Age Owner Branch data TLA Line data Source code
1 : : /*-------------------------------------------------------------------------
2 : : *
3 : : * relnode.c
4 : : * Relation-node lookup/construction routines
5 : : *
6 : : * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
7 : : * Portions Copyright (c) 1994, Regents of the University of California
8 : : *
9 : : *
10 : : * IDENTIFICATION
11 : : * src/backend/optimizer/util/relnode.c
12 : : *
13 : : *-------------------------------------------------------------------------
14 : : */
15 : : #include "postgres.h"
16 : :
17 : : #include <limits.h>
18 : :
19 : : #include "miscadmin.h"
20 : : #include "nodes/nodeFuncs.h"
21 : : #include "optimizer/appendinfo.h"
22 : : #include "optimizer/clauses.h"
23 : : #include "optimizer/cost.h"
24 : : #include "optimizer/inherit.h"
25 : : #include "optimizer/optimizer.h"
26 : : #include "optimizer/pathnode.h"
27 : : #include "optimizer/paths.h"
28 : : #include "optimizer/placeholder.h"
29 : : #include "optimizer/plancat.h"
30 : : #include "optimizer/restrictinfo.h"
31 : : #include "optimizer/tlist.h"
32 : : #include "parser/parse_relation.h"
33 : : #include "rewrite/rewriteManip.h"
34 : : #include "utils/hsearch.h"
35 : : #include "utils/lsyscache.h"
36 : :
37 : :
38 : : typedef struct JoinHashEntry
39 : : {
40 : : Relids join_relids; /* hash key --- MUST BE FIRST */
41 : : RelOptInfo *join_rel;
42 : : } JoinHashEntry;
43 : :
44 : : static void build_joinrel_tlist(PlannerInfo *root, RelOptInfo *joinrel,
45 : : RelOptInfo *input_rel,
46 : : SpecialJoinInfo *sjinfo,
47 : : List *pushed_down_joins,
48 : : bool can_null);
49 : : static List *build_joinrel_restrictlist(PlannerInfo *root,
50 : : RelOptInfo *joinrel,
51 : : RelOptInfo *outer_rel,
52 : : RelOptInfo *inner_rel,
53 : : SpecialJoinInfo *sjinfo);
54 : : static void build_joinrel_joinlist(RelOptInfo *joinrel,
55 : : RelOptInfo *outer_rel,
56 : : RelOptInfo *inner_rel);
57 : : static List *subbuild_joinrel_restrictlist(PlannerInfo *root,
58 : : RelOptInfo *joinrel,
59 : : RelOptInfo *input_rel,
60 : : Relids both_input_relids,
61 : : List *new_restrictlist);
62 : : static List *subbuild_joinrel_joinlist(RelOptInfo *joinrel,
63 : : List *joininfo_list,
64 : : List *new_joininfo);
65 : : static void set_foreign_rel_properties(RelOptInfo *joinrel,
66 : : RelOptInfo *outer_rel, RelOptInfo *inner_rel);
67 : : static void add_join_rel(PlannerInfo *root, RelOptInfo *joinrel);
68 : : static void build_joinrel_partition_info(PlannerInfo *root,
69 : : RelOptInfo *joinrel,
70 : : RelOptInfo *outer_rel, RelOptInfo *inner_rel,
71 : : SpecialJoinInfo *sjinfo,
72 : : List *restrictlist);
73 : : static bool have_partkey_equi_join(PlannerInfo *root, RelOptInfo *joinrel,
74 : : RelOptInfo *rel1, RelOptInfo *rel2,
75 : : JoinType jointype, List *restrictlist);
76 : : static int match_expr_to_partition_keys(Expr *expr, RelOptInfo *rel,
77 : : bool strict_op);
78 : : static void set_joinrel_partition_key_exprs(RelOptInfo *joinrel,
79 : : RelOptInfo *outer_rel, RelOptInfo *inner_rel,
80 : : JoinType jointype);
81 : : static void build_child_join_reltarget(PlannerInfo *root,
82 : : RelOptInfo *parentrel,
83 : : RelOptInfo *childrel,
84 : : int nappinfos,
85 : : AppendRelInfo **appinfos);
86 : :
87 : :
88 : : /*
89 : : * setup_simple_rel_arrays
90 : : * Prepare the arrays we use for quickly accessing base relations
91 : : * and AppendRelInfos.
92 : : */
93 : : void
4607 tgl@sss.pgh.pa.us 94 :CBC 262681 : setup_simple_rel_arrays(PlannerInfo *root)
95 : : {
96 : : int size;
97 : : Index rti;
98 : : ListCell *lc;
99 : :
100 : : /* Arrays are accessed using RT indexes (1..N) */
1710 101 : 262681 : size = list_length(root->parse->rtable) + 1;
102 : 262681 : root->simple_rel_array_size = size;
103 : :
104 : : /*
105 : : * simple_rel_array is initialized to all NULLs, since no RelOptInfos
106 : : * exist yet. It'll be filled by later calls to build_simple_rel().
107 : : */
4607 108 : 262681 : root->simple_rel_array = (RelOptInfo **)
1710 109 : 262681 : palloc0(size * sizeof(RelOptInfo *));
110 : :
111 : : /* simple_rte_array is an array equivalent of the rtable list */
4607 112 : 262681 : root->simple_rte_array = (RangeTblEntry **)
1710 113 : 262681 : palloc0(size * sizeof(RangeTblEntry *));
4607 114 : 262681 : rti = 1;
115 [ + - + + : 685143 : foreach(lc, root->parse->rtable)
+ + ]
116 : : {
117 : 422462 : RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
118 : :
119 : 422462 : root->simple_rte_array[rti++] = rte;
120 : : }
121 : :
122 : : /* append_rel_array is not needed if there are no AppendRelInfos */
2119 alvherre@alvh.no-ip. 123 [ + + ]: 262681 : if (root->append_rel_list == NIL)
124 : : {
125 : 261840 : root->append_rel_array = NULL;
126 : 261840 : return;
127 : : }
128 : :
129 : 841 : root->append_rel_array = (AppendRelInfo **)
130 : 841 : palloc0(size * sizeof(AppendRelInfo *));
131 : :
132 : : /*
133 : : * append_rel_array is filled with any already-existing AppendRelInfos,
134 : : * which currently could only come from UNION ALL flattening. We might
135 : : * add more later during inheritance expansion, but it's the
136 : : * responsibility of the expansion code to update the array properly.
137 : : */
138 [ + - + + : 2915 : foreach(lc, root->append_rel_list)
+ + ]
139 : : {
140 : 2074 : AppendRelInfo *appinfo = lfirst_node(AppendRelInfo, lc);
141 : 2074 : int child_relid = appinfo->child_relid;
142 : :
143 : : /* Sanity check */
144 [ - + ]: 2074 : Assert(child_relid < size);
145 : :
146 [ - + ]: 2074 : if (root->append_rel_array[child_relid])
2119 alvherre@alvh.no-ip. 147 [ # # ]:UBC 0 : elog(ERROR, "child relation already exists");
148 : :
2119 alvherre@alvh.no-ip. 149 :CBC 2074 : root->append_rel_array[child_relid] = appinfo;
150 : : }
151 : : }
152 : :
153 : : /*
154 : : * expand_planner_arrays
155 : : * Expand the PlannerInfo's per-RTE arrays by add_size members
156 : : * and initialize the newly added entries to NULLs
157 : : *
158 : : * Note: this causes the append_rel_array to become allocated even if
159 : : * it was not before. This is okay for current uses, because we only call
160 : : * this when adding child relations, which always have AppendRelInfos.
161 : : */
162 : : void
1842 tgl@sss.pgh.pa.us 163 : 9138 : expand_planner_arrays(PlannerInfo *root, int add_size)
164 : : {
165 : : int new_size;
166 : :
167 [ - + ]: 9138 : Assert(add_size > 0);
168 : :
169 : 9138 : new_size = root->simple_rel_array_size + add_size;
170 : :
519 peter@eisentraut.org 171 : 9138 : root->simple_rel_array =
172 : 9138 : repalloc0_array(root->simple_rel_array, RelOptInfo *, root->simple_rel_array_size, new_size);
173 : :
174 : 9138 : root->simple_rte_array =
175 : 9138 : repalloc0_array(root->simple_rte_array, RangeTblEntry *, root->simple_rel_array_size, new_size);
176 : :
1842 tgl@sss.pgh.pa.us 177 [ + + ]: 9138 : if (root->append_rel_array)
519 peter@eisentraut.org 178 : 2527 : root->append_rel_array =
179 : 2527 : repalloc0_array(root->append_rel_array, AppendRelInfo *, root->simple_rel_array_size, new_size);
180 : : else
181 : 6611 : root->append_rel_array =
182 : 6611 : palloc0_array(AppendRelInfo *, new_size);
183 : :
1842 tgl@sss.pgh.pa.us 184 : 9138 : root->simple_rel_array_size = new_size;
185 : 9138 : }
186 : :
187 : : /*
188 : : * build_simple_rel
189 : : * Construct a new RelOptInfo for a base relation or 'other' relation.
190 : : */
191 : : RelOptInfo *
2568 rhaas@postgresql.org 192 : 349909 : build_simple_rel(PlannerInfo *root, int relid, RelOptInfo *parent)
193 : : {
194 : : RelOptInfo *rel;
195 : : RangeTblEntry *rte;
196 : :
197 : : /* Rel should not exist already */
6203 tgl@sss.pgh.pa.us 198 [ + - - + ]: 349909 : Assert(relid > 0 && relid < root->simple_rel_array_size);
6648 199 [ - + ]: 349909 : if (root->simple_rel_array[relid] != NULL)
6648 tgl@sss.pgh.pa.us 200 [ # # ]:UBC 0 : elog(ERROR, "rel %d already exists", relid);
201 : :
202 : : /* Fetch RTE for relation */
6203 tgl@sss.pgh.pa.us 203 :CBC 349909 : rte = root->simple_rte_array[relid];
204 [ - + ]: 349909 : Assert(rte != NULL);
205 : :
6648 206 : 349909 : rel = makeNode(RelOptInfo);
2568 rhaas@postgresql.org 207 [ + + ]: 349909 : rel->reloptkind = parent ? RELOPT_OTHER_MEMBER_REL : RELOPT_BASEREL;
7736 tgl@sss.pgh.pa.us 208 : 349909 : rel->relids = bms_make_singleton(relid);
8833 209 : 349909 : rel->rows = 0;
210 : : /* cheap startup cost is interesting iff not all tuples to be retrieved */
4243 211 : 349909 : rel->consider_startup = (root->tuple_fraction > 0);
2489 212 : 349909 : rel->consider_param_startup = false; /* might get changed later */
213 : 349909 : rel->consider_parallel = false; /* might get changed later */
2953 214 : 349909 : rel->reltarget = create_empty_pathtarget();
8833 215 : 349909 : rel->pathlist = NIL;
4378 216 : 349909 : rel->ppilist = NIL;
3007 rhaas@postgresql.org 217 : 349909 : rel->partial_pathlist = NIL;
8825 tgl@sss.pgh.pa.us 218 : 349909 : rel->cheapest_startup_path = NULL;
219 : 349909 : rel->cheapest_total_path = NULL;
7755 220 : 349909 : rel->cheapest_unique_path = NULL;
4461 221 : 349909 : rel->cheapest_parameterized_paths = NIL;
7736 222 : 349909 : rel->relid = relid;
8008 223 : 349909 : rel->rtekind = rte->rtekind;
224 : : /* min_attr, max_attr, attr_needed, attr_widths are set below */
82 drowley@postgresql.o 225 :GNC 349909 : rel->notnullattnums = NULL;
4249 tgl@sss.pgh.pa.us 226 :CBC 349909 : rel->lateral_vars = NIL;
8365 227 : 349909 : rel->indexlist = NIL;
2564 228 : 349909 : rel->statlist = NIL;
8833 229 : 349909 : rel->pages = 0;
230 : 349909 : rel->tuples = 0;
4566 231 : 349909 : rel->allvisfrac = 0;
1729 drowley@postgresql.o 232 : 349909 : rel->eclass_indexes = NULL;
4607 tgl@sss.pgh.pa.us 233 : 349909 : rel->subroot = NULL;
4239 234 : 349909 : rel->subplan_params = NIL;
2489 235 : 349909 : rel->rel_parallel_workers = -1; /* set up in get_relation_info */
1142 drowley@postgresql.o 236 : 349909 : rel->amflags = 0;
3262 tgl@sss.pgh.pa.us 237 : 349909 : rel->serverid = InvalidOid;
495 alvherre@alvh.no-ip. 238 [ + + ]: 349909 : if (rte->rtekind == RTE_RELATION)
239 : : {
419 240 [ + + + + : 205471 : Assert(parent == NULL ||
- + ]
241 : : parent->rtekind == RTE_RELATION ||
242 : : parent->rtekind == RTE_SUBQUERY);
243 : :
244 : : /*
245 : : * For any RELATION rte, we need a userid with which to check
246 : : * permission access. Baserels simply use their own
247 : : * RTEPermissionInfo's checkAsUser.
248 : : *
249 : : * For otherrels normally there's no RTEPermissionInfo, so we use the
250 : : * parent's, which normally has one. The exceptional case is that the
251 : : * parent is a subquery, in which case the otherrel will have its own.
252 : : */
253 [ + + ]: 205471 : if (rel->reloptkind == RELOPT_BASEREL ||
254 [ + - ]: 19805 : (rel->reloptkind == RELOPT_OTHER_MEMBER_REL &&
255 [ + + ]: 19805 : parent->rtekind == RTE_SUBQUERY))
495 256 : 186173 : {
257 : : RTEPermissionInfo *perminfo;
258 : :
259 : 186173 : perminfo = getRTEPermissionInfo(root->parse->rteperminfos, rte);
260 : 186173 : rel->userid = perminfo->checkAsUser;
261 : : }
262 : : else
263 : 19298 : rel->userid = parent->userid;
264 : : }
265 : : else
266 : 144438 : rel->userid = InvalidOid;
2830 tgl@sss.pgh.pa.us 267 : 349909 : rel->useridiscurrent = false;
4419 268 : 349909 : rel->fdwroutine = NULL;
269 : 349909 : rel->fdw_private = NULL;
2564 270 : 349909 : rel->unique_for_rels = NIL;
271 : 349909 : rel->non_unique_for_rels = NIL;
8833 272 : 349909 : rel->baserestrictinfo = NIL;
7763 273 : 349909 : rel->baserestrictcost.startup = 0;
274 : 349909 : rel->baserestrictcost.per_tuple = 0;
2643 275 : 349909 : rel->baserestrict_min_security = UINT_MAX;
8833 276 : 349909 : rel->joininfo = NIL;
6294 277 : 349909 : rel->has_eclass_joins = false;
1903 278 : 349909 : rel->consider_partitionwise_join = false; /* might get changed later */
2398 rhaas@postgresql.org 279 : 349909 : rel->part_scheme = NULL;
1467 efujita@postgresql.o 280 : 349909 : rel->nparts = -1;
2398 rhaas@postgresql.org 281 : 349909 : rel->boundinfo = NULL;
1467 efujita@postgresql.o 282 : 349909 : rel->partbounds_merged = false;
2200 alvherre@alvh.no-ip. 283 : 349909 : rel->partition_qual = NIL;
2398 rhaas@postgresql.org 284 : 349909 : rel->part_rels = NULL;
985 drowley@postgresql.o 285 : 349909 : rel->live_parts = NULL;
1467 efujita@postgresql.o 286 : 349909 : rel->all_partrels = NULL;
2398 rhaas@postgresql.org 287 : 349909 : rel->partexprs = NULL;
2382 288 : 349909 : rel->nullable_partexprs = NULL;
289 : :
290 : : /*
291 : : * Pass assorted information down the inheritance hierarchy.
