisition
1793 : : *
1794 : : * The pointer to a function that will collect sample rows from the table
1795 : : * should be stored to `*func`, plus the estimated size of the table in pages
1796 : : * should br stored to `*totalpages`.
1797 : : */
1798 : : static inline void
15 akorotkov@postgresql 1799 :GNC 6900 : table_relation_analyze(Relation relation, AcquireSampleRowsFunc *func,
1800 : : BlockNumber *totalpages, BufferAccessStrategy bstrategy)
1801 : : {
1802 : 6900 : relation->rd_tableam->relation_analyze(relation, func,
1803 : : totalpages, bstrategy);
1804 : 6900 : }
1805 : :
1806 : : /* ----------------------------------------------------------------------------
1807 : : * Miscellaneous functionality
1808 : : * ----------------------------------------------------------------------------
1809 : : */
1810 : :
1811 : : /*
1812 : : * Return the current size of `rel` in bytes. If `forkNumber` is
1813 : : * InvalidForkNumber, return the relation's overall size, otherwise the size
1814 : : * for the indicated fork.
1815 : : *
1816 : : * Note that the overall size might not be the equivalent of the sum of sizes
1817 : : * for the individual forks for some AMs, e.g. because the AMs storage does
1818 : : * not neatly map onto the builtin types of forks.
1819 : : */
1820 : : static inline uint64
1794 andres@anarazel.de 1821 :CBC 1161522 : table_relation_size(Relation rel, ForkNumber forkNumber)
1822 : : {
1823 : 1161522 : return rel->rd_tableam->relation_size(rel, forkNumber);
1824 : : }
1825 : :
1826 : : /*
1827 : : * table_relation_needs_toast_table - does this relation need a toast table?
1828 : : */
1829 : : static inline bool
1790 rhaas@postgresql.org 1830 : 21755 : table_relation_needs_toast_table(Relation rel)
1831 : : {
1832 : 21755 : return rel->rd_tableam->relation_needs_toast_table(rel);
1833 : : }
1834 : :
1835 : : /*
1836 : : * Return the OID of the AM that should be used to implement the TOAST table
1837 : : * for this relation.
1838 : : */
1839 : : static inline Oid
1559 1840 : 7919 : table_relation_toast_am(Relation rel)
1841 : : {
1842 : 7919 : return rel->rd_tableam->relation_toast_am(rel);
1843 : : }
1844 : :
1845 : : /*
1846 : : * Fetch all or part of a TOAST value from a TOAST table.
1847 : : *
1848 : : * If this AM is never used to implement a TOAST table, then this callback
1849 : : * is not needed. But, if toasted values are ever stored in a table of this
1850 : : * type, then you will need this callback.
1851 : : *
1852 : : * toastrel is the relation in which the toasted value is stored.
1853 : : *
1854 : : * valueid identifies which toast value is to be fetched. For the heap,
1855 : : * this corresponds to the values stored in the chunk_id column.
1856 : : *
1857 : : * attrsize is the total size of the toast value to be fetched.
1858 : : *
1859 : : * sliceoffset is the offset within the toast value of the first byte that
1860 : : * should be fetched.
1861 : : *
1862 : : * slicelength is the number of bytes from the toast value that should be
1863 : : * fetched.
1864 : : *
1865 : : * result is caller-allocated space into which the fetched bytes should be
1866 : : * stored.
1867 : : */
1868 : : static inline void
1869 : 8956 : table_relation_fetch_toast_slice(Relation toastrel, Oid valueid,
1870 : : int32 attrsize, int32 sliceoffset,
1871 : : int32 slicelength, struct varlena *result)
1872 : : {
1557 1873 : 8956 : toastrel->rd_tableam->relation_fetch_toast_slice(toastrel, valueid,
1874 : : attrsize,
1875 : : sliceoffset, slicelength,
1876 : : result);
1559 1877 : 8956 : }
1878 : :
1879 : :
1880 : : /* ----------------------------------------------------------------------------
1881 : : * Planner related functionality
1882 : : * ----------------------------------------------------------------------------
1883 : : */
1884 : :
1885 : : /*
1886 : : * Estimate the current size of the relation, as an AM specific workhorse for
1887 : : * estimate_rel_size(). Look there for an explanation of the parameters.
