Age Owner Branch data TLA Line data Source code
1 : : /*-------------------------------------------------------------------------
2 : : *
3 : : * bloomfilter.c
4 : : * Space-efficient set membership testing
5 : : *
6 : : * A Bloom filter is a probabilistic data structure that is used to test an
7 : : * element's membership of a set. False positives are possible, but false
8 : : * negatives are not; a test of membership of the set returns either "possibly
9 : : * in set" or "definitely not in set". This is typically very space efficient,
10 : : * which can be a decisive advantage.
11 : : *
12 : : * Elements can be added to the set, but not removed. The more elements that
13 : : * are added, the larger the probability of false positives. Caller must hint
14 : : * an estimated total size of the set when the Bloom filter is initialized.
15 : : * This is used to balance the use of memory against the final false positive
16 : : * rate.
17 : : *
18 : : * The implementation is well suited to data synchronization problems between
19 : : * unordered sets, especially where predictable performance is important and
20 : : * some false positives are acceptable. It's also well suited to cache
21 : : * filtering problems where a relatively small and/or low cardinality set is
22 : : * fingerprinted, especially when many subsequent membership tests end up
23 : : * indicating that values of interest are not present. That should save the
24 : : * caller many authoritative lookups, such as expensive probes of a much larger
25 : : * on-disk structure.
26 : : *
27 : : * Copyright (c) 2018-2024, PostgreSQL Global Development Group
28 : : *
29 : : * IDENTIFICATION
30 : : * src/backend/lib/bloomfilter.c
31 : : *
32 : : *-------------------------------------------------------------------------
33 : : */
34 : : #include "postgres.h"
35 : :
36 : : #include <math.h>
37 : :
38 : : #include "common/hashfn.h"
39 : : #include "lib/bloomfilter.h"
40 : : #include "port/pg_bitutils.h"
41 : :
42 : : #define MAX_HASH_FUNCS 10
43 : :
44 : : struct bloom_filter
45 : : {
46 : : /* K hash functions are used, seeded by caller's seed */
47 : : int k_hash_funcs;
48 : : uint64 seed;
49 : : /* m is bitset size, in bits. Must be a power of two <= 2^32. */
50 : : uint64 m;
51 : : unsigned char bitset[FLEXIBLE_ARRAY_MEMBER];
52 : : };
53 : :
54 : : static int my_bloom_power(uint64 target_bitset_bits);
55 : : static int optimal_k(uint64 bitset_bits, int64 total_elems);
56 : : static void k_hashes(bloom_filter *filter, uint32 *hashes, unsigned char *elem,
57 : : size_t len);
58 : : static inline uint32 mod_m(uint32 val, uint64 m);
59 : :
60 : : /*
61 : : * Create Bloom filter in caller's memory context. We aim for a false positive
62 : : * rate of between 1% and 2% when bitset size is not constrained by memory
63 : : * availability.
64 : : *
65 : : * total_elems is an estimate of the final size of the set. It should be
66 : : * approximately correct, but the implementation can cope well with it being
67 : : * off by perhaps a factor of five or more. See "Bloom Filters in
68 : : * Probabilistic Verification" (Dillinger & Manolios, 2004) for details of why
69 : : * this is the case.
70 : : *
71 : : * bloom_work_mem is sized in KB, in line with the general work_mem convention.
72 : : * This determines the size of the underlying bitset (trivial bookkeeping space
73 : : * isn't counted). The bitset is always sized as a power of two number of
74 : : * bits, and the largest possible bitset is 512MB (2^32 bits). The
75 : : * implementation allocates only enough memory to target its standard false
76 : : * positive rate, using a simple formula with caller's total_elems estimate as
77 : : * an input. The bitset might be as small as 1MB, even when bloom_work_mem is
78 : : * much higher.
79 : : *
80 : : * The Bloom filter is seeded using a value provided by the caller. Using a
81 : : * distinct seed value on every call makes it unlikely that the same false
82 : : * positives will reoccur when the same set is fingerprinted a second time.
83 : : * Callers that don't care about this pass a constant as their seed, typically
84 : : * 0. Callers can also use a pseudo-random seed, eg from pg_prng_uint64().