292 : : */
2568 293 [ + + ]: 349909 : if (parent)
294 : : {
295 : : /* We keep back-links to immediate parent and topmost parent. */
605 tgl@sss.pgh.pa.us 296 : 21372 : rel->parent = parent;
297 [ + + ]: 21372 : rel->top_parent = parent->top_parent ? parent->top_parent : parent;
298 : 21372 : rel->top_parent_relids = rel->top_parent->relids;
299 : :
300 : : /*
301 : : * A child rel is below the same outer joins as its parent. (We
302 : : * presume this info was already calculated for the parent.)
303 : : */
440 304 : 21372 : rel->nulling_relids = parent->nulling_relids;
305 : :
306 : : /*
307 : : * Also propagate lateral-reference information from appendrel parent
308 : : * rels to their child rels. We intentionally give each child rel the
309 : : * same minimum parameterization, even though it's quite possible that
310 : : * some don't reference all the lateral rels. This is because any
311 : : * append path for the parent will have to have the same
312 : : * parameterization for every child anyway, and there's no value in
313 : : * forcing extra reparameterize_path() calls. Similarly, a lateral
314 : : * reference to the parent prevents use of otherwise-movable join rels
315 : : * for each child.
316 : : *
317 : : * It's possible for child rels to have their own children, in which
318 : : * case the topmost parent's lateral info propagates all the way down.
319 : : */
1846 320 : 21372 : rel->direct_lateral_relids = parent->direct_lateral_relids;
321 : 21372 : rel->lateral_relids = parent->lateral_relids;
322 : 21372 : rel->lateral_referencers = parent->lateral_referencers;
323 : : }
324 : : else
325 : : {
605 326 : 328537 : rel->parent = NULL;
327 : 328537 : rel->top_parent = NULL;
2568 rhaas@postgresql.org 328 : 328537 : rel->top_parent_relids = NULL;
440 tgl@sss.pgh.pa.us 329 : 328537 : rel->nulling_relids = NULL;
1846 330 : 328537 : rel->direct_lateral_relids = NULL;
331 : 328537 : rel->lateral_relids = NULL;
332 : 328537 : rel->lateral_referencers = NULL;
333 : : }
334 : :
335 : : /* Check type of rtable entry */
8069 336 [ + + + - ]: 349909 : switch (rte->rtekind)
337 : : {
338 : 205471 : case RTE_RELATION:
339 : : /* Table --- retrieve statistics from the system catalogs */
6417 340 : 205471 : get_relation_info(root, rte->relid, rte->inh, rel);
7741 341 : 205464 : break;
8069 342 : 39444 : case RTE_SUBQUERY:
343 : : case RTE_FUNCTION:
344 : : case RTE_TABLEFUNC:
345 : : case RTE_VALUES:
346 : : case RTE_CTE:
347 : : case RTE_NAMEDTUPLESTORE:
348 : :
349 : : /*
350 : : * Subquery, function, tablefunc, values list, CTE, or ENR --- set
351 : : * up attr range and arrays
352 : : *
353 : : * Note: 0 is included in range to support whole-row Vars
354 : : */
7433 355 : 39444 : rel->min_attr = 0;
7259 neilc@samurai.com 356 : 39444 : rel->max_attr = list_length(rte->eref->colnames);
7074 tgl@sss.pgh.pa.us 357 : 39444 : rel->attr_needed = (Relids *)
358 : 39444 : palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(Relids));
359 : 39444 : rel->attr_widths = (int32 *)
360 : 39444 : palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(int32));
8069 361 : 39444 : break;
1903 362 : 104994 : case RTE_RESULT:
363 : : /* RTE_RESULT has no columns, nor could it have whole-row Var */
364 : 104994 : rel->min_attr = 0;
365 : 104994 : rel->max_attr = -1;
366 : 104994 : rel->attr_needed = NULL;
367 : 104994 : rel->attr_widths = NULL;
368 : 104994 : break;
8069 tgl@sss.pgh.pa.us 369 :UBC 0 : default:
7569 370 [ # # ]: 0 : elog(ERROR, "unrecognized RTE kind: %d",
371 : : (int) rte->rtekind);
372 : : break;
373 : : }
374 : :
375 : : /*
376 : : * We must apply the partially filled in RelOptInfo before calling
377 : : * apply_child_basequals due to some transformations within that function
378 : : * which require the RelOptInfo to be available in the simple_rel_array.
379 : : */
2 drowley@postgresql.o 380 :GNC 349902 : root->simple_rel_array[relid] = rel;
381 : :
382 : : /*
383 : : * Apply the parent's quals to the child, with appropriate substitution of
384 : : * variables. If the resulting clause is constant-FALSE or NULL after
385 : : * applying transformations, apply_child_basequals returns false to
386 : : * indicate that scanning this relation won't yield any rows. In this
387 : : * case, we mark the child as dummy right away. (We must do this
388 : : * immediately so that pruning works correctly when recursing in
389 : : * expand_partitioned_rtentry.)
390 : : */
1842 tgl@sss.pgh.pa.us 391 [ + + ]:CBC 349902 : if (parent)
392 : : {
393 : 21372 : AppendRelInfo *appinfo = root->append_rel_array[relid];
394 : :
395 [ - + ]: 21372 : Assert(appinfo != NULL);
396 [ + + ]: 21372 : if (!apply_child_basequals(root, parent, rel, rte, appinfo))
397 : : {
398 : : /*
399 : : * Restriction clause reduced to constant FALSE or NULL. Mark as
400 : : * dummy so we won't scan this relation.
401 : : */
402 : 45 : mark_dummy_rel(rel);
403 : : }
404 : : }
405 : :
406 : 349902 : return rel;
407 : : }
408 : :
409 : : /*
410 : : * find_base_rel
411 : : * Find a base or otherrel relation entry, which must already exist.
412 : : */
413 : : RelOptInfo *
6888 414 : 2735110 : find_base_rel(PlannerInfo *root, int relid)
415 : : {
416 : : RelOptInfo *rel;
417 : :
418 : : /* use an unsigned comparison to prevent negative array element access */
198 drowley@postgresql.o 419 [ + - ]:GNC 2735110 : if ((uint32) relid < (uint32) root->simple_rel_array_size)
420 : : {
6648 tgl@sss.pgh.pa.us 421 :CBC 2735110 : rel = root->simple_rel_array[relid];
6887 422 [ + - ]: 2735110 : if (rel)
8365 423 : 2735110 : return rel;
424 : : }
425 : :
7569 tgl@sss.pgh.pa.us 426 [ # # ]:UBC 0 : elog(ERROR, "no relation entry for relid %d", relid);
427 : :
428 : : return NULL; /* keep compiler quiet */
429 : : }
430 : :
431 : : /*
432 : : * find_base_rel_noerr
433 : : * Find a base or otherrel relation entry, returning NULL if there's none
434 : : */
435 : : RelOptInfo *
97 tgl@sss.pgh.pa.us 436 :GNC 621575 : find_base_rel_noerr(PlannerInfo *root, int relid)
437 : : {
438 : : /* use an unsigned comparison to prevent negative array element access */
439 [ + - ]: 621575 : if ((uint32) relid < (uint32) root->simple_rel_array_size)
440 : 621575 : return root->simple_rel_array[relid];
97 tgl@sss.pgh.pa.us 441 :UNC 0 : return NULL;
442 : : }
443 : :
444 : : /*
445 : : * find_base_rel_ignore_join
446 : : * Find a base or otherrel relation entry, which must already exist.
447 : : *
448 : : * Unlike find_base_rel, if relid references an outer join then this
449 : : * will return NULL rather than raising an error. This is convenient
450 : : * for callers that must deal with relid sets including both base and
451 : : * outer joins.
452 : : */
453 : : RelOptInfo *
440 tgl@sss.pgh.pa.us 454 :CBC 82828 : find_base_rel_ignore_join(PlannerInfo *root, int relid)
455 : : {
456 : : /* use an unsigned comparison to prevent negative array element access */
198 drowley@postgresql.o 457 [ + - ]:GNC 82828 : if ((uint32) relid < (uint32) root->simple_rel_array_size)
458 : : {
459 : : RelOptInfo *rel;
460 : : RangeTblEntry *rte;
461 : :
440 tgl@sss.pgh.pa.us 462 :CBC 82828 : rel = root->simple_rel_array[relid];
463 [ + + ]: 82828 : if (rel)
464 : 76545 : return rel;
465 : :
466 : : /*
467 : : * We could just return NULL here, but for debugging purposes it seems
468 : : * best to actually verify that the relid is an outer join and not
469 : : * something weird.
470 : : */
471 : 6283 : rte = root->simple_rte_array[relid];
472 [ + - + - : 6283 : if (rte && rte->rtekind == RTE_JOIN && rte->jointype != JOIN_INNER)
+ - ]
473 : 6283 : return NULL;
474 : : }
475 : :
440 tgl@sss.pgh.pa.us 476 [ # # ]:UBC 0 : elog(ERROR, "no relation entry for relid %d", relid);
477 : :
478 : : return NULL; /* keep compiler quiet */
479 : : }
480 : :
481 : : /*
482 : : * build_join_rel_hash
483 : : * Construct the auxiliary hash table for join relations.
484 : : */
485 : : static void
6885 tgl@sss.pgh.pa.us 486 :CBC 19 : build_join_rel_hash(PlannerInfo *root)
487 : : {
488 : : HTAB *hashtab;
489 : : HASHCTL hash_ctl;
490 : : ListCell *l;
491 : :
492 : : /* Create the hash table */
493 : 19 : hash_ctl.keysize = sizeof(Relids);
494 : 19 : hash_ctl.entrysize = sizeof(JoinHashEntry);
495 : 19 : hash_ctl.hash = bitmap_hash;
496 : 19 : hash_ctl.match = bitmap_match;
497 : 19 : hash_ctl.hcxt = CurrentMemoryContext;
498 : 19 : hashtab = hash_create("JoinRelHashTable",
499 : : 256L,
500 : : &hash_ctl,
501 : : HASH_ELEM | HASH_FUNCTION | HASH_COMPARE | HASH_CONTEXT);
502 : :
503 : : /* Insert all the already-existing joinrels */
504 [ + - + + : 646 : foreach(l, root->join_rel_list)
+ + ]
505 : : {
506 : 627 : RelOptInfo *rel = (RelOptInfo *) lfirst(l);
507 : : JoinHashEntry *hentry;
508 : : bool found;
509 : :
510 : 627 : hentry = (JoinHashEntry *) hash_search(hashtab,
511 : 627 : &(rel->relids),
512 : : HASH_ENTER,
513 : : &found);
514 [ - + ]: 627 : Assert(!found);
515 : 627 : hentry->join_rel = rel;
516 : : }
517 : :
518 : 19 : root->join_rel_hash = hashtab;
519 : 19 : }
520 : :
521 : : /*
522 : : * find_join_rel
523 : : * Returns relation entry corresponding to 'relids' (a set of RT indexes),
524 : : * or NULL if none exists. This is for join relations.
525 : : */
526 : : RelOptInfo *
6888 527 : 141762 : find_join_rel(PlannerInfo *root, Relids relids)
528 : : {
529 : : /*
530 : : * Switch to using hash lookup when list grows "too long". The threshold
531 : : * is arbitrary and is known only here.
532 : : */
6885 533 [ + + + + ]: 141762 : if (!root->join_rel_hash && list_length(root->join_rel_list) > 32)
534 : 19 : build_join_rel_hash(root);
535 : :
536 : : /*
537 : : * Use either hashtable lookup or linear search, as appropriate.
538 : : *
539 : : * Note: the seemingly redundant hashkey variable is used to avoid taking
540 : : * the address of relids; unless the compiler is exceedingly smart, doing
541 : : * so would force relids out of a register and thus probably slow down the
542 : : * list-search case.
543 : : */
544 [ + + ]: 141762 : if (root->join_rel_hash)
545 : : {
546 : 1812 : Relids hashkey = relids;
547 : : JoinHashEntry *hentry;
548 : :
549 : 1812 : hentry = (JoinHashEntry *) hash_search(root->join_rel_hash,
550 : : &hashkey,
551 : : HASH_FIND,
552 : : NULL);
553 [ + + ]: 1812 : if (hentry)
554 : 1602 : return hentry->join_rel;
555 : : }
556 : : else
557 : : {
558 : : ListCell *l;
559 : :
560 [ + + + + : 852352 : foreach(l, root->join_rel_list)
+ + ]
561 : : {
562 : 760091 : RelOptInfo *rel = (RelOptInfo *) lfirst(l);
563 : :
564 [ + + ]: 760091 : if (bms_equal(rel->relids, relids))
565 : 47689 : return rel;
566 : : }
567 : : }
568 : :
8833 569 : 92471 : return NULL;
570 : : }
571 : :
572 : : /*
573 : : * set_foreign_rel_properties
574 : : * Set up foreign-join fields if outer and inner relation are foreign
575 : : * tables (or joins) belonging to the same server and assigned to the same
576 : : * user to check access permissions as.
577 : : *
578 : : * In addition to an exact match of userid, we allow the case where one side
579 : : * has zero userid (implying current user) and the other side has explicit
580 : : * userid that happens to equal the current user; but in that case, pushdown of
581 : : * the join is only valid for the current user. The useridiscurrent field
582 : : * records whether we had to make such an assumption for this join or any
583 : : * sub-join.
584 : : *
585 : : * Otherwise these fields are left invalid, so GetForeignJoinPaths will not be
586 : : * called for the join relation.
587 : : */
588 : : static void
2588 rhaas@postgresql.org 589 : 90893 : set_foreign_rel_properties(RelOptInfo *joinrel, RelOptInfo *outer_rel,
590 : : RelOptInfo *inner_rel)
591 : : {
592 [ + + ]: 90893 : if (OidIsValid(outer_rel->serverid) &&
593 [ + + ]: 410 : inner_rel->serverid == outer_rel->serverid)
594 : : {
595 [ + + ]: 374 : if (inner_rel->userid == outer_rel->userid)
596 : : {
597 : 368 : joinrel->serverid = outer_rel->serverid;
598 : 368 : joinrel->userid = outer_rel->userid;
599 [ + - - + ]: 368 : joinrel->useridiscurrent = outer_rel->useridiscurrent || inner_rel->useridiscurrent;
600 : 368 : joinrel->fdwroutine = outer_rel->fdwroutine;
601 : : }
602 [ + + + + ]: 10 : else if (!OidIsValid(inner_rel->userid) &&
603 : 4 : outer_rel->userid == GetUserId())
604 : : {
605 : 2 : joinrel->serverid = outer_rel->serverid;
606 : 2 : joinrel->userid = outer_rel->userid;
607 : 2 : joinrel->useridiscurrent = true;
608 : 2 : joinrel->fdwroutine = outer_rel->fdwroutine;
609 : : }
610 [ - + - - ]: 4 : else if (!OidIsValid(outer_rel->userid) &&
2588 rhaas@postgresql.org 611 :UBC 0 : inner_rel->userid == GetUserId())
612 : : {
613 : 0 : joinrel->serverid = outer_rel->serverid;
614 : 0 : joinrel->userid = inner_rel->userid;
615 : 0 : joinrel->useridiscurrent = true;
616 : 0 : joinrel->fdwroutine = outer_rel->fdwroutine;
617 : : }
618 : : }
2588 rhaas@postgresql.org 619 :CBC 90893 : }
620 : :
621 : : /*
622 : : * add_join_rel
623 : : * Add given join relation to the list of join relations in the given
624 : : * PlannerInfo. Also add it to the auxiliary hashtable if there is one.