1888 : : */
1889 : : static inline void
1842 andres@anarazel.de 1890 : 193725 : table_relation_estimate_size(Relation rel, int32 *attr_widths,
1891 : : BlockNumber *pages, double *tuples,
1892 : : double *allvisfrac)
1893 : : {
1894 : 193725 : rel->rd_tableam->relation_estimate_size(rel, attr_widths, pages, tuples,
1895 : : allvisfrac);
1896 : 193725 : }
1897 : :
1898 : :
1899 : : /* ----------------------------------------------------------------------------
1900 : : * Executor related functionality
1901 : : * ----------------------------------------------------------------------------
1902 : : */
1903 : :
1904 : : /*
1905 : : * Prepare to fetch / check / return tuples from `tbmres->blockno` as part of
1906 : : * a bitmap table scan. `scan` needs to have been started via
1907 : : * table_beginscan_bm(). Returns false if there are no tuples to be found on
1908 : : * the page, true otherwise.
1909 : : *
1910 : : * Note, this is an optionally implemented function, therefore should only be
1911 : : * used after verifying the presence (at plan time or such).
1912 : : */
1913 : : static inline bool
1841 1914 : 194650 : table_scan_bitmap_next_block(TableScanDesc scan,
1915 : : struct TBMIterateResult *tbmres)
1916 : : {
1917 : : /*
1918 : : * We don't expect direct calls to table_scan_bitmap_next_block with valid
1919 : : * CheckXidAlive for catalog or regular tables. See detailed comments in
1920 : : * xact.c where these variables are declared.
1921 : : */
1345 akapila@postgresql.o 1922 [ - + - - : 194650 : if (unlikely(TransactionIdIsValid(CheckXidAlive) && !bsysscan))
- + ]
1345 akapila@postgresql.o 1923 [ # # ]:UBC 0 : elog(ERROR, "unexpected table_scan_bitmap_next_block call during logical decoding");
1924 : :
1841 andres@anarazel.de 1925 :CBC 194650 : return scan->rs_rd->rd_tableam->scan_bitmap_next_block(scan,
1926 : : tbmres);
1927 : : }
1928 : :
1929 : : /*
1930 : : * Fetch the next tuple of a bitmap table scan into `slot` and return true if
1931 : : * a visible tuple was found, false otherwise.
1932 : : * table_scan_bitmap_next_block() needs to previously have selected a
1933 : : * block (i.e. returned true), and no previous
1934 : : * table_scan_bitmap_next_tuple() for the same block may have
1935 : : * returned false.
1936 : : */
1937 : : static inline bool
1938 : 3395051 : table_scan_bitmap_next_tuple(TableScanDesc scan,
1939 : : struct TBMIterateResult *tbmres,
1940 : : TupleTableSlot *slot)
1941 : : {
1942 : : /*
1943 : : * We don't expect direct calls to table_scan_bitmap_next_tuple with valid
1944 : : * CheckXidAlive for catalog or regular tables. See detailed comments in
1945 : : * xact.c where these variables are declared.
1946 : : */
1345 akapila@postgresql.o 1947 [ - + - - : 3395051 : if (unlikely(TransactionIdIsValid(CheckXidAlive) && !bsysscan))
- + ]
1345 akapila@postgresql.o 1948 [ # # ]:UBC 0 : elog(ERROR, "unexpected table_scan_bitmap_next_tuple call during logical decoding");
1949 : :
1841 andres@anarazel.de 1950 :CBC 3395051 : return scan->rs_rd->rd_tableam->scan_bitmap_next_tuple(scan,
1951 : : tbmres,
1952 : : slot);
1953 : : }
1954 : :
1955 : : /*
1956 : : * Prepare to fetch tuples from the next block in a sample scan. Returns false
1957 : : * if the sample scan is finished, true otherwise. `scan` needs to have been
1958 : : * started via table_beginscan_sampling().
1959 : : *
1960 : : * This will call the TsmRoutine's NextSampleBlock() callback if necessary
1961 : : * (i.e. NextSampleBlock is not NULL), or perform a sequential scan over the
1962 : : * underlying relation.
1963 : : */
1964 : : static inline bool
1842 1965 : 6454 : table_scan_sample_next_block(TableScanDesc scan,
1966 : : struct SampleScanState *scanstate)
1967 : : {
1968 : : /*
1969 : : * We don't expect direct calls to table_scan_sample_next_block with valid
1970 : : * CheckXidAlive for catalog or regular tables. See detailed comments in
1971 : : * xact.c where these variables are declared.