85 : : */
86 : : bloom_filter *
2206 andres@anarazel.de 87 :CBC 84 : bloom_create(int64 total_elems, int bloom_work_mem, uint64 seed)
88 : : {
89 : : bloom_filter *filter;
90 : : int bloom_power;
91 : : uint64 bitset_bytes;
92 : : uint64 bitset_bits;
93 : :
94 : : /*
95 : : * Aim for two bytes per element; this is sufficient to get a false
96 : : * positive rate below 1%, independent of the size of the bitset or total
97 : : * number of elements. Also, if rounding down the size of the bitset to
98 : : * the next lowest power of two turns out to be a significant drop, the
99 : : * false positive rate still won't exceed 2% in almost all cases.
100 : : */
101 : 84 : bitset_bytes = Min(bloom_work_mem * UINT64CONST(1024), total_elems * 2);
102 : 84 : bitset_bytes = Max(1024 * 1024, bitset_bytes);
103 : :
104 : : /*
105 : : * Size in bits should be the highest power of two <= target. bitset_bits
106 : : * is uint64 because PG_UINT32_MAX is 2^32 - 1, not 2^32
107 : : */
108 : 84 : bloom_power = my_bloom_power(bitset_bytes * BITS_PER_BYTE);
109 : 84 : bitset_bits = UINT64CONST(1) << bloom_power;
110 : 84 : bitset_bytes = bitset_bits / BITS_PER_BYTE;
111 : :
112 : : /* Allocate bloom filter with unset bitset */
113 : 84 : filter = palloc0(offsetof(bloom_filter, bitset) +
114 : : sizeof(unsigned char) * bitset_bytes);
115 : 84 : filter->k_hash_funcs = optimal_k(bitset_bits, total_elems);
116 : 84 : filter->seed = seed;
117 : 84 : filter->m = bitset_bits;
118 : :
119 : 84 : return filter;
120 : : }
121 : :
122 : : /*
123 : : * Free Bloom filter
124 : : */
125 : : void
126 : 75 : bloom_free(bloom_filter *filter)
127 : : {
128 : 75 : pfree(filter);
129 : 75 : }
130 : :
131 : : /*
132 : : * Add element to Bloom filter
133 : : */
134 : : void
135 : 1376134 : bloom_add_element(bloom_filter *filter, unsigned char *elem, size_t len)
136 : : {
137 : : uint32 hashes[MAX_HASH_FUNCS];
138 : : int i;
139 : :
140 : 1376134 : k_hashes(filter, hashes, elem, len);
141 : :
142 : : /* Map a bit-wise address to a byte-wise address + bit offset */
143 [ + + ]: 12620891 : for (i = 0; i < filter->k_hash_funcs; i++)
144 : : {
145 : 11244757 : filter->bitset[hashes[i] >> 3] |= 1 << (hashes[i] & 7);
146 : : }
147 : 1376134 : }
148 : :
149 : : /*
150 : : * Test if Bloom filter definitely lacks element.
151 : : *
152 : : * Returns true if the element is definitely not in the set of elements
153 : : * observed by bloom_add_element(). Otherwise, returns false, indicating that
154 : : * element is probably present in set.
155 : : */
156 : : bool
157 : 1373729 : bloom_lacks_element(bloom_filter *filter, unsigned char *elem, size_t len)
158 : : {
159 : : uint32 hashes[MAX_HASH_FUNCS];
160 : : int i;
161 : :
162 : 1373729 : k_hashes(filter, hashes, elem, len);
163 : :
164 : : /* Map a bit-wise address to a byte-wise address + bit offset */
165 [ + + ]: 7568114 : for (i = 0; i < filter->k_hash_funcs; i++)
166 : : {
167 [ + + ]: 7026225 : if (!(filter->bitset[hashes[i] >> 3] & (1 << (hashes[i] & 7))))
168 : 831840 : return true;
169 : : }
170 : :
171 : 541889 : return false;
172 : : }
173 : :
174 : : /*
175 : : * What proportion of bits are currently set?
176 : : *
177 : : * Returns proportion, expressed as a multiplier of filter size. That should
178 : : * generally be close to 0.5, even when we have more than enough memory to
179 : : * ensure a false positive rate within target 1% to 2% band, since more hash
180 : : * functions are used as more memory is available per element.
181 : : *
182 : : * This is the only instrumentation that is low overhead enough to appear in
183 : : * debug traces. When debugging Bloom filter code, it's likely to be far more
184 : : * interesting to directly test the false positive rate.