625 : : */
626 : : static void
627 : 90893 : add_join_rel(PlannerInfo *root, RelOptInfo *joinrel)
628 : : {
629 : : /* GEQO requires us to append the new joinrel to the end of the list! */
630 : 90893 : root->join_rel_list = lappend(root->join_rel_list, joinrel);
631 : :
632 : : /* store it into the auxiliary hashtable if there is one. */
633 [ + + ]: 90893 : if (root->join_rel_hash)
634 : : {
635 : : JoinHashEntry *hentry;
636 : : bool found;
637 : :
638 : 210 : hentry = (JoinHashEntry *) hash_search(root->join_rel_hash,
639 : 210 : &(joinrel->relids),
640 : : HASH_ENTER,
641 : : &found);
642 [ - + ]: 210 : Assert(!found);
643 : 210 : hentry->join_rel = joinrel;
644 : : }
645 : 90893 : }
646 : :
647 : : /*
648 : : * build_join_rel
649 : : * Returns relation entry corresponding to the union of two given rels,
650 : : * creating a new relation entry if none already exists.
651 : : *
652 : : * 'joinrelids' is the Relids set that uniquely identifies the join
653 : : * 'outer_rel' and 'inner_rel' are relation nodes for the relations to be
654 : : * joined
655 : : * 'sjinfo': join context info
656 : : * 'pushed_down_joins': any pushed-down outer joins that are now completed
657 : : * 'restrictlist_ptr': result variable. If not NULL, *restrictlist_ptr
658 : : * receives the list of RestrictInfo nodes that apply to this
659 : : * particular pair of joinable relations.
660 : : *
661 : : * restrictlist_ptr makes the routine's API a little grotty, but it saves
662 : : * duplicated calculation of the restrictlist...
663 : : */
664 : : RelOptInfo *
6888 tgl@sss.pgh.pa.us 665 : 136752 : build_join_rel(PlannerInfo *root,
666 : : Relids joinrelids,
667 : : RelOptInfo *outer_rel,
668 : : RelOptInfo *inner_rel,
669 : : SpecialJoinInfo *sjinfo,
670 : : List *pushed_down_joins,
671 : : List **restrictlist_ptr)
672 : : {
673 : : RelOptInfo *joinrel;
674 : : List *restrictlist;
675 : :
676 : : /* This function should be used only for join between parents. */
2382 rhaas@postgresql.org 677 [ + - + - : 136752 : Assert(!IS_OTHER_REL(outer_rel) && !IS_OTHER_REL(inner_rel));
+ - + - +
- - + ]
678 : :
679 : : /*
680 : : * See if we already have a joinrel for this set of base rels.
681 : : */
8833 tgl@sss.pgh.pa.us 682 : 136752 : joinrel = find_join_rel(root, joinrelids);
683 : :
684 [ + + ]: 136752 : if (joinrel)
685 : : {
686 : : /*
687 : : * Yes, so we only need to figure the restrictlist for this particular
688 : : * pair of component relations.
689 : : */
690 [ + - ]: 48171 : if (restrictlist_ptr)
8214 691 : 48171 : *restrictlist_ptr = build_joinrel_restrictlist(root,
692 : : joinrel,
693 : : outer_rel,
694 : : inner_rel,
695 : : sjinfo);
8833 696 : 48171 : return joinrel;
697 : : }
698 : :
699 : : /*
700 : : * Nope, so make one.
701 : : */
702 : 88581 : joinrel = makeNode(RelOptInfo);
8069 703 : 88581 : joinrel->reloptkind = RELOPT_JOINREL;
7736 704 : 88581 : joinrel->relids = bms_copy(joinrelids);
8833 705 : 88581 : joinrel->rows = 0;
706 : : /* cheap startup cost is interesting iff not all tuples to be retrieved */
4243 707 : 88581 : joinrel->consider_startup = (root->tuple_fraction > 0);
3238 708 : 88581 : joinrel->consider_param_startup = false;
3077 rhaas@postgresql.org 709 : 88581 : joinrel->consider_parallel = false;
2953 tgl@sss.pgh.pa.us 710 : 88581 : joinrel->reltarget = create_empty_pathtarget();
8833 711 : 88581 : joinrel->pathlist = NIL;
4378 712 : 88581 : joinrel->ppilist = NIL;
3007 rhaas@postgresql.org 713 : 88581 : joinrel->partial_pathlist = NIL;
8825 tgl@sss.pgh.pa.us 714 : 88581 : joinrel->cheapest_startup_path = NULL;
715 : 88581 : joinrel->cheapest_total_path = NULL;
7755 716 : 88581 : joinrel->cheapest_unique_path = NULL;
4461 717 : 88581 : joinrel->cheapest_parameterized_paths = NIL;
718 : : /* init direct_lateral_relids from children; we'll finish it up below */
3047 719 : 88581 : joinrel->direct_lateral_relids =
720 : 88581 : bms_union(outer_rel->direct_lateral_relids,
721 : 88581 : inner_rel->direct_lateral_relids);
722 : 88581 : joinrel->lateral_relids = min_join_parameterization(root, joinrel->relids,
723 : : outer_rel, inner_rel);
7736 724 : 88581 : joinrel->relid = 0; /* indicates not a baserel */
8008 725 : 88581 : joinrel->rtekind = RTE_JOIN;
7595 726 : 88581 : joinrel->min_attr = 0;
727 : 88581 : joinrel->max_attr = 0;
728 : 88581 : joinrel->attr_needed = NULL;
729 : 88581 : joinrel->attr_widths = NULL;
82 drowley@postgresql.o 730 :GNC 88581 : joinrel->notnullattnums = NULL;
440 tgl@sss.pgh.pa.us 731 :CBC 88581 : joinrel->nulling_relids = NULL;
4249 732 : 88581 : joinrel->lateral_vars = NIL;
3893 733 : 88581 : joinrel->lateral_referencers = NULL;
8365 734 : 88581 : joinrel->indexlist = NIL;
2564 735 : 88581 : joinrel->statlist = NIL;
8833 736 : 88581 : joinrel->pages = 0;
737 : 88581 : joinrel->tuples = 0;
4566 738 : 88581 : joinrel->allvisfrac = 0;
1729 drowley@postgresql.o 739 : 88581 : joinrel->eclass_indexes = NULL;
4607 tgl@sss.pgh.pa.us 740 : 88581 : joinrel->subroot = NULL;
4239 741 : 88581 : joinrel->subplan_params = NIL;
2830 742 : 88581 : joinrel->rel_parallel_workers = -1;
1142 drowley@postgresql.o 743 : 88581 : joinrel->amflags = 0;
3262 tgl@sss.pgh.pa.us 744 : 88581 : joinrel->serverid = InvalidOid;
2830 745 : 88581 : joinrel->userid = InvalidOid;
746 : 88581 : joinrel->useridiscurrent = false;
4419 747 : 88581 : joinrel->fdwroutine = NULL;
748 : 88581 : joinrel->fdw_private = NULL;
2564 749 : 88581 : joinrel->unique_for_rels = NIL;
750 : 88581 : joinrel->non_unique_for_rels = NIL;
8833 751 : 88581 : joinrel->baserestrictinfo = NIL;
7763 752 : 88581 : joinrel->baserestrictcost.startup = 0;
753 : 88581 : joinrel->baserestrictcost.per_tuple = 0;
2643 754 : 88581 : joinrel->baserestrict_min_security = UINT_MAX;
8833 755 : 88581 : joinrel->joininfo = NIL;
6294 756 : 88581 : joinrel->has_eclass_joins = false;
1903 757 : 88581 : joinrel->consider_partitionwise_join = false; /* might get changed later */
605 758 : 88581 : joinrel->parent = NULL;
759 : 88581 : joinrel->top_parent = NULL;
2568 rhaas@postgresql.org 760 : 88581 : joinrel->top_parent_relids = NULL;
2398 761 : 88581 : joinrel->part_scheme = NULL;
1467 efujita@postgresql.o 762 : 88581 : joinrel->nparts = -1;
2398 rhaas@postgresql.org 763 : 88581 : joinrel->boundinfo = NULL;
1467 efujita@postgresql.o 764 : 88581 : joinrel->partbounds_merged = false;
2200 alvherre@alvh.no-ip. 765 : 88581 : joinrel->partition_qual = NIL;
2398 rhaas@postgresql.org 766 : 88581 : joinrel->part_rels = NULL;
985 drowley@postgresql.o 767 : 88581 : joinrel->live_parts = NULL;
1467 efujita@postgresql.o 768 : 88581 : joinrel->all_partrels = NULL;
2398 rhaas@postgresql.org 769 : 88581 : joinrel->partexprs = NULL;
2382 770 : 88581 : joinrel->nullable_partexprs = NULL;
771 : :
772 : : /* Compute information relevant to the foreign relations. */
2588 773 : 88581 : set_foreign_rel_properties(joinrel, outer_rel, inner_rel);
774 : :
775 : : /*
776 : : * Fill the joinrel's tlist with just the Vars and PHVs that need to be
777 : : * output from this join (ie, are needed for higher joinclauses or final
778 : : * output).
779 : : *
780 : : * NOTE: the tlist order for a join rel will depend on which pair of outer
781 : : * and inner rels we first try to build it from. But the contents should
782 : : * be the same regardless.
783 : : */
333 tgl@sss.pgh.pa.us 784 : 88581 : build_joinrel_tlist(root, joinrel, outer_rel, sjinfo, pushed_down_joins,
440 785 : 88581 : (sjinfo->jointype == JOIN_FULL));
333 786 : 88581 : build_joinrel_tlist(root, joinrel, inner_rel, sjinfo, pushed_down_joins,
440 787 : 88581 : (sjinfo->jointype != JOIN_INNER));
788 : 88581 : add_placeholders_to_joinrel(root, joinrel, outer_rel, inner_rel, sjinfo);
789 : :
790 : : /*
791 : : * add_placeholders_to_joinrel also took care of adding the ph_lateral
792 : : * sets of any PlaceHolderVars computed here to direct_lateral_relids, so
793 : : * now we can finish computing that. This is much like the computation of
794 : : * the transitively-closed lateral_relids in min_join_parameterization,
795 : : * except that here we *do* have to consider the added PHVs.
796 : : */
3047 797 : 88581 : joinrel->direct_lateral_relids =
798 : 88581 : bms_del_members(joinrel->direct_lateral_relids, joinrel->relids);
799 : :
800 : : /*
801 : : * Construct restrict and join clause lists for the new joinrel. (The
802 : : * caller might or might not need the restrictlist, but I need it anyway
803 : : * for set_joinrel_size_estimates().)
804 : : */
6294 805 : 88581 : restrictlist = build_joinrel_restrictlist(root, joinrel,
806 : : outer_rel, inner_rel,
807 : : sjinfo);
8833 808 [ + - ]: 88581 : if (restrictlist_ptr)
809 : 88581 : *restrictlist_ptr = restrictlist;
810 : 88581 : build_joinrel_joinlist(joinrel, outer_rel, inner_rel);
811 : :
812 : : /*
813 : : * This is also the right place to check whether the joinrel has any
814 : : * pending EquivalenceClass joins.
815 : : */
6294 816 : 88581 : joinrel->has_eclass_joins = has_relevant_eclass_joinclause(root, joinrel);
817 : :
818 : : /* Store the partition information. */
440 819 : 88581 : build_joinrel_partition_info(root, joinrel, outer_rel, inner_rel, sjinfo,
820 : : restrictlist);
821 : :
822 : : /*
823 : : * Set estimates of the joinrel's size.
824 : : */
8833 825 : 88581 : set_joinrel_size_estimates(root, joinrel, outer_rel, inner_rel,
826 : : sjinfo, restrictlist);
827 : :
828 : : /*
829 : : * Set the consider_parallel flag if this joinrel could potentially be
830 : : * scanned within a parallel worker. If this flag is false for either
831 : : * inner_rel or outer_rel, then it must be false for the joinrel also.
832 : : * Even if both are true, there might be parallel-restricted expressions
833 : : * in the targetlist or quals.
834 : : *
835 : : * Note that if there are more than two rels in this relation, they could
836 : : * be divided between inner_rel and outer_rel in any arbitrary way. We
837 : : * assume this doesn't matter, because we should hit all the same baserels
838 : : * and joinclauses while building up to this joinrel no matter which we
839 : : * take; therefore, we should make the same decision here however we get
840 : : * here.
841 : : */
3077 rhaas@postgresql.org 842 [ + + + + : 162066 : if (inner_rel->consider_parallel && outer_rel->consider_parallel &&
+ + ]
2795 tgl@sss.pgh.pa.us 843 [ + + ]: 146758 : is_parallel_safe(root, (Node *) restrictlist) &&
844 : 73273 : is_parallel_safe(root, (Node *) joinrel->reltarget->exprs))
3077 rhaas@postgresql.org 845 : 73270 : joinrel->consider_parallel = true;
846 : :
847 : : /* Add the joinrel to the PlannerInfo. */
2588 848 : 88581 : add_join_rel(root, joinrel);
849 : :
850 : : /*
851 : : * Also, if dynamic-programming join search is active, add the new joinrel
852 : : * to the appropriate sublist. Note: you might think the Assert on number
853 : : * of members should be for equality, but some of the level 1 rels might
854 : : * have been joinrels already, so we can only assert <=.
855 : : */
5251 tgl@sss.pgh.pa.us 856 [ + + ]: 88581 : if (root->join_rel_level)
857 : : {
858 [ - + ]: 87033 : Assert(root->join_cur_level > 0);
859 [ - + ]: 87033 : Assert(root->join_cur_level <= bms_num_members(joinrel->relids));
860 : 87033 : root->join_rel_level[root->join_cur_level] =
861 : 87033 : lappend(root->join_rel_level[root->join_cur_level], joinrel);
862 : : }
863 : :
8833 864 : 88581 : return joinrel;
865 : : }
866 : :
867 : : /*
868 : : * build_child_join_rel
869 : : * Builds RelOptInfo representing join between given two child relations.
870 : : *
871 : : * 'outer_rel' and 'inner_rel' are the RelOptInfos of child relations being
872 : : * joined
873 : : * 'parent_joinrel' is the RelOptInfo representing the join between parent
874 : : * relations. Some of the members of new RelOptInfo are produced by
875 : : * translating corresponding members of this RelOptInfo
876 : : * 'restrictlist': list of RestrictInfo nodes that apply to this particular
877 : : * pair of joinable relations
878 : : * 'sjinfo': child join's join-type details
879 : : */
880 : : RelOptInfo *
2382 rhaas@postgresql.org 881 : 2312 : build_child_join_rel(PlannerInfo *root, RelOptInfo *outer_rel,
882 : : RelOptInfo *inner_rel, RelOptInfo *parent_joinrel,
883 : : List *restrictlist, SpecialJoinInfo *sjinfo)
884 : : {
885 : 2312 : RelOptInfo *joinrel = makeNode(RelOptInfo);
886 : : AppendRelInfo **appinfos;
887 : : int nappinfos;
888 : :
889 : : /* Only joins between "other" relations land here. */
890 [ + + - + : 2312 : Assert(IS_OTHER_REL(outer_rel) && IS_OTHER_REL(inner_rel));
- - + + -
+ - - ]
891 : :
892 : : /* The parent joinrel should have consider_partitionwise_join set. */
2053 efujita@postgresql.o 893 [ - + ]: 2312 : Assert(parent_joinrel->consider_partitionwise_join);
894 : :
895 : : /*
896 : : * Find the AppendRelInfo structures for the child baserels. We'll need
897 : : * these for computing the child join's relid set, and later for mapping
898 : : * Vars to the child rel.