1972 : : */
1345 akapila@postgresql.o 1973 [ - + - - : 6454 : if (unlikely(TransactionIdIsValid(CheckXidAlive) && !bsysscan))
- + ]
1345 akapila@postgresql.o 1974 [ # # ]:UBC 0 : elog(ERROR, "unexpected table_scan_sample_next_block call during logical decoding");
1842 andres@anarazel.de 1975 :CBC 6454 : return scan->rs_rd->rd_tableam->scan_sample_next_block(scan, scanstate);
1976 : : }
1977 : :
1978 : : /*
1979 : : * Fetch the next sample tuple into `slot` and return true if a visible tuple
1980 : : * was found, false otherwise. table_scan_sample_next_block() needs to
1981 : : * previously have selected a block (i.e. returned true), and no previous
1982 : : * table_scan_sample_next_tuple() for the same block may have returned false.
1983 : : *
1984 : : * This will call the TsmRoutine's NextSampleTuple() callback.
1985 : : */
1986 : : static inline bool
1987 : 126946 : table_scan_sample_next_tuple(TableScanDesc scan,
1988 : : struct SampleScanState *scanstate,
1989 : : TupleTableSlot *slot)
1990 : : {
1991 : : /*
1992 : : * We don't expect direct calls to table_scan_sample_next_tuple with valid
1993 : : * CheckXidAlive for catalog or regular tables. See detailed comments in
1994 : : * xact.c where these variables are declared.
1995 : : */
1345 akapila@postgresql.o 1996 [ - + - - : 126946 : if (unlikely(TransactionIdIsValid(CheckXidAlive) && !bsysscan))
- + ]
1345 akapila@postgresql.o 1997 [ # # ]:UBC 0 : elog(ERROR, "unexpected table_scan_sample_next_tuple call during logical decoding");
1842 andres@anarazel.de 1998 :CBC 126946 : return scan->rs_rd->rd_tableam->scan_sample_next_tuple(scan, scanstate,
1999 : : slot);
2000 : : }
2001 : :
2002 : :
2003 : : /* ----------------------------------------------------------------------------
2004 : : * Functions to make modifications a bit simpler.
2005 : : * ----------------------------------------------------------------------------
2006 : : */
2007 : :
2008 : : extern void simple_table_tuple_insert(Relation rel, TupleTableSlot *slot);
2009 : : extern void simple_table_tuple_delete(Relation rel, ItemPointer tid,
2010 : : Snapshot snapshot);
2011 : : extern void simple_table_tuple_update(Relation rel, ItemPointer otid,
2012 : : TupleTableSlot *slot, Snapshot snapshot,
2013 : : TU_UpdateIndexes *update_indexes);
2014 : :
2015 : :
2016 : : /* ----------------------------------------------------------------------------
2017 : : * Helper functions to implement parallel scans for block oriented AMs.
2018 : : * ----------------------------------------------------------------------------
2019 : : */
2020 : :
2021 : : extern Size table_block_parallelscan_estimate(Relation rel);
2022 : : extern Size table_block_parallelscan_initialize(Relation rel,
2023 : : ParallelTableScanDesc pscan);
2024 : : extern void table_block_parallelscan_reinitialize(Relation rel,
2025 : : ParallelTableScanDesc pscan);
2026 : : extern BlockNumber table_block_parallelscan_nextpage(Relation rel,
2027 : : ParallelBlockTableScanWorker pbscanwork,
2028 : : ParallelBlockTableScanDesc pbscan);
2029 : : extern void table_block_parallelscan_startblock_init(Relation rel,
2030 : : ParallelBlockTableScanWorker pbscanwork,
2031 : : ParallelBlockTableScanDesc pbscan);
2032 : :
2033 : :
2034 : : /* ----------------------------------------------------------------------------
2035 : : * Helper functions to implement relation sizing for block oriented AMs.
2036 : : * ----------------------------------------------------------------------------
2037 : : */
2038 : :
2039 : : extern uint64 table_block_relation_size(Relation rel, ForkNumber forkNumber);
2040 : : extern void table_block_relation_estimate_size(Relation rel,
2041 : : int32 *attr_widths,
2042 : : BlockNumber *pages,
2043 : : double *tuples,
2044 : : double *allvisfrac,
2045 : : Size overhead_bytes_per_tuple,
2046 : : Size usable_bytes_per_page);
2047 : :
2048 : : /* ----------------------------------------------------------------------------
2049 : : * Functions in tableamapi.c
2050 : : * ----------------------------------------------------------------------------
2051 : : */
2052 : :
2053 : : extern const TableAmRoutine *GetTableAmRoutine(Oid amhandler);
2054 : :
2055 : : /* ----------------------------------------------------------------------------
2056 : : * Functions in heapam_handler.c
2057 : : * ----------------------------------------------------------------------------
2058 : : */
2059 : :
2060 : : extern const TableAmRoutine *GetHeapamTableAmRoutine(void);
2061 : :
2062 : : #endif /* TABLEAM_H */
|