185 : : */
186 : : double
187 : 2 : bloom_prop_bits_set(bloom_filter *filter)
188 : : {
189 : 2 : int bitset_bytes = filter->m / BITS_PER_BYTE;
1885 tgl@sss.pgh.pa.us 190 : 2 : uint64 bits_set = pg_popcount((char *) filter->bitset, bitset_bytes);
191 : :
2206 andres@anarazel.de 192 : 2 : return bits_set / (double) filter->m;
193 : : }
194 : :
195 : : /*
196 : : * Which element in the sequence of powers of two is less than or equal to
197 : : * target_bitset_bits?
198 : : *
199 : : * Value returned here must be generally safe as the basis for actual bitset
200 : : * size.
201 : : *
202 : : * Bitset is never allowed to exceed 2 ^ 32 bits (512MB). This is sufficient
203 : : * for the needs of all current callers, and allows us to use 32-bit hash
204 : : * functions. It also makes it easy to stay under the MaxAllocSize restriction
205 : : * (caller needs to leave room for non-bitset fields that appear before
206 : : * flexible array member, so a 1GB bitset would use an allocation that just
207 : : * exceeds MaxAllocSize).
208 : : */
209 : : static int
210 : 84 : my_bloom_power(uint64 target_bitset_bits)
211 : : {
212 : 84 : int bloom_power = -1;
213 : :
214 [ + + + - ]: 2100 : while (target_bitset_bits > 0 && bloom_power < 32)
215 : : {
216 : 2016 : bloom_power++;
217 : 2016 : target_bitset_bits >>= 1;
218 : : }
219 : :
220 : 84 : return bloom_power;
221 : : }
222 : :
223 : : /*
224 : : * Determine optimal number of hash functions based on size of filter in bits,
225 : : * and projected total number of elements. The optimal number is the number
226 : : * that minimizes the false positive rate.
227 : : */
228 : : static int
229 : 84 : optimal_k(uint64 bitset_bits, int64 total_elems)
230 : : {
231 : 84 : int k = rint(log(2.0) * bitset_bits / total_elems);
232 : :
233 [ + - ]: 84 : return Max(1, Min(k, MAX_HASH_FUNCS));
234 : : }
235 : :
236 : : /*
237 : : * Generate k hash values for element.
238 : : *
239 : : * Caller passes array, which is filled-in with k values determined by hashing
240 : : * caller's element.
241 : : *
242 : : * Only 2 real independent hash functions are actually used to support an
243 : : * interface of up to MAX_HASH_FUNCS hash functions; enhanced double hashing is
244 : : * used to make this work. The main reason we prefer enhanced double hashing
245 : : * to classic double hashing is that the latter has an issue with collisions
246 : : * when using power of two sized bitsets. See Dillinger & Manolios for full
247 : : * details.
248 : : */
249 : : static void
250 : 2749863 : k_hashes(bloom_filter *filter, uint32 *hashes, unsigned char *elem, size_t len)
251 : : {
252 : : uint64 hash;
253 : : uint32 x,
254 : : y;
255 : : uint64 m;
256 : : int i;
257 : :
258 : : /* Use 64-bit hashing to get two independent 32-bit hashes */
259 : 2749863 : hash = DatumGetUInt64(hash_any_extended(elem, len, filter->seed));
260 : 2749863 : x = (uint32) hash;
261 : 2749863 : y = (uint32) (hash >> 32);
262 : 2749863 : m = filter->m;
263 : :
264 : 2749863 : x = mod_m(x, m);
265 : 2749863 : y = mod_m(y, m);
266 : :
267 : : /* Accumulate hashes */
268 : 2749863 : hashes[0] = x;
269 [ + + ]: 22465464 : for (i = 1; i < filter->k_hash_funcs; i++)
270 : : {
271 : 19715601 : x = mod_m(x + y, m);
272 : 19715601 : y = mod_m(y + i, m);
273 : :
274 : 19715601 : hashes[i] = x;
275 : : }
276 : 2749863 : }
277 : :
278 : : /*
279 : : * Calculate "val MOD m" inexpensively.
280 : : *
281 : : * Assumes that m (which is bitset size) is a power of two.
282 : : *
283 : : * Using a power of two number of bits for bitset size allows us to use bitwise
284 : : * AND operations to calculate the modulo of a hash value. It's also a simple
285 : : * way of avoiding the modulo bias effect.
286 : : */
287 : : static inline uint32
288 : 44930928 : mod_m(uint32 val, uint64 m)
289 : : {
290 [ - + ]: 44930928 : Assert(m <= PG_UINT32_MAX + UINT64CONST(1));
291 [ - + ]: 44930928 : Assert(((m - 1) & m) == 0);
292 : :
293 : 44930928 : return val & (m - 1);
294 : : }
|