899 : : */
268 tgl@sss.pgh.pa.us 900 : 2312 : appinfos = find_appinfos_by_relids(root,
901 : 2312 : bms_union(outer_rel->relids,
902 : 2312 : inner_rel->relids),
903 : : &nappinfos);
904 : :
2382 rhaas@postgresql.org 905 : 2312 : joinrel->reloptkind = RELOPT_OTHER_JOINREL;
268 tgl@sss.pgh.pa.us 906 : 2312 : joinrel->relids = adjust_child_relids(parent_joinrel->relids,
907 : : nappinfos, appinfos);
2382 rhaas@postgresql.org 908 : 2312 : joinrel->rows = 0;
909 : : /* cheap startup cost is interesting iff not all tuples to be retrieved */
910 : 2312 : joinrel->consider_startup = (root->tuple_fraction > 0);
911 : 2312 : joinrel->consider_param_startup = false;
912 : 2312 : joinrel->consider_parallel = false;
913 : 2312 : joinrel->reltarget = create_empty_pathtarget();
914 : 2312 : joinrel->pathlist = NIL;
915 : 2312 : joinrel->ppilist = NIL;
916 : 2312 : joinrel->partial_pathlist = NIL;
917 : 2312 : joinrel->cheapest_startup_path = NULL;
918 : 2312 : joinrel->cheapest_total_path = NULL;
919 : 2312 : joinrel->cheapest_unique_path = NULL;
920 : 2312 : joinrel->cheapest_parameterized_paths = NIL;
921 : 2312 : joinrel->direct_lateral_relids = NULL;
922 : 2312 : joinrel->lateral_relids = NULL;
923 : 2312 : joinrel->relid = 0; /* indicates not a baserel */
924 : 2312 : joinrel->rtekind = RTE_JOIN;
925 : 2312 : joinrel->min_attr = 0;
926 : 2312 : joinrel->max_attr = 0;
927 : 2312 : joinrel->attr_needed = NULL;
928 : 2312 : joinrel->attr_widths = NULL;
82 drowley@postgresql.o 929 :GNC 2312 : joinrel->notnullattnums = NULL;
440 tgl@sss.pgh.pa.us 930 :CBC 2312 : joinrel->nulling_relids = NULL;
2382 rhaas@postgresql.org 931 : 2312 : joinrel->lateral_vars = NIL;
932 : 2312 : joinrel->lateral_referencers = NULL;
933 : 2312 : joinrel->indexlist = NIL;
934 : 2312 : joinrel->pages = 0;
935 : 2312 : joinrel->tuples = 0;
936 : 2312 : joinrel->allvisfrac = 0;
1729 drowley@postgresql.o 937 : 2312 : joinrel->eclass_indexes = NULL;
2382 rhaas@postgresql.org 938 : 2312 : joinrel->subroot = NULL;
939 : 2312 : joinrel->subplan_params = NIL;
1142 drowley@postgresql.o 940 : 2312 : joinrel->amflags = 0;
2382 rhaas@postgresql.org 941 : 2312 : joinrel->serverid = InvalidOid;
942 : 2312 : joinrel->userid = InvalidOid;
943 : 2312 : joinrel->useridiscurrent = false;
944 : 2312 : joinrel->fdwroutine = NULL;
945 : 2312 : joinrel->fdw_private = NULL;
946 : 2312 : joinrel->baserestrictinfo = NIL;
947 : 2312 : joinrel->baserestrictcost.startup = 0;
948 : 2312 : joinrel->baserestrictcost.per_tuple = 0;
949 : 2312 : joinrel->joininfo = NIL;
950 : 2312 : joinrel->has_eclass_joins = false;
1903 tgl@sss.pgh.pa.us 951 : 2312 : joinrel->consider_partitionwise_join = false; /* might get changed later */
605 952 : 2312 : joinrel->parent = parent_joinrel;
953 [ + + ]: 2312 : joinrel->top_parent = parent_joinrel->top_parent ? parent_joinrel->top_parent : parent_joinrel;
954 : 2312 : joinrel->top_parent_relids = joinrel->top_parent->relids;
2382 rhaas@postgresql.org 955 : 2312 : joinrel->part_scheme = NULL;
1467 efujita@postgresql.o 956 : 2312 : joinrel->nparts = -1;
2200 alvherre@alvh.no-ip. 957 : 2312 : joinrel->boundinfo = NULL;
1467 efujita@postgresql.o 958 : 2312 : joinrel->partbounds_merged = false;
2200 alvherre@alvh.no-ip. 959 : 2312 : joinrel->partition_qual = NIL;
2382 rhaas@postgresql.org 960 : 2312 : joinrel->part_rels = NULL;
985 drowley@postgresql.o 961 : 2312 : joinrel->live_parts = NULL;
1467 efujita@postgresql.o 962 : 2312 : joinrel->all_partrels = NULL;
2382 rhaas@postgresql.org 963 : 2312 : joinrel->partexprs = NULL;
964 : 2312 : joinrel->nullable_partexprs = NULL;
965 : :
966 : : /* Compute information relevant to foreign relations. */
967 : 2312 : set_foreign_rel_properties(joinrel, outer_rel, inner_rel);
968 : :
969 : : /* Set up reltarget struct */
2053 efujita@postgresql.o 970 : 2312 : build_child_join_reltarget(root, parent_joinrel, joinrel,
971 : : nappinfos, appinfos);
972 : :
973 : : /* Construct joininfo list. */
2382 rhaas@postgresql.org 974 : 4624 : joinrel->joininfo = (List *) adjust_appendrel_attrs(root,
975 : 2312 : (Node *) parent_joinrel->joininfo,
976 : : nappinfos,
977 : : appinfos);
978 : :
979 : : /*
980 : : * Lateral relids referred in child join will be same as that referred in
981 : : * the parent relation.
982 : : */
983 : 2312 : joinrel->direct_lateral_relids = (Relids) bms_copy(parent_joinrel->direct_lateral_relids);
984 : 2312 : joinrel->lateral_relids = (Relids) bms_copy(parent_joinrel->lateral_relids);
985 : :
986 : : /*
987 : : * If the parent joinrel has pending equivalence classes, so does the
988 : : * child.
989 : : */
990 : 2312 : joinrel->has_eclass_joins = parent_joinrel->has_eclass_joins;
991 : :
992 : : /* Is the join between partitions itself partitioned? */
440 tgl@sss.pgh.pa.us 993 : 2312 : build_joinrel_partition_info(root, joinrel, outer_rel, inner_rel, sjinfo,
994 : : restrictlist);
995 : :
996 : : /* Child joinrel is parallel safe if parent is parallel safe. */
2382 rhaas@postgresql.org 997 : 2312 : joinrel->consider_parallel = parent_joinrel->consider_parallel;
998 : :
999 : : /* Set estimates of the child-joinrel's size. */
1000 : 2312 : set_joinrel_size_estimates(root, joinrel, outer_rel, inner_rel,
1001 : : sjinfo, restrictlist);
1002 : :
1003 : : /* We build the join only once. */
1004 [ - + ]: 2312 : Assert(!find_join_rel(root, joinrel->relids));
1005 : :
1006 : : /* Add the relation to the PlannerInfo. */
1007 : 2312 : add_join_rel(root, joinrel);
1008 : :
1009 : : /*
1010 : : * We might need EquivalenceClass members corresponding to the child join,
1011 : : * so that we can represent sort pathkeys for it. As with children of
1012 : : * baserels, we shouldn't need this unless there are relevant eclass joins
1013 : : * (implying that a merge join might be possible) or pathkeys to sort by.
1014 : : */
1622 tgl@sss.pgh.pa.us 1015 [ + + + + ]: 2312 : if (joinrel->has_eclass_joins || has_useful_pathkeys(root, parent_joinrel))
1016 : 2090 : add_child_join_rel_equivalences(root,
1017 : : nappinfos, appinfos,
1018 : : parent_joinrel, joinrel);
1019 : :
1020 : 2312 : pfree(appinfos);
1021 : :
2382 rhaas@postgresql.org 1022 : 2312 : return joinrel;
1023 : : }
1024 : :
1025 : : /*
1026 : : * min_join_parameterization
1027 : : *
1028 : : * Determine the minimum possible parameterization of a joinrel, that is, the
1029 : : * set of other rels it contains LATERAL references to. We save this value in
1030 : : * the join's RelOptInfo. This function is split out of build_join_rel()
1031 : : * because join_is_legal() needs the value to check a prospective join.
1032 : : */
1033 : : Relids
3047 tgl@sss.pgh.pa.us 1034 : 95771 : min_join_parameterization(PlannerInfo *root,
1035 : : Relids joinrelids,
1036 : : RelOptInfo *outer_rel,
1037 : : RelOptInfo *inner_rel)
1038 : : {
1039 : : Relids result;
1040 : :
1041 : : /*
1042 : : * Basically we just need the union of the inputs' lateral_relids, less
1043 : : * whatever is already in the join.
1044 : : *
1045 : : * It's not immediately obvious that this is a valid way to compute the
1046 : : * result, because it might seem that we're ignoring possible lateral refs
1047 : : * of PlaceHolderVars that are due to be computed at the join but not in
1048 : : * either input. However, because create_lateral_join_info() already
1049 : : * charged all such PHV refs to each member baserel of the join, they'll
1050 : : * be accounted for already in the inputs' lateral_relids. Likewise, we
1051 : : * do not need to worry about doing transitive closure here, because that
1052 : : * was already accounted for in the original baserel lateral_relids.
1053 : : */
1054 : 95771 : result = bms_union(outer_rel->lateral_relids, inner_rel->lateral_relids);
3051 1055 : 95771 : result = bms_del_members(result, joinrelids);
1056 : 95771 : return result;
1057 : : }
1058 : :
1059 : : /*
1060 : : * build_joinrel_tlist
1061 : : * Builds a join relation's target list from an input relation.
1062 : : * (This is invoked twice to handle the two input relations.)
1063 : : *
1064 : : * The join's targetlist includes all Vars of its member relations that
1065 : : * will still be needed above the join. This subroutine adds all such
1066 : : * Vars from the specified input rel's tlist to the join rel's tlist.
1067 : : * Likewise for any PlaceHolderVars emitted by the input rel.
1068 : : *
1069 : : * We also compute the expected width of the join's output, making use
1070 : : * of data that was cached at the baserel level by set_rel_width().
1071 : : *
1072 : : * Pass can_null as true if the join is an outer join that can null Vars
1073 : : * from this input relation. If so, we will (normally) add the join's relid
1074 : : * to the nulling bitmaps of Vars and PHVs bubbled up from the input.
1075 : : *
1076 : : * When forming an outer join's target list, special handling is needed in
1077 : : * case the outer join was commuted with another one per outer join identity 3
1078 : : * (see optimizer/README). We must take steps to ensure that the output Vars
1079 : : * have the same nulling bitmaps that they would if the two joins had been
1080 : : * done in syntactic order; else they won't match Vars appearing higher in
1081 : : * the query tree. An exception to the match-the-syntactic-order rule is
1082 : : * that when an outer join is pushed down into another one's RHS per identity
1083 : : * 3, we can't mark its Vars as nulled until the now-upper outer join is also
1084 : : * completed. So we need to do three things:
1085 : : *
1086 : : * First, we add the outer join's relid to the nulling bitmap only if the
1087 : : * outer join has been completely performed and the Var or PHV actually
1088 : : * comes from within the syntactically nullable side(s) of the outer join.
1089 : : * This takes care of the possibility that we have transformed
1090 : : * (A leftjoin B on (Pab)) leftjoin C on (Pbc)
1091 : : * to
1092 : : * A leftjoin (B leftjoin C on (Pbc)) on (Pab)
1093 : : * Here the pushed-down B/C join cannot mark C columns as nulled yet,
1094 : : * while the now-upper A/B join must not mark C columns as nulled by itself.
1095 : : *
1096 : : * Second, perform the same operation for each SpecialJoinInfo listed in
1097 : : * pushed_down_joins (which, in this example, would be the B/C join when
1098 : : * we are at the now-upper A/B join). This allows the now-upper join to
1099 : : * complete the marking of "C" Vars that now have fully valid values.
1100 : : *
1101 : : * Third, any relid in sjinfo->commute_above_r that is already part of
1102 : : * the joinrel is added to the nulling bitmaps of nullable Vars and PHVs.
1103 : : * This takes care of the reverse case where we implement
1104 : : * A leftjoin (B leftjoin C on (Pbc)) on (Pab)
1105 : : * as
1106 : : * (A leftjoin B on (Pab)) leftjoin C on (Pbc)
1107 : : * The C columns emitted by the B/C join need to be shown as nulled by both
1108 : : * the B/C and A/B joins, even though they've not physically traversed the
1109 : : * A/B join.
1110 : : */
1111 : : static void
6887 1112 : 177162 : build_joinrel_tlist(PlannerInfo *root, RelOptInfo *joinrel,
1113 : : RelOptInfo *input_rel,
1114 : : SpecialJoinInfo *sjinfo,
1115 : : List *pushed_down_joins,
1116 : : bool can_null)
1117 : : {
2053 efujita@postgresql.o 1118 : 177162 : Relids relids = joinrel->relids;
117 tgl@sss.pgh.pa.us 1119 :GNC 177162 : int64 tuple_width = joinrel->reltarget->width;
1120 : : ListCell *vars;
1121 : : ListCell *lc;
1122 : :
2953 tgl@sss.pgh.pa.us 1123 [ + + + + :CBC 842054 : foreach(vars, input_rel->reltarget->exprs)
+ + ]
1124 : : {
4249 1125 : 664892 : Var *var = (Var *) lfirst(vars);
1126 : :
1127 : : /*
1128 : : * For a PlaceHolderVar, we have to look up the PlaceHolderInfo.
1129 : : */
1130 [ + + ]: 664892 : if (IsA(var, PlaceHolderVar))
606 1131 : 911 : {
1132 : 911 : PlaceHolderVar *phv = (PlaceHolderVar *) var;
1133 : 911 : PlaceHolderInfo *phinfo = find_placeholder_info(root, phv);
1134 : :
1135 : : /* Is it still needed above this joinrel? */
1136 [ + + ]: 911 : if (bms_nonempty_difference(phinfo->ph_needed, relids))
1137 : : {
1138 : : /*
1139 : : * Yup, add it to the output. If this join potentially nulls
1140 : : * this input, we have to update the PHV's phnullingrels,
1141 : : * which means making a copy.
1142 : : */
440 1143 [ + + ]: 656 : if (can_null)
1144 : : {
1145 : 389 : phv = copyObject(phv);
1146 : : /* See comments above to understand this logic */
1147 [ + - + + ]: 778 : if (sjinfo->ojrelid != 0 &&
333 1148 [ + + ]: 766 : bms_is_member(sjinfo->ojrelid, relids) &&
432 1149 : 377 : (bms_is_subset(phv->phrels, sjinfo->syn_righthand) ||
1150 [ + + + - ]: 120 : (sjinfo->jointype == JOIN_FULL &&
1151 : 57 : bms_is_subset(phv->phrels, sjinfo->syn_lefthand))))
440 1152 : 371 : phv->phnullingrels = bms_add_member(phv->phnullingrels,
1153 : 371 : sjinfo->ojrelid);
333 1154 [ + + + + : 398 : foreach(lc, pushed_down_joins)
+ + ]
1155 : : {
1156 : 9 : SpecialJoinInfo *othersj = (SpecialJoinInfo *) lfirst(lc);
1157 : :
1158 [ - + ]: 9 : Assert(bms_is_member(othersj->ojrelid, relids));
1159 [ + + ]: 9 : if (bms_is_subset(phv->phrels, othersj->syn_righthand))
1160 : 6 : phv->phnullingrels = bms_add_member(phv->phnullingrels,
1161 : 6 : othersj->ojrelid);
1162 : : }
431 1163 : 389 : phv->phnullingrels =
1164 : 389 : bms_join(phv->phnullingrels,
1165 : 389 : bms_intersect(sjinfo->commute_above_r,
1166 : : relids));
1167 : : }
1168 : :
606 1169 : 656 : joinrel->reltarget->exprs = lappend(joinrel->reltarget->exprs,
1170 : : phv);
1171 : : /* Bubbling up the precomputed result has cost zero */
117 tgl@sss.pgh.pa.us 1172 :GNC 656 : tuple_width += phinfo->ph_width;
1173 : : }
5654 tgl@sss.pgh.pa.us 1174 :CBC 911 : continue;
1175 : : }
1176 : :
1177 : : /*
1178 : : * Otherwise, anything in a baserel or joinrel targetlist ought to be
1179 : : * a Var. (More general cases can only appear in appendrel child
1180 : : * rels, which will never be seen here.)
1181 : : */
2053 efujita@postgresql.o 1182 [ - + ]: 663981 : if (!IsA(var, Var))
2978 tgl@sss.pgh.pa.us 1183 [ # # ]:UBC 0 : elog(ERROR, "unexpected node type in rel targetlist: %d",
1184 : : (int) nodeTag(var));
1185 : :
1110 tgl@sss.pgh.pa.us 1186 [ + + ]:CBC 663981 : if (var->varno == ROWID_VAR)
1187 : : {
1188 : : /* UPDATE/DELETE/MERGE row identity vars are always needed */
1189 : : RowIdentityVarInfo *ridinfo = (RowIdentityVarInfo *)
331 1190 : 420 : list_nth(root->row_identity_vars, var->varattno - 1);
1191 : :
1192 : : /* Update reltarget width estimate from RowIdentityVarInfo */
117 tgl@sss.pgh.pa.us 1193 :GNC 420 : tuple_width += ridinfo->rowidwidth;
1194 : : }
1195 : : else
1196 : : {
1197 : : RelOptInfo *baserel;
1198 : : int ndx;
1199 : :
1200 : : /* Get the Var's original base rel */
1110 tgl@sss.pgh.pa.us 1201 :CBC 663561 : baserel = find_base_rel(root, var->varno);
1202 : :
1203 : : /* Is it still needed above this joinrel? */
1204 : 663561 : ndx = var->varattno - baserel->min_attr;
440 1205 [ + + ]: 663561 : if (!bms_nonempty_difference(baserel->attr_needed[ndx], relids))
1206 : 122298 : continue; /* nope, skip it */
1207 : :
1208 : : /* Update reltarget width estimate from baserel's attr_widths */
117 tgl@sss.pgh.pa.us 1209 :GNC 541263 : tuple_width += baserel->attr_widths[ndx];
1210 : : }
1211 : :
1212 : : /*
1213 : : * Add the Var to the output. If this join potentially nulls this
1214 : : * input, we have to update the Var's varnullingrels, which means
1215 : : * making a copy. But note that we don't ever add nullingrel bits to
1216 : : * row identity Vars (cf. comments in setrefs.c).
1217 : : */
432 tgl@sss.pgh.pa.us 1218 [ + + + + ]:CBC 541683 : if (can_null && var->varno != ROWID_VAR)
1219 : : {
440 1220 : 58323 : var = copyObject(var);
1221 : : /* See comments above to understand this logic */
1222 [ + + + + ]: 116323 : if (sjinfo->ojrelid != 0 &&
333 1223 [ + + ]: 113473 : bms_is_member(sjinfo->ojrelid, relids) &&
432 1224 : 55473 : (bms_is_member(var->varno, sjinfo->syn_righthand) ||
1225 [ + + + - ]: 1872 : (sjinfo->jointype == JOIN_FULL &&
1226 : 876 : bms_is_member(var->varno, sjinfo->syn_lefthand))))
440 1227 : 55353 : var->varnullingrels = bms_add_member(var->varnullingrels,
1228 : 55353 : sjinfo->ojrelid);
333 1229 [ + + + + : 58590 : foreach(lc, pushed_down_joins)
+ + ]
1230 : : {
1231 : 267 : SpecialJoinInfo *othersj = (SpecialJoinInfo *) lfirst(lc);
1232 : :
1233 [ - + ]: 267 : Assert(bms_is_member(othersj->ojrelid, relids));
1234 [ + + ]: 267 : if (bms_is_member(var->varno, othersj->syn_righthand))
1235 : 120 : var->varnullingrels = bms_add_member(var->varnullingrels,
1236 : 120 : othersj->ojrelid);
1237 : : }
431 1238 : 58323 : var->varnullingrels =
1239 : 58323 : bms_join(var->varnullingrels,
1240 : 58323 : bms_intersect(sjinfo->commute_above_r,
1241 : : relids));
1242 : : }
1243 : :
440 1244 : 541683 : joinrel->reltarget->exprs = lappend(joinrel->reltarget->exprs,
1245 : : var);
1246 : :
1247 : : /* Vars have cost zero, so no need to adjust reltarget->cost */
1248 : : }
1249 : :
117 tgl@sss.pgh.pa.us 1250 :GNC 177162 : joinrel->reltarget->width = clamp_width_est(tuple_width);
8833 tgl@sss.pgh.pa.us 1251 :CBC 177162 : }
1252 : :
1253 : : /*
1254 : : * build_joinrel_restrictlist
1255 : : * build_joinrel_joinlist
1256 : : * These routines build lists of restriction and join clauses for a
1257 : : * join relation from the joininfo lists of the relations it joins.
1258 : : *
1259 : : * These routines are separate because the restriction list must be
1260 : : * built afresh for each pair of input sub-relations we consider, whereas
1261 : : * the join list need only be computed once for any join RelOptInfo.
1262 : : * The join list is fully determined by the set of rels making up the
1263 : : * joinrel, so we should get the same results (up to ordering) from any
1264 : : * candidate pair of sub-relations. But the restriction list is whatever
1265 : : * is not handled in the sub-relations, so it depends on which
1266 : : * sub-relations are considered.
1267 : : *
1268 : : * If a join clause from an input relation refers to base+OJ rels still not
1269 : : * present in the joinrel, then it is still a join clause for the joinrel;
1270 : : * we put it into the joininfo list for the joinrel. Otherwise,
1271 : : * the clause is now a restrict clause for the joined relation, and we
1272 : : * return it to the caller of build_joinrel_restrictlist() to be stored in
1273 : : * join paths made from this pair of sub-relations. (It will not need to
1274 : : * be considered further up the join tree.)
1275 : : *
1276 : : * In many cases we will find the same RestrictInfos in both input
1277 : : * relations' joinlists, so be careful to eliminate duplicates.
1278 : : * Pointer equality should be a sufficient test for dups, since all
1279 : : * the various joinlist entries ultimately refer to RestrictInfos
1280 : : * pushed into them by distribute_restrictinfo_to_rels().
1281 : : *
1282 : : * 'joinrel' is a join relation node
1283 : : * 'outer_rel' and 'inner_rel' are a pair of relations that can be joined
1284 : : * to form joinrel.
1285 : : * 'sjinfo': join context info
1286 : : *
1287 : : * build_joinrel_restrictlist() returns a list of relevant restrictinfos,
1288 : : * whereas build_joinrel_joinlist() stores its results in the joinrel's
1289 : : * joininfo list. One or the other must accept each given clause!
1290 : : *
1291 : : * NB: Formerly, we made deep(!) copies of each input RestrictInfo to pass
1292 : : * up to the join relation. I believe this is no longer necessary, because
1293 : : * RestrictInfo nodes are no longer context-dependent. Instead, just include
1294 : : * the original nodes in the lists made for the join relation.
1295 : : */
1296 : : static List *
6888 1297 : 136752 : build_joinrel_restrictlist(PlannerInfo *root,
1298 : : RelOptInfo *joinrel,
1299 : : RelOptInfo *outer_rel,
1300 : : RelOptInfo *inner_rel,
1301 : : SpecialJoinInfo *sjinfo)
1302 : : {
1303 : : List *result;
1304 : : Relids both_input_relids;
1305 : :
440 1306 : 136752 : both_input_relids = bms_union(outer_rel->relids, inner_rel->relids);
1307 : :
1308 : : /*
1309 : : * Collect all the clauses that syntactically belong at this level,
1310 : : * eliminating any duplicates (important since we will see many of the
1311 : : * same clauses arriving from both input relations).
1312 : : */
1313 : 136752 : result = subbuild_joinrel_restrictlist(root, joinrel, outer_rel,
1314 : : both_input_relids, NIL);
1315 : 136752 : result = subbuild_joinrel_restrictlist(root, joinrel, inner_rel,
1316 : : both_input_relids, result);
1317 : :
1318 : : /*
1319 : : * Add on any clauses derived from EquivalenceClasses. These cannot be
1320 : : * redundant with the clauses in the joininfo lists, so don't bother
1321 : : * checking.
1322 : : */
6294 1323 : 136752 : result = list_concat(result,
1324 : 136752 : generate_join_implied_equalities(root,
1325 : : joinrel->relids,
1326 : : outer_rel->relids,
1327 : : inner_rel,
1328 : : sjinfo));
1329 : :
8214 1330 : 136752 : return result;
1331 : : }
1332 : :
1333 : : static void
8833 1334 : 88581 : build_joinrel_joinlist(RelOptInfo *joinrel,
1335 : : RelOptInfo *outer_rel,
1336 : : RelOptInfo *inner_rel)
1337 : : {
1338 : : List *result;
1339 : :
1340 : : /*
1341 : : * Collect all the clauses that syntactically belong above this level,
1342 : : * eliminating any duplicates (important since we will see many of the
1343 : : * same clauses arriving from both input relations).
1344 : : */
6294 1345 : 88581 : result = subbuild_joinrel_joinlist(joinrel, outer_rel->joininfo, NIL);
1346 : 88581 : result = subbuild_joinrel_joinlist(joinrel, inner_rel->joininfo, result);
1347 : :
1348 : 88581 : joinrel->joininfo = result;
8833 1349 : 88581 : }
1350 : :
1351 : : static List *
440 1352 : 273504 : subbuild_joinrel_restrictlist(PlannerInfo *root,
1353 : : RelOptInfo *joinrel,
1354 : : RelOptInfo *input_rel,
1355 : : Relids both_input_relids,
1356 : : List *new_restrictlist)
1357 : : {
1358 : : ListCell *l;
1359 : :
1360 [ + + + + : 544281 : foreach(l, input_rel->joininfo)
+ + ]
1361 : : {
6884 1362 : 270777 : RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);
1363 : :
1364 [ + + ]: 270777 : if (bms_is_subset(rinfo->required_relids, joinrel->relids))
1365 : : {
1366 : : /*
1367 : : * This clause should become a restriction clause for the joinrel,
1368 : : * since it refers to no outside rels. However, if it's a clone
1369 : : * clause then it might be too late to evaluate it, so we have to
1370 : : * check. (If it is too late, just ignore the clause, taking it
1371 : : * on faith that another clone was or will be selected.) Clone
1372 : : * clauses should always be outer-join clauses, so we compare
1373 : : * against both_input_relids.
1374 : : */
440 1375 [ + + + + ]: 159712 : if (rinfo->has_clone || rinfo->is_clone)
1376 : : {
1377 [ + - - + ]: 25805 : Assert(!RINFO_IS_PUSHED_DOWN(rinfo, joinrel->relids));
1378 [ + + ]: 25805 : if (!bms_is_subset(rinfo->required_relids, both_input_relids))
1379 : 4263 : continue;
325 1380 [ + + ]: 21542 : if (bms_overlap(rinfo->incompatible_relids, both_input_relids))
440 1381 : 8406 : continue;
1382 : : }
1383 : : else
1384 : : {
1385 : : /*
1386 : : * For non-clone clauses, we just Assert it's OK. These might
1387 : : * be either join or filter clauses; if it's a join clause
1388 : : * then it should not refer to the current join's output.
1389 : : * (There is little point in checking incompatible_relids,
1390 : : * because it'll be NULL.)
1391 : : */
325 1392 [ + + + - : 133907 : Assert(RINFO_IS_PUSHED_DOWN(rinfo, joinrel->relids) ||
- + ]
1393 : : bms_is_subset(rinfo->required_relids,
1394 : : both_input_relids));
1395 : : }
1396 : :
1397 : : /*
1398 : : * OK, so add it to the list, being careful to eliminate
1399 : : * duplicates. (Since RestrictInfo nodes in different joinlists
1400 : : * will have been multiply-linked rather than copied, pointer
1401 : : * equality should be a sufficient test.)
1402 : : */
6294 1403 : 147043 : new_restrictlist = list_append_unique_ptr(new_restrictlist, rinfo);
1404 : : }
1405 : : else
1406 : : {
1407 : : /*
1408 : : * This clause is still a join clause at this level, so we ignore
1409 : : * it in this routine.
1410 : : */
1411 : : }
1412 : : }
1413 : :
1414 : 273504 : return new_restrictlist;
1415 : : }
1416 : :
1417 : : static List *
8833 1418 : 177162 : subbuild_joinrel_joinlist(RelOptInfo *joinrel,
1419 : : List *joininfo_list,
1420 : : List *new_joininfo)
1421 : : {
1422 : : ListCell *l;
1423 : :
1424 : : /* Expected to be called only for join between parent relations. */
2382 rhaas@postgresql.org 1425 [ - + ]: 177162 : Assert(joinrel->reloptkind == RELOPT_JOINREL);
1426 : :
6884 tgl@sss.pgh.pa.us 1427 [ + + + + : 346888 : foreach(l, joininfo_list)
+ + ]
1428 : : {
1429 : 169726 : RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);
1430 : :
1431 [ + + ]: 169726 : if (bms_is_subset(rinfo->required_relids, joinrel->relids))
1432 : : {
1433 : : /*
1434 : : * This clause becomes a restriction clause for the joinrel, since
1435 : : * it refers to no outside rels. So we can ignore it in this
1436 : : * routine.
1437 : : */
1438 : : }
1439 : : else
1440 : : {
1441 : : /*
1442 : : * This clause is still a join clause at this level, so add it to
1443 : : * the new joininfo list, being careful to eliminate duplicates.
1444 : : * (Since RestrictInfo nodes in different joinlists will have been
1445 : : * multiply-linked rather than copied, pointer equality should be
1446 : : * a sufficient test.)
1447 : : */
6294 1448 : 68349 : new_joininfo = list_append_unique_ptr(new_joininfo, rinfo);
1449 : : }
1450 : : }
1451 : :
1452 : 177162 : return new_joininfo;
1453 : : }
1454 : :
1455 : :
1456 : : /*
1457 : : * fetch_upper_rel
1458 : : * Build a RelOptInfo describing some post-scan/join query processing,
1459 : : * or return a pre-existing one if somebody already built it.
1460 : : *
1461 : : * An "upper" relation is identified by an UpperRelationKind and a Relids set.
1462 : : * The meaning of the Relids set is not specified here, and very likely will
1463 : : * vary for different relation kinds.
1464 : : *
1465 : : * Most of the fields in an upper-level RelOptInfo are not used and are not
1466 : : * set here (though makeNode should ensure they're zeroes). We basically only
1467 : : * care about fields that are of interest to add_path() and set_cheapest().
1468 : : */
1469 : : RelOptInfo *
2960 1470 : 812267 : fetch_upper_rel(PlannerInfo *root, UpperRelationKind kind, Relids relids)
1471 : : {
1472 : : RelOptInfo *upperrel;
1473 : : ListCell *lc;
1474 : :
1475 : : /*
1476 : : * For the moment, our indexing data structure is just a List for each
1477 : : * relation kind. If we ever get so many of one kind that this stops
1478 : : * working well, we can improve it. No code outside this function should
1479 : : * assume anything about how to find a particular upperrel.
1480 : : */
1481 : :
1482 : : /* If we already made this upperrel for the query, return it */
1483 [ + + + + : 815645 : foreach(lc, root->upper_rels[kind])
+ + ]
1484 : : {
1485 : 516435 : upperrel = (RelOptInfo *) lfirst(lc);
1486 : :
1487 [ + + ]: 516435 : if (bms_equal(upperrel->relids, relids))
1488 : 513057 : return upperrel;
1489 : : }
1490 : :
1491 : 299210 : upperrel = makeNode(RelOptInfo);
1492 : 299210 : upperrel->reloptkind = RELOPT_UPPER_REL;
1493 : 299210 : upperrel->relids = bms_copy(relids);
1494 : :
1495 : : /* cheap startup cost is interesting iff not all tuples to be retrieved */
1496 : 299210 : upperrel->consider_startup = (root->tuple_fraction > 0);
1497 : 299210 : upperrel->consider_param_startup = false;
2489 1498 : 299210 : upperrel->consider_parallel = false; /* might get changed later */
2953 1499 : 299210 : upperrel->reltarget = create_empty_pathtarget();
2960 1500 : 299210 : upperrel->pathlist = NIL;
1501 : 299210 : upperrel->cheapest_startup_path = NULL;
1502 : 299210 : upperrel->cheapest_total_path = NULL;
1503 : 299210 : upperrel->cheapest_unique_path = NULL;
1504 : 299210 : upperrel->cheapest_parameterized_paths = NIL;
1505 : :
1506 : 299210 : root->upper_rels[kind] = lappend(root->upper_rels[kind], upperrel);
1507 : :
1508 : 299210 : return upperrel;
1509 : : }
1510 : :
1511 : :
1512 : : /*
1513 : : * find_childrel_parents
1514 : : * Compute the set of parent relids of an appendrel child rel.
1515 : : *
1516 : : * Since appendrels can be nested, a child could have multiple levels of
1517 : : * appendrel ancestors. This function computes a Relids set of all the
1518 : : * parent relation IDs.
1519 : : */
1520 : : Relids
3483 1521 : 5299 : find_childrel_parents(PlannerInfo *root, RelOptInfo *rel)
1522 : : {
1523 : 5299 : Relids result = NULL;
1524 : :
2568 rhaas@postgresql.org 1525 [ - + ]: 5299 : Assert(rel->reloptkind == RELOPT_OTHER_MEMBER_REL);
2119 alvherre@alvh.no-ip. 1526 [ + - - + ]: 5299 : Assert(rel->relid > 0 && rel->relid < root->simple_rel_array_size);
1527 : :
1528 : : do
1529 : : {
1530 : 6293 : AppendRelInfo *appinfo = root->append_rel_array[rel->relid];
3483 tgl@sss.pgh.pa.us 1531 : 6293 : Index prelid = appinfo->parent_relid;
1532 : :
1533 : 6293 : result = bms_add_member(result, prelid);
1534 : :
1535 : : /* traverse up to the parent rel, loop if it's also a child rel */
1536 : 6293 : rel = find_base_rel(root, prelid);
1537 [ + + ]: 6293 : } while (rel->reloptkind == RELOPT_OTHER_MEMBER_REL);
1538 : :
1539 [ - + ]: 5299 : Assert(rel->reloptkind == RELOPT_BASEREL);
1540 : :
1541 : 5299 : return result;
1542 : : }
1543 : :
1544 : :
1545 : : /*
1546 : : * get_baserel_parampathinfo
1547 : : * Get the ParamPathInfo for a parameterized path for a base relation,
1548 : : * constructing one if we don't have one already.
1549 : : *
1550 : : * This centralizes estimating the rowcounts for parameterized paths.
1551 : : * We need to cache those to be sure we use the same rowcount for all paths
1552 : : * of the same parameterization for a given rel. This is also a convenient
1553 : : * place to determine which movable join clauses the parameterized path will
1554 : : * be responsible for evaluating.
1555 : : */
1556 : : ParamPathInfo *
4378 1557 : 751172 : get_baserel_parampathinfo(PlannerInfo *root, RelOptInfo *baserel,
1558 : : Relids required_outer)
1559 : : {
1560 : : ParamPathInfo *ppi;
1561 : : Relids joinrelids;
1562 : : List *pclauses;
1563 : : Bitmapset *pserials;
1564 : : double rows;
1565 : : ListCell *lc;
1566 : :
1567 : : /* If rel has LATERAL refs, every path for it should account for them */
1893 1568 [ - + ]: 751172 : Assert(bms_is_subset(baserel->lateral_relids, required_outer));
1569 : :
1570 : : /* Unparameterized paths have no ParamPathInfo */
4378 1571 [ + + ]: 751172 : if (bms_is_empty(required_outer))
1572 : 622355 : return NULL;
1573 : :
1574 [ - + ]: 128817 : Assert(!bms_overlap(baserel->relids, required_outer));
1575 : :
1576 : : /* If we already have a PPI for this parameterization, just return it */
2434 rhaas@postgresql.org 1577 [ + + ]: 128817 : if ((ppi = find_param_path_info(baserel, required_outer)))
1578 : 67360 : return ppi;
1579 : :
1580 : : /*
1581 : : * Identify all joinclauses that are movable to this base rel given this
1582 : : * parameterization.
1583 : : */
4378 tgl@sss.pgh.pa.us 1584 : 61457 : joinrelids = bms_union(baserel->relids, required_outer);
1585 : 61457 : pclauses = NIL;
1586 [ + + + + : 104168 : foreach(lc, baserel->joininfo)
+ + ]
1587 : : {
1588 : 42711 : RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1589 : :
1590 [ + + ]: 42711 : if (join_clause_is_movable_into(rinfo,
1591 : : baserel->relids,
1592 : : joinrelids))
1593 : 18969 : pclauses = lappend(pclauses, rinfo);
1594 : : }
1595 : :
1596 : : /*
1597 : : * Add in joinclauses generated by EquivalenceClasses, too. (These
1598 : : * necessarily satisfy join_clause_is_movable_into.)
1599 : : */
1600 : 61457 : pclauses = list_concat(pclauses,
1601 : 61457 : generate_join_implied_equalities(root,
1602 : : joinrelids,
1603 : : required_outer,
1604 : : baserel,
1605 : : NULL));
1606 : :
1607 : : /* Compute set of serial numbers of the enforced clauses */
440 1608 : 61457 : pserials = NULL;
1609 [ + + + + : 123131 : foreach(lc, pclauses)
+ + ]
1610 : : {
1611 : 61674 : RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1612 : :
1613 : 61674 : pserials = bms_add_member(pserials, rinfo->rinfo_serial);
1614 : : }
1615 : :
1616 : : /* Estimate the number of rows returned by the parameterized scan */
4378 1617 : 61457 : rows = get_parameterized_baserel_size(root, baserel, pclauses);
1618 : :
1619 : : /* And now we can build the ParamPathInfo */
1620 : 61457 : ppi = makeNode(ParamPathInfo);
1621 : 61457 : ppi->ppi_req_outer = required_outer;
1622 : 61457 : ppi->ppi_rows = rows;
1623 : 61457 : ppi->ppi_clauses = pclauses;
440 1624 : 61457 : ppi->ppi_serials = pserials;
4378 1625 : 61457 : baserel->ppilist = lappend(baserel->ppilist, ppi);
1626 : :
1627 : 61457 : return ppi;
1628 : : }
1629 : :
1630 : : /*
1631 : : * get_joinrel_parampathinfo
1632 : : * Get the ParamPathInfo for a parameterized path for a join relation,
1633 : : * constructing one if we don't have one already.
1634 : : *
1635 : : * This centralizes estimating the rowcounts for parameterized paths.
1636 : : * We need to cache those to be sure we use the same rowcount for all paths
1637 : : * of the same parameterization for a given rel. This is also a convenient
1638 : : * place to determine which movable join clauses the parameterized path will
1639 : : * be responsible for evaluating.
1640 : : *
1641 : : * outer_path and inner_path are a pair of input paths that can be used to
1642 : : * construct the join, and restrict_clauses is the list of regular join
1643 : : * clauses (including clauses derived from EquivalenceClasses) that must be
1644 : : * applied at the join node when using these inputs.
1645 : : *
1646 : : * Unlike the situation for base rels, the set of movable join clauses to be
1647 : : * enforced at a join varies with the selected pair of input paths, so we
1648 : : * must calculate that and pass it back, even if we already have a matching
1649 : : * ParamPathInfo. We handle this by adding any clauses moved down to this
1650 : : * join to *restrict_clauses, which is an in/out parameter. (The addition
1651 : : * is done in such a way as to not modify the passed-in List structure.)
1652 : : *
1653 : : * Note: when considering a nestloop join, the caller must have removed from
1654 : : * restrict_clauses any movable clauses that are themselves scheduled to be
1655 : : * pushed into the right-hand path. We do not do that here since it's
1656 : : * unnecessary for other join types.
1657 : : */
1658 : : ParamPathInfo *
1659 : 809281 : get_joinrel_parampathinfo(PlannerInfo *root, RelOptInfo *joinrel,
1660 : : Path *outer_path,
1661 : : Path *inner_path,
1662 : : SpecialJoinInfo *sjinfo,
1663 : : Relids required_outer,
1664 : : List **restrict_clauses)
1665 : : {
1666 : : ParamPathInfo *ppi;
1667 : : Relids join_and_req;
1668 : : Relids outer_and_req;
1669 : : Relids inner_and_req;
1670 : : List *pclauses;
1671 : : List *eclauses;
1672 : : List *dropped_ecs;
1673 : : double rows;
1674 : : ListCell *lc;
1675 : :
1676 : : /* If rel has LATERAL refs, every path for it should account for them */
1893 1677 [ - + ]: 809281 : Assert(bms_is_subset(joinrel->lateral_relids, required_outer));
1678 : :
1679 : : /* Unparameterized paths have no ParamPathInfo or extra join clauses */
4378 1680 [ + + ]: 809281 : if (bms_is_empty(required_outer))
1681 : 795089 : return NULL;
1682 : :
1683 [ - + ]: 14192 : Assert(!bms_overlap(joinrel->relids, required_outer));
1684 : :
1685 : : /*
1686 : : * Identify all joinclauses that are movable to this join rel given this
1687 : : * parameterization. These are the clauses that are movable into this
1688 : : * join, but not movable into either input path. Treat an unparameterized
1689 : : * input path as not accepting parameterized clauses (because it won't,
1690 : : * per the shortcut exit above), even though the joinclause movement rules
1691 : : * might allow the same clauses to be moved into a parameterized path for
1692 : : * that rel.
1693 : : */
1694 : 14192 : join_and_req = bms_union(joinrel->relids, required_outer);
1695 [ + + ]: 14192 : if (outer_path->param_info)
4378 tgl@sss.pgh.pa.us 1696 :UBC 0 : outer_and_req = bms_union(outer_path->parent->relids,
4378 tgl@sss.pgh.pa.us 1697 [ + - ]:CBC 13128 : PATH_REQ_OUTER(outer_path));
1698 : : else
4326 bruce@momjian.us 1699 : 1064 : outer_and_req = NULL; /* outer path does not accept parameters */
4378 tgl@sss.pgh.pa.us 1700 [ + + ]: 14192 : if (inner_path->param_info)
4378 tgl@sss.pgh.pa.us 1701 :UBC 0 : inner_and_req = bms_union(inner_path->parent->relids,
4378 tgl@sss.pgh.pa.us 1702 [ + - ]:CBC 7326 : PATH_REQ_OUTER(inner_path));
1703 : : else
4326 bruce@momjian.us 1704 : 6866 : inner_and_req = NULL; /* inner path does not accept parameters */
1705 : :
4378 tgl@sss.pgh.pa.us 1706 : 14192 : pclauses = NIL;
1707 [ + + + + : 36733 : foreach(lc, joinrel->joininfo)
+ + ]
1708 : : {
1709 : 22541 : RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1710 : :
1711 [ + + ]: 22541 : if (join_clause_is_movable_into(rinfo,
1712 : : joinrel->relids,
1713 : 11314 : join_and_req) &&
1714 [ + + ]: 11314 : !join_clause_is_movable_into(rinfo,
1715 : 11314 : outer_path->parent->relids,
1716 : 354 : outer_and_req) &&
1717 [ + + ]: 354 : !join_clause_is_movable_into(rinfo,
1718 : 354 : inner_path->parent->relids,
1719 : : inner_and_req))
1720 : 48 : pclauses = lappend(pclauses, rinfo);
1721 : : }
1722 : :
1723 : : /* Consider joinclauses generated by EquivalenceClasses, too */
1724 : 14192 : eclauses = generate_join_implied_equalities(root,
1725 : : join_and_req,
1726 : : required_outer,
1727 : : joinrel,
1728 : : NULL);
1729 : : /* We only want ones that aren't movable to lower levels */
2907 1730 : 14192 : dropped_ecs = NIL;
4378 1731 [ + + + + : 16356 : foreach(lc, eclauses)
+ + ]
1732 : : {
1733 : 2164 : RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1734 : :
1735 [ - + ]: 2164 : Assert(join_clause_is_movable_into(rinfo,
1736 : : joinrel->relids,
1737 : : join_and_req));
2907 1738 [ + + ]: 2164 : if (join_clause_is_movable_into(rinfo,
1739 : 2164 : outer_path->parent->relids,
1740 : : outer_and_req))
1741 : 1245 : continue; /* drop if movable into LHS */
1742 [ + + ]: 919 : if (join_clause_is_movable_into(rinfo,
1743 : 919 : inner_path->parent->relids,
1744 : : inner_and_req))
1745 : : {
1746 : : /* drop if movable into RHS, but remember EC for use below */
1747 [ - + ]: 461 : Assert(rinfo->left_ec == rinfo->right_ec);
1748 : 461 : dropped_ecs = lappend(dropped_ecs, rinfo->left_ec);
1749 : 461 : continue;
1750 : : }
1751 : 458 : pclauses = lappend(pclauses, rinfo);
1752 : : }
1753 : :
1754 : : /*
1755 : : * EquivalenceClasses are harder to deal with than we could wish, because
1756 : : * of the fact that a given EC can generate different clauses depending on
1757 : : * context. Suppose we have an EC {X.X, Y.Y, Z.Z} where X and Y are the
1758 : : * LHS and RHS of the current join and Z is in required_outer, and further
1759 : : * suppose that the inner_path is parameterized by both X and Z. The code
1760 : : * above will have produced either Z.Z = X.X or Z.Z = Y.Y from that EC,
1761 : : * and in the latter case will have discarded it as being movable into the
1762 : : * RHS. However, the EC machinery might have produced either Y.Y = X.X or
1763 : : * Y.Y = Z.Z as the EC enforcement clause within the inner_path; it will
1764 : : * not have produced both, and we can't readily tell from here which one
1765 : : * it did pick. If we add no clause to this join, we'll end up with
1766 : : * insufficient enforcement of the EC; either Z.Z or X.X will fail to be
1767 : : * constrained to be equal to the other members of the EC. (When we come
1768 : : * to join Z to this X/Y path, we will certainly drop whichever EC clause
1769 : : * is generated at that join, so this omission won't get fixed later.)
1770 : : *
1771 : : * To handle this, for each EC we discarded such a clause from, try to
1772 : : * generate a clause connecting the required_outer rels to the join's LHS
1773 : : * ("Z.Z = X.X" in the terms of the above example). If successful, and if
1774 : : * the clause can't be moved to the LHS, add it to the current join's
1775 : : * restriction clauses. (If an EC cannot generate such a clause then it
1776 : : * has nothing that needs to be enforced here, while if the clause can be
1777 : : * moved into the LHS then it should have been enforced within that path.)
1778 : : *
1779 : : * Note that we don't need similar processing for ECs whose clause was
1780 : : * considered to be movable into the LHS, because the LHS can't refer to
1781 : : * the RHS so there is no comparable ambiguity about what it might
1782 : : * actually be enforcing internally.
1783 : : */
1784 [ + + ]: 14192 : if (dropped_ecs)
1785 : : {
1786 : : Relids real_outer_and_req;
1787 : :
1788 : 439 : real_outer_and_req = bms_union(outer_path->parent->relids,
1789 : : required_outer);
1790 : : eclauses =
1791 : 439 : generate_join_implied_equalities_for_ecs(root,
1792 : : dropped_ecs,
1793 : : real_outer_and_req,
1794 : : required_outer,
1795 : : outer_path->parent);
1796 [ + + + + : 521 : foreach(lc, eclauses)
+ + ]
1797 : : {
1798 : 82 : RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1799 : :
1800 [ - + ]: 82 : Assert(join_clause_is_movable_into(rinfo,
1801 : : outer_path->parent->relids,
1802 : : real_outer_and_req));
1803 [ + + ]: 82 : if (!join_clause_is_movable_into(rinfo,
1804 : 82 : outer_path->parent->relids,
1805 : : outer_and_req))
1806 : 67 : pclauses = lappend(pclauses, rinfo);
1807 : : }
1808 : : }
1809 : :
1810 : : /*
1811 : : * Now, attach the identified moved-down clauses to the caller's
1812 : : * restrict_clauses list. By using list_concat in this order, we leave
1813 : : * the original list structure of restrict_clauses undamaged.
1814 : : */
4378 1815 : 14192 : *restrict_clauses = list_concat(pclauses, *restrict_clauses);
1816 : :
1817 : : /* If we already have a PPI for this parameterization, just return it */
2434 rhaas@postgresql.org 1818 [ + + ]: 14192 : if ((ppi = find_param_path_info(joinrel, required_outer)))
1819 : 10552 : return ppi;
1820 : :
1821 : : /* Estimate the number of rows returned by the parameterized join */
4378 tgl@sss.pgh.pa.us 1822 : 3640 : rows = get_parameterized_joinrel_size(root, joinrel,
1823 : : outer_path,
1824 : : inner_path,
1825 : : sjinfo,
1826 : : *restrict_clauses);
1827 : :
1828 : : /*
1829 : : * And now we can build the ParamPathInfo. No point in saving the
1830 : : * input-pair-dependent clause list, though.
1831 : : *
1832 : : * Note: in GEQO mode, we'll be called in a temporary memory context, but
1833 : : * the joinrel structure is there too, so no problem.
1834 : : */
1835 : 3640 : ppi = makeNode(ParamPathInfo);
1836 : 3640 : ppi->ppi_req_outer = required_outer;
1837 : 3640 : ppi->ppi_rows = rows;
1838 : 3640 : ppi->ppi_clauses = NIL;
440 1839 : 3640 : ppi->ppi_serials = NULL;
4378 1840 : 3640 : joinrel->ppilist = lappend(joinrel->ppilist, ppi);
1841 : :
1842 : 3640 : return ppi;
1843 : : }
1844 : :
1845 : : /*
1846 : : * get_appendrel_parampathinfo
1847 : : * Get the ParamPathInfo for a parameterized path for an append relation.
1848 : : *
1849 : : * For an append relation, the rowcount estimate will just be the sum of
1850 : : * the estimates for its children. However, we still need a ParamPathInfo
1851 : : * to flag the fact that the path requires parameters. So this just creates
1852 : : * a suitable struct with zero ppi_rows (and no ppi_clauses either, since
1853 : : * the Append node isn't responsible for checking quals).
1854 : : */
1855 : : ParamPathInfo *
1856 : 20590 : get_appendrel_parampathinfo(RelOptInfo *appendrel, Relids required_outer)
1857 : : {
1858 : : ParamPathInfo *ppi;
1859 : :
1860 : : /* If rel has LATERAL refs, every path for it should account for them */
1893 1861 [ - + ]: 20590 : Assert(bms_is_subset(appendrel->lateral_relids, required_outer));
1862 : :
1863 : : /* Unparameterized paths have no ParamPathInfo */
4378 1864 [ + + ]: 20590 : if (bms_is_empty(required_outer))
1865 : 20333 : return NULL;
1866 : :
1867 [ - + ]: 257 : Assert(!bms_overlap(appendrel->relids, required_outer));
1868 : :
1869 : : /* If we already have a PPI for this parameterization, just return it */
2434 rhaas@postgresql.org 1870 [ + + ]: 257 : if ((ppi = find_param_path_info(appendrel, required_outer)))
1871 : 63 : return ppi;
1872 : :
1873 : : /* Else build the ParamPathInfo */
4378 tgl@sss.pgh.pa.us 1874 : 194 : ppi = makeNode(ParamPathInfo);
1875 : 194 : ppi->ppi_req_outer = required_outer;
1876 : 194 : ppi->ppi_rows = 0;
1877 : 194 : ppi->ppi_clauses = NIL;
440 1878 : 194 : ppi->ppi_serials = NULL;
4378 1879 : 194 : appendrel->ppilist = lappend(appendrel->ppilist, ppi);
1880 : :
1881 : 194 : return ppi;
1882 : : }
1883 : :
1884 : : /*
1885 : : * Returns a ParamPathInfo for the parameterization given by required_outer, if
1886 : : * already available in the given rel. Returns NULL otherwise.
1887 : : */
1888 : : ParamPathInfo *
2434 rhaas@postgresql.org 1889 : 143710 : find_param_path_info(RelOptInfo *rel, Relids required_outer)
1890 : : {
1891 : : ListCell *lc;
1892 : :
1893 [ + + + + : 165716 : foreach(lc, rel->ppilist)
+ + ]
1894 : : {
1895 : 100035 : ParamPathInfo *ppi = (ParamPathInfo *) lfirst(lc);
1896 : :
1897 [ + + ]: 100035 : if (bms_equal(ppi->ppi_req_outer, required_outer))
1898 : 78029 : return ppi;
1899 : : }
1900 : :
1901 : 65681 : return NULL;
1902 : : }
1903 : :
1904 : : /*
1905 : : * get_param_path_clause_serials
1906 : : * Given a parameterized Path, return the set of pushed-down clauses
1907 : : * (identified by rinfo_serial numbers) enforced within the Path.
1908 : : */
1909 : : Bitmapset *
440 tgl@sss.pgh.pa.us 1910 : 173631 : get_param_path_clause_serials(Path *path)
1911 : : {
1912 [ + + ]: 173631 : if (path->param_info == NULL)
1913 : 622 : return NULL; /* not parameterized */
1914 [ + + ]: 173009 : if (IsA(path, NestPath) ||
1915 [ + + ]: 168016 : IsA(path, MergePath) ||
1916 [ + + ]: 167977 : IsA(path, HashPath))
1917 : : {
1918 : : /*
1919 : : * For a join path, combine clauses enforced within either input path
1920 : : * with those enforced as joinrestrictinfo in this path. Note that
1921 : : * joinrestrictinfo may include some non-pushed-down clauses, but for
1922 : : * current purposes it's okay if we include those in the result. (To
1923 : : * be more careful, we could check for clause_relids overlapping the
1924 : : * path parameterization, but it's not worth the cycles for now.)
1925 : : */
1926 : 5414 : JoinPath *jpath = (JoinPath *) path;
1927 : : Bitmapset *pserials;
1928 : : ListCell *lc;
1929 : :
1930 : 5414 : pserials = NULL;
1931 : 5414 : pserials = bms_add_members(pserials,
1932 : 5414 : get_param_path_clause_serials(jpath->outerjoinpath));
1933 : 5414 : pserials = bms_add_members(pserials,
1934 : 5414 : get_param_path_clause_serials(jpath->innerjoinpath));
1935 [ + + + + : 6259 : foreach(lc, jpath->joinrestrictinfo)
+ + ]
1936 : : {
1937 : 845 : RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1938 : :
1939 : 845 : pserials = bms_add_member(pserials, rinfo->rinfo_serial);
1940 : : }
1941 : 5414 : return pserials;
1942 : : }
1943 [ + + ]: 167595 : else if (IsA(path, AppendPath))
1944 : : {
1945 : : /*
1946 : : * For an appendrel, take the intersection of the sets of clauses
1947 : : * enforced in each input path.
1948 : : */
1949 : 1069 : AppendPath *apath = (AppendPath *) path;
1950 : : Bitmapset *pserials;
1951 : : ListCell *lc;
1952 : :
1953 : 1069 : pserials = NULL;
1954 [ + + + + : 4456 : foreach(lc, apath->subpaths)
+ + ]
1955 : : {
1956 : 3387 : Path *subpath = (Path *) lfirst(lc);
1957 : : Bitmapset *subserials;
1958 : :
1959 : 3387 : subserials = get_param_path_clause_serials(subpath);
1960 [ + + ]: 3387 : if (lc == list_head(apath->subpaths))
1961 : 1057 : pserials = bms_copy(subserials);
1962 : : else
1963 : 2330 : pserials = bms_int_members(pserials, subserials);
1964 : : }
1965 : 1069 : return pserials;
1966 : : }
1967 [ - + ]: 166526 : else if (IsA(path, MergeAppendPath))
1968 : : {
1969 : : /* Same as AppendPath case */
440 tgl@sss.pgh.pa.us 1970 :UBC 0 : MergeAppendPath *apath = (MergeAppendPath *) path;
1971 : : Bitmapset *pserials;
1972 : : ListCell *lc;
1973 : :
1974 : 0 : pserials = NULL;
1975 [ # # # # : 0 : foreach(lc, apath->subpaths)
# # ]
1976 : : {
1977 : 0 : Path *subpath = (Path *) lfirst(lc);
1978 : : Bitmapset *subserials;
1979 : :
1980 : 0 : subserials = get_param_path_clause_serials(subpath);
1981 [ # # ]: 0 : if (lc == list_head(apath->subpaths))
1982 : 0 : pserials = bms_copy(subserials);
1983 : : else
1984 : 0 : pserials = bms_int_members(pserials, subserials);
1985 : : }
1986 : 0 : return pserials;
1987 : : }
1988 : : else
1989 : : {
1990 : : /*
1991 : : * Otherwise, it's a baserel path and we can use the
1992 : : * previously-computed set of serial numbers.
1993 : : */
440 tgl@sss.pgh.pa.us 1994 :CBC 166526 : return path->param_info->ppi_serials;
1995 : : }
1996 : : }
1997 : :
1998 : : /*
1999 : : * build_joinrel_partition_info
2000 : : * Checks if the two relations being joined can use partitionwise join
2001 : : * and if yes, initialize partitioning information of the resulting
2002 : : * partitioned join relation.
2003 : : */
2004 : : static void
2005 : 90893 : build_joinrel_partition_info(PlannerInfo *root,
2006 : : RelOptInfo *joinrel, RelOptInfo *outer_rel,
2007 : : RelOptInfo *inner_rel, SpecialJoinInfo *sjinfo,
2008 : : List *restrictlist)
2009 : : {
2010 : : PartitionScheme part_scheme;
2011 : :
2012 : : /* Nothing to do if partitionwise join technique is disabled. */
2249 peter_e@gmx.net 2013 [ + + ]: 90893 : if (!enable_partitionwise_join)
2014 : : {
2382 rhaas@postgresql.org 2015 [ - + - - : 87620 : Assert(!IS_PARTITIONED_REL(joinrel));
- - - - -
- ]
2016 : 87620 : return;
2017 : : }
2018 : :
2019 : : /*
2020 : : * We can only consider this join as an input to further partitionwise
2021 : : * joins if (a) the input relations are partitioned and have
2022 : : * consider_partitionwise_join=true, (b) the partition schemes match, and
2023 : : * (c) we can identify an equi-join between the partition keys. Note that
2024 : : * if it were possible for have_partkey_equi_join to return different
2025 : : * answers for the same joinrel depending on which join ordering we try
2026 : : * first, this logic would break. That shouldn't happen, though, because
2027 : : * of the way the query planner deduces implied equalities and reorders
2028 : : * the joins. Please see optimizer/README for details.
2029 : : */
1467 efujita@postgresql.o 2030 [ + + + + ]: 3273 : if (outer_rel->part_scheme == NULL || inner_rel->part_scheme == NULL ||
2053 2031 [ + + ]: 1066 : !outer_rel->consider_partitionwise_join ||
2032 [ + + ]: 1044 : !inner_rel->consider_partitionwise_join ||
2382 rhaas@postgresql.org 2033 [ + + ]: 1026 : outer_rel->part_scheme != inner_rel->part_scheme ||
440 tgl@sss.pgh.pa.us 2034 [ + + ]: 1014 : !have_partkey_equi_join(root, joinrel, outer_rel, inner_rel,
2035 : : sjinfo->jointype, restrictlist))
2036 : : {
2382 rhaas@postgresql.org 2037 [ - + - - : 2328 : Assert(!IS_PARTITIONED_REL(joinrel));
- - - - -
- ]
2038 : 2328 : return;
2039 : : }
2040 : :
2041 : 945 : part_scheme = outer_rel->part_scheme;
2042 : :
2043 : : /*
2044 : : * This function will be called only once for each joinrel, hence it
2045 : : * should not have partitioning fields filled yet.
2046 : : */
2047 [ + - + - : 945 : Assert(!joinrel->part_scheme && !joinrel->partexprs &&
+ - + - -
+ ]
2048 : : !joinrel->nullable_partexprs && !joinrel->part_rels &&
2049 : : !joinrel->boundinfo);
2050 : :
2051 : : /*
2052 : : * If the join relation is partitioned, it uses the same partitioning
2053 : : * scheme as the joining relations.
2054 : : *
2055 : : * Note: we calculate the partition bounds, number of partitions, and
2056 : : * child-join relations of the join relation in try_partitionwise_join().
2057 : : */
2058 : 945 : joinrel->part_scheme = part_scheme;
440 tgl@sss.pgh.pa.us 2059 : 945 : set_joinrel_partition_key_exprs(joinrel, outer_rel, inner_rel,
2060 : : sjinfo->jointype);
2061 : :
2062 : : /*
2063 : : * Set the consider_partitionwise_join flag.
2064 : : */
2053 efujita@postgresql.o 2065 [ - + ]: 945 : Assert(outer_rel->consider_partitionwise_join);
2066 [ - + ]: 945 : Assert(inner_rel->consider_partitionwise_join);
2067 : 945 : joinrel->consider_partitionwise_join = true;
2068 : : }
2069 : :
2070 : : /*
2071 : : * have_partkey_equi_join
2072 : : *
2073 : : * Returns true if there exist equi-join conditions involving pairs
2074 : : * of matching partition keys of the relations being joined for all
2075 : : * partition keys.
2076 : : */
2077 : : static bool
440 tgl@sss.pgh.pa.us 2078 : 1014 : have_partkey_equi_join(PlannerInfo *root, RelOptInfo *joinrel,
2079 : : RelOptInfo *rel1, RelOptInfo *rel2,
2080 : : JoinType jointype, List *restrictlist)
2081 : : {
1472 2082 : 1014 : PartitionScheme part_scheme = rel1->part_scheme;
2083 : : ListCell *lc;
2084 : : int cnt_pks;
2085 : : bool pk_has_clause[PARTITION_MAX_KEYS];
2086 : : bool strict_op;
2087 : :
2088 : : /*
2089 : : * This function must only be called when the joined relations have same
2090 : : * partitioning scheme.
2091 : : */
2092 [ - + ]: 1014 : Assert(rel1->part_scheme == rel2->part_scheme);
2093 [ - + ]: 1014 : Assert(part_scheme);
2094 : :
2095 : 1014 : memset(pk_has_clause, 0, sizeof(pk_has_clause));
2096 [ + - + + : 2684 : foreach(lc, restrictlist)
+ + ]
2097 : : {
2098 : 1670 : RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc);
2099 : : OpExpr *opexpr;
2100 : : Expr *expr1;
2101 : : Expr *expr2;
2102 : : int ipk1;
2103 : : int ipk2;
2104 : :
2105 : : /* If processing an outer join, only use its own join clauses. */
2106 [ + + ]: 1670 : if (IS_OUTER_JOIN(jointype) &&
2107 [ + + - + ]: 921 : RINFO_IS_PUSHED_DOWN(rinfo, joinrel->relids))
2108 : 150 : continue;
2109 : :
2110 : : /* Skip clauses which can not be used for a join. */
2111 [ + + ]: 1520 : if (!rinfo->can_join)
2112 : 9 : continue;
2113 : :
2114 : : /* Skip clauses which are not equality conditions. */
2115 [ + + + - ]: 1511 : if (!rinfo->mergeopfamilies && !OidIsValid(rinfo->hashjoinoperator))
2116 : 3 : continue;
2117 : :
2118 : : /* Should be OK to assume it's an OpExpr. */
2119 : 1508 : opexpr = castNode(OpExpr, rinfo->clause);
2120 : :
2121 : : /* Match the operands to the relation. */
2122 [ + + + - ]: 2927 : if (bms_is_subset(rinfo->left_relids, rel1->relids) &&
2123 : 1419 : bms_is_subset(rinfo->right_relids, rel2->relids))
2124 : : {
2125 : 1419 : expr1 = linitial(opexpr->args);
2126 : 1419 : expr2 = lsecond(opexpr->args);
2127 : : }
2128 [ + - + - ]: 178 : else if (bms_is_subset(rinfo->left_relids, rel2->relids) &&
2129 : 89 : bms_is_subset(rinfo->right_relids, rel1->relids))
2130 : : {
2131 : 89 : expr1 = lsecond(opexpr->args);
2132 : 89 : expr2 = linitial(opexpr->args);
2133 : : }
2134 : : else
1472 tgl@sss.pgh.pa.us 2135 :UBC 0 : continue;
2136 : :
2137 : : /*
2138 : : * Now we need to know whether the join operator is strict; see
2139 : : * comments in pathnodes.h.
2140 : : */
1472 tgl@sss.pgh.pa.us 2141 :CBC 1508 : strict_op = op_strict(opexpr->opno);
2142 : :
2143 : : /*
2144 : : * Vars appearing in the relation's partition keys will not have any
2145 : : * varnullingrels, but those in expr1 and expr2 will if we're above
2146 : : * outer joins that could null the respective rels. It's okay to
2147 : : * match anyway, if the join operator is strict.
2148 : : */
440 2149 [ + - ]: 1508 : if (strict_op)
2150 : : {
2151 [ + + ]: 1508 : if (bms_overlap(rel1->relids, root->outer_join_rels))
2152 : 108 : expr1 = (Expr *) remove_nulling_relids((Node *) expr1,
2153 : 108 : root->outer_join_rels,
2154 : : NULL);
2155 [ - + ]: 1508 : if (bms_overlap(rel2->relids, root->outer_join_rels))
440 tgl@sss.pgh.pa.us 2156 :UBC 0 : expr2 = (Expr *) remove_nulling_relids((Node *) expr2,
2157 : 0 : root->outer_join_rels,
2158 : : NULL);
2159 : : }
2160 : :
2161 : : /*
2162 : : * Only clauses referencing the partition keys are useful for
2163 : : * partitionwise join.
2164 : : */
1472 tgl@sss.pgh.pa.us 2165 :CBC 1508 : ipk1 = match_expr_to_partition_keys(expr1, rel1, strict_op);
2166 [ + + ]: 1508 : if (ipk1 < 0)
2167 : 551 : continue;
2168 : 957 : ipk2 = match_expr_to_partition_keys(expr2, rel2, strict_op);
2169 [ - + ]: 957 : if (ipk2 < 0)
1472 tgl@sss.pgh.pa.us 2170 :UBC 0 : continue;
2171 : :
2172 : : /*
2173 : : * If the clause refers to keys at different ordinal positions, it can
2174 : : * not be used for partitionwise join.
2175 : : */
1472 tgl@sss.pgh.pa.us 2176 [ + + ]:CBC 957 : if (ipk1 != ipk2)
2177 : 3 : continue;
2178 : :
2179 : : /*
2180 : : * The clause allows partitionwise join only if it uses the same
2181 : : * operator family as that specified by the partition key.
2182 : : */
2183 [ + + ]: 954 : if (rel1->part_scheme->strategy == PARTITION_STRATEGY_HASH)
2184 : : {
2185 [ + - ]: 24 : if (!OidIsValid(rinfo->hashjoinoperator) ||
2186 [ - + ]: 24 : !op_in_opfamily(rinfo->hashjoinoperator,
2187 : 24 : part_scheme->partopfamily[ipk1]))
1472 tgl@sss.pgh.pa.us 2188 :UBC 0 : continue;
2189 : : }
1472 tgl@sss.pgh.pa.us 2190 [ - + ]:CBC 930 : else if (!list_member_oid(rinfo->mergeopfamilies,
2191 : 930 : part_scheme->partopfamily[ipk1]))
1472 tgl@sss.pgh.pa.us 2192 :UBC 0 : continue;
2193 : :
2194 : : /* Mark the partition key as having an equi-join clause. */
1472 tgl@sss.pgh.pa.us 2195 :CBC 954 : pk_has_clause[ipk1] = true;
2196 : : }
2197 : :
2198 : : /* Check whether every partition key has an equi-join condition. */
2199 [ + + ]: 1968 : for (cnt_pks = 0; cnt_pks < part_scheme->partnatts; cnt_pks++)
2200 : : {
2201 [ + + ]: 1023 : if (!pk_has_clause[cnt_pks])
2202 : 69 : return false;
2203 : : }
2204 : :
2205 : 945 : return true;
2206 : : }
2207 : :
2208 : : /*
2209 : : * match_expr_to_partition_keys
2210 : : *
2211 : : * Tries to match an expression to one of the nullable or non-nullable
2212 : : * partition keys of "rel". Returns the matched key's ordinal position,
2213 : : * or -1 if the expression could not be matched to any of the keys.
2214 : : *
2215 : : * strict_op must be true if the expression will be compared with the
2216 : : * partition key using a strict operator. This allows us to consider
2217 : : * nullable as well as nonnullable partition keys.
2218 : : */
2219 : : static int
2220 : 2465 : match_expr_to_partition_keys(Expr *expr, RelOptInfo *rel, bool strict_op)
2221 : : {
2222 : : int cnt;
2223 : :
2224 : : /* This function should be called only for partitioned relations. */
2225 [ - + ]: 2465 : Assert(rel->part_scheme);
2226 [ - + ]: 2465 : Assert(rel->partexprs);
2227 [ - + ]: 2465 : Assert(rel->nullable_partexprs);
2228 : :
2229 : : /* Remove any relabel decorations. */
2230 [ + + ]: 2621 : while (IsA(expr, RelabelType))
2231 : 156 : expr = (Expr *) (castNode(RelabelType, expr))->arg;
2232 : :
2233 [ + + ]: 3034 : for (cnt = 0; cnt < rel->part_scheme->partnatts; cnt++)
2234 : : {
2235 : : ListCell *lc;
2236 : :
2237 : : /* We can always match to the non-nullable partition keys. */
2238 [ + + + + : 3052 : foreach(lc, rel->partexprs[cnt])
+ + ]
2239 : : {
2240 [ + + ]: 2441 : if (equal(lfirst(lc), expr))
2241 : 1872 : return cnt;
2242 : : }
2243 : :
2244 [ - + ]: 611 : if (!strict_op)
1472 tgl@sss.pgh.pa.us 2245 :UBC 0 : continue;
2246 : :
2247 : : /*
2248 : : * If it's a strict join operator then a NULL partition key on one
2249 : : * side will not join to any partition key on the other side, and in
2250 : : * particular such a row can't join to a row from a different
2251 : : * partition on the other side. So, it's okay to search the nullable
2252 : : * partition keys as well.
2253 : : */
1472 tgl@sss.pgh.pa.us 2254 [ + + + + :CBC 761 : foreach(lc, rel->nullable_partexprs[cnt])
+ + ]
2255 : : {
2256 [ + + ]: 192 : if (equal(lfirst(lc), expr))
2257 : 42 : return cnt;
2258 : : }
2259 : : }
2260 : :
2261 : 551 : return -1;
2262 : : }
2263 : :
2264 : : /*
2265 : : * set_joinrel_partition_key_exprs
2266 : : * Initialize partition key expressions for a partitioned joinrel.
2267 : : */
2268 : : static void
2269 : 945 : set_joinrel_partition_key_exprs(RelOptInfo *joinrel,
2270 : : RelOptInfo *outer_rel, RelOptInfo *inner_rel,
2271 : : JoinType jointype)
2272 : : {
1468 2273 : 945 : PartitionScheme part_scheme = joinrel->part_scheme;
2274 : 945 : int partnatts = part_scheme->partnatts;
2275 : :
1472 2276 : 945 : joinrel->partexprs = (List **) palloc0(sizeof(List *) * partnatts);
2277 : 945 : joinrel->nullable_partexprs =
2278 : 945 : (List **) palloc0(sizeof(List *) * partnatts);
2279 : :
2280 : : /*
2281 : : * The joinrel's partition expressions are the same as those of the input
2282 : : * rels, but we must properly classify them as nullable or not in the
2283 : : * joinrel's output. (Also, we add some more partition expressions if
2284 : : * it's a FULL JOIN.)
2285 : : */
2286 [ + + ]: 1896 : for (int cnt = 0; cnt < partnatts; cnt++)
2287 : : {
2288 : : /* mark these const to enforce that we copy them properly */
1707 2289 : 951 : const List *outer_expr = outer_rel->partexprs[cnt];
2290 : 951 : const List *outer_null_expr = outer_rel->nullable_partexprs[cnt];
2291 : 951 : const List *inner_expr = inner_rel->partexprs[cnt];
2292 : 951 : const List *inner_null_expr = inner_rel->nullable_partexprs[cnt];
2382 rhaas@postgresql.org 2293 : 951 : List *partexpr = NIL;
2294 : 951 : List *nullable_partexpr = NIL;
2295 : : ListCell *lc;
2296 : :
2297 [ + + + + : 951 : switch (jointype)
- ]
2298 : : {
2299 : : /*
2300 : : * A join relation resulting from an INNER join may be
2301 : : * regarded as partitioned by either of the inner and outer
2302 : : * relation keys. For example, A INNER JOIN B ON A.a = B.b
2303 : : * can be regarded as partitioned on either A.a or B.b. So we
2304 : : * add both keys to the joinrel's partexpr lists. However,
2305 : : * anything that was already nullable still has to be treated
2306 : : * as nullable.
2307 : : */
2308 : 389 : case JOIN_INNER:
1707 tgl@sss.pgh.pa.us 2309 : 389 : partexpr = list_concat_copy(outer_expr, inner_expr);
2310 : 389 : nullable_partexpr = list_concat_copy(outer_null_expr,
2311 : : inner_null_expr);
2382 rhaas@postgresql.org 2312 : 389 : break;
2313 : :
2314 : : /*
2315 : : * A join relation resulting from a SEMI or ANTI join may be
2316 : : * regarded as partitioned by the outer relation keys. The
2317 : : * inner relation's keys are no longer interesting; since they
2318 : : * aren't visible in the join output, nothing could join to
2319 : : * them.
2320 : : */
2321 : 132 : case JOIN_SEMI:
2322 : : case JOIN_ANTI:
1707 tgl@sss.pgh.pa.us 2323 : 132 : partexpr = list_copy(outer_expr);
2324 : 132 : nullable_partexpr = list_copy(outer_null_expr);
2382 rhaas@postgresql.org 2325 : 132 : break;
2326 : :
2327 : : /*
2328 : : * A join relation resulting from a LEFT OUTER JOIN likewise
2329 : : * may be regarded as partitioned on the (non-nullable) outer
2330 : : * relation keys. The inner (nullable) relation keys are okay
2331 : : * as partition keys for further joins as long as they involve
2332 : : * strict join operators.
2333 : : */
2334 : 287 : case JOIN_LEFT:
1707 tgl@sss.pgh.pa.us 2335 : 287 : partexpr = list_copy(outer_expr);
2336 : 287 : nullable_partexpr = list_concat_copy(inner_expr,
2337 : : outer_null_expr);
2382 rhaas@postgresql.org 2338 : 287 : nullable_partexpr = list_concat(nullable_partexpr,
2339 : : inner_null_expr);
2340 : 287 : break;
2341 : :
2342 : : /*
2343 : : * For FULL OUTER JOINs, both relations are nullable, so the
2344 : : * resulting join relation may be regarded as partitioned on
2345 : : * either of inner and outer relation keys, but only for joins
2346 : : * that involve strict join operators.
2347 : : */
2348 : 143 : case JOIN_FULL:
1707 tgl@sss.pgh.pa.us 2349 : 143 : nullable_partexpr = list_concat_copy(outer_expr,
2350 : : inner_expr);
2382 rhaas@postgresql.org 2351 : 143 : nullable_partexpr = list_concat(nullable_partexpr,
2352 : : outer_null_expr);
2353 : 143 : nullable_partexpr = list_concat(nullable_partexpr,
2354 : : inner_null_expr);
2355 : :
2356 : : /*
2357 : : * Also add CoalesceExprs corresponding to each possible
2358 : : * full-join output variable (that is, left side coalesced to
2359 : : * right side), so that we can match equijoin expressions
2360 : : * using those variables. We really only need these for
2361 : : * columns merged by JOIN USING, and only with the pairs of
2362 : : * input items that correspond to the data structures that
2363 : : * parse analysis would build for such variables. But it's
2364 : : * hard to tell which those are, so just make all the pairs.
2365 : : * Extra items in the nullable_partexprs list won't cause big
2366 : : * problems. (It's possible that such items will get matched
2367 : : * to user-written COALESCEs, but it should still be valid to
2368 : : * partition on those, since they're going to be either the
2369 : : * partition column or NULL; it's the same argument as for
2370 : : * partitionwise nesting of any outer join.) We assume no
2371 : : * type coercions are needed to make the coalesce expressions,
2372 : : * since columns of different types won't have gotten
2373 : : * classified as the same PartitionScheme. Note that we
2374 : : * intentionally leave out the varnullingrels decoration that
2375 : : * would ordinarily appear on the Vars inside these
2376 : : * CoalesceExprs, because have_partkey_equi_join will strip
2377 : : * varnullingrels from the expressions it will compare to the
2378 : : * partexprs.
2379 : : */
1468 tgl@sss.pgh.pa.us 2380 [ + - + + : 364 : foreach(lc, list_concat_copy(outer_expr, outer_null_expr))
+ + ]
2381 : : {
2382 : 221 : Node *larg = (Node *) lfirst(lc);
2383 : : ListCell *lc2;
2384 : :
2385 [ + - + + : 442 : foreach(lc2, list_concat_copy(inner_expr, inner_null_expr))
+ + ]
2386 : : {
2387 : 221 : Node *rarg = (Node *) lfirst(lc2);
2388 : 221 : CoalesceExpr *c = makeNode(CoalesceExpr);
2389 : :
2390 : 221 : c->coalescetype = exprType(larg);
2391 : 221 : c->coalescecollid = exprCollation(larg);
2392 : 221 : c->args = list_make2(larg, rarg);
2393 : 221 : c->location = -1;
2394 : 221 : nullable_partexpr = lappend(nullable_partexpr, c);
2395 : : }
2396 : : }
2382 rhaas@postgresql.org 2397 : 143 : break;
2398 : :
2382 rhaas@postgresql.org 2399 :UBC 0 : default:
2400 [ # # ]: 0 : elog(ERROR, "unrecognized join type: %d", (int) jointype);
2401 : : }
2402 : :
2382 rhaas@postgresql.org 2403 :CBC 951 : joinrel->partexprs[cnt] = partexpr;
2404 : 951 : joinrel->nullable_partexprs[cnt] = nullable_partexpr;
2405 : : }
2406 : 945 : }
2407 : :
2408 : : /*
2409 : : * build_child_join_reltarget
2410 : : * Set up a child-join relation's reltarget from a parent-join relation.
2411 : : */
2412 : : static void
2053 efujita@postgresql.o 2413 : 2312 : build_child_join_reltarget(PlannerInfo *root,
2414 : : RelOptInfo *parentrel,
2415 : : RelOptInfo *childrel,
2416 : : int nappinfos,
2417 : : AppendRelInfo **appinfos)
2418 : : {
2419 : : /* Build the targetlist */
2420 : 4624 : childrel->reltarget->exprs = (List *)
2421 : 2312 : adjust_appendrel_attrs(root,
2422 : 2312 : (Node *) parentrel->reltarget->exprs,
2423 : : nappinfos, appinfos);
2424 : :
2425 : : /* Set the cost and width fields */
2426 : 2312 : childrel->reltarget->cost.startup = parentrel->reltarget->cost.startup;
2427 : 2312 : childrel->reltarget->cost.per_tuple = parentrel->reltarget->cost.per_tuple;
2428 : 2312 : childrel->reltarget->width = parentrel->reltarget->width;
2429 : 2312 : }
|