LCOV - differential code coverage report
Current view: top level - src/common - d2s.c (source / functions) Coverage Total Hit UBC CBC
Current: Differential Code Coverage HEAD vs 15 Lines: 93.9 % 327 307 20 307
Current Date: 2023-04-08 17:13:01 Functions: 92.3 % 13 12 1 12
Baseline: 15 Line coverage date bins:
Baseline Date: 2023-04-08 15:09:40 (240..) days: 93.9 % 327 307 20 307
Legend: Lines: hit not hit Function coverage date bins:
(240..) days: 92.3 % 13 12 1 12

 Age         Owner                  TLA  Line data    Source code
                                  1                 : /*---------------------------------------------------------------------------
                                  2                 :  *
                                  3                 :  * Ryu floating-point output for double precision.
                                  4                 :  *
                                  5                 :  * Portions Copyright (c) 2018-2023, PostgreSQL Global Development Group
                                  6                 :  *
                                  7                 :  * IDENTIFICATION
                                  8                 :  *    src/common/d2s.c
                                  9                 :  *
                                 10                 :  * This is a modification of code taken from github.com/ulfjack/ryu under the
                                 11                 :  * terms of the Boost license (not the Apache license). The original copyright
                                 12                 :  * notice follows:
                                 13                 :  *
                                 14                 :  * Copyright 2018 Ulf Adams
                                 15                 :  *
                                 16                 :  * The contents of this file may be used under the terms of the Apache
                                 17                 :  * License, Version 2.0.
                                 18                 :  *
                                 19                 :  *     (See accompanying file LICENSE-Apache or copy at
                                 20                 :  *      http://www.apache.org/licenses/LICENSE-2.0)
                                 21                 :  *
                                 22                 :  * Alternatively, the contents of this file may be used under the terms of the
                                 23                 :  * Boost Software License, Version 1.0.
                                 24                 :  *
                                 25                 :  *     (See accompanying file LICENSE-Boost or copy at
                                 26                 :  *      https://www.boost.org/LICENSE_1_0.txt)
                                 27                 :  *
                                 28                 :  * Unless required by applicable law or agreed to in writing, this software is
                                 29                 :  * distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
                                 30                 :  * KIND, either express or implied.
                                 31                 :  *
                                 32                 :  *---------------------------------------------------------------------------
                                 33                 :  */
                                 34                 : 
                                 35                 : /*
                                 36                 :  *  Runtime compiler options:
                                 37                 :  *
                                 38                 :  *  -DRYU_ONLY_64_BIT_OPS Avoid using uint128 or 64-bit intrinsics. Slower,
                                 39                 :  *      depending on your compiler.
                                 40                 :  */
                                 41                 : 
                                 42                 : #ifndef FRONTEND
                                 43                 : #include "postgres.h"
                                 44                 : #else
                                 45                 : #include "postgres_fe.h"
                                 46                 : #endif
                                 47                 : 
                                 48                 : #include "common/shortest_dec.h"
                                 49                 : 
                                 50                 : /*
                                 51                 :  * For consistency, we use 128-bit types if and only if the rest of PG also
                                 52                 :  * does, even though we could use them here without worrying about the
                                 53                 :  * alignment concerns that apply elsewhere.
                                 54                 :  */
                                 55                 : #if !defined(HAVE_INT128) && defined(_MSC_VER) \
                                 56                 :     && !defined(RYU_ONLY_64_BIT_OPS) && defined(_M_X64)
                                 57                 : #define HAS_64_BIT_INTRINSICS
                                 58                 : #endif
                                 59                 : 
                                 60                 : #include "ryu_common.h"
                                 61                 : #include "digit_table.h"
                                 62                 : #include "d2s_full_table.h"
                                 63                 : #include "d2s_intrinsics.h"
                                 64                 : 
                                 65                 : #define DOUBLE_MANTISSA_BITS 52
                                 66                 : #define DOUBLE_EXPONENT_BITS 11
                                 67                 : #define DOUBLE_BIAS 1023
                                 68                 : 
                                 69                 : #define DOUBLE_POW5_INV_BITCOUNT 122
                                 70                 : #define DOUBLE_POW5_BITCOUNT 121
                                 71                 : 
                                 72                 : 
                                 73                 : static inline uint32
 1516 rhodiumtoad                74 CBC         698 : pow5Factor(uint64 value)
                                 75                 : {
                                 76             698 :     uint32      count = 0;
                                 77                 : 
                                 78                 :     for (;;)
                                 79            2265 :     {
                                 80            2963 :         Assert(value != 0);
                                 81            2963 :         const uint64 q = div5(value);
                                 82            2963 :         const uint32 r = (uint32) (value - 5 * q);
                                 83                 : 
                                 84            2963 :         if (r != 0)
                                 85             698 :             break;
                                 86                 : 
                                 87            2265 :         value = q;
                                 88            2265 :         ++count;
                                 89                 :     }
                                 90             698 :     return count;
                                 91                 : }
                                 92                 : 
                                 93                 : /*  Returns true if value is divisible by 5^p. */
                                 94                 : static inline bool
                                 95             698 : multipleOfPowerOf5(const uint64 value, const uint32 p)
                                 96                 : {
                                 97                 :     /*
                                 98                 :      * I tried a case distinction on p, but there was no performance
                                 99                 :      * difference.
                                100                 :      */
                                101             698 :     return pow5Factor(value) >= p;
                                102                 : }
                                103                 : 
                                104                 : /*  Returns true if value is divisible by 2^p. */
                                105                 : static inline bool
                                106          795340 : multipleOfPowerOf2(const uint64 value, const uint32 p)
                                107                 : {
                                108                 :     /* return __builtin_ctzll(value) >= p; */
                                109          795340 :     return (value & ((UINT64CONST(1) << p) - 1)) == 0;
                                110                 : }
                                111                 : 
                                112                 : /*
                                113                 :  * We need a 64x128-bit multiplication and a subsequent 128-bit shift.
                                114                 :  *
                                115                 :  * Multiplication:
                                116                 :  *
                                117                 :  *    The 64-bit factor is variable and passed in, the 128-bit factor comes
                                118                 :  *    from a lookup table. We know that the 64-bit factor only has 55
                                119                 :  *    significant bits (i.e., the 9 topmost bits are zeros). The 128-bit
                                120                 :  *    factor only has 124 significant bits (i.e., the 4 topmost bits are
                                121                 :  *    zeros).
                                122                 :  *
                                123                 :  * Shift:
                                124                 :  *
                                125                 :  *    In principle, the multiplication result requires 55 + 124 = 179 bits to
                                126                 :  *    represent. However, we then shift this value to the right by j, which is
                                127                 :  *    at least j >= 115, so the result is guaranteed to fit into 179 - 115 =
                                128                 :  *    64 bits. This means that we only need the topmost 64 significant bits of
                                129                 :  *    the 64x128-bit multiplication.
                                130                 :  *
                                131                 :  * There are several ways to do this:
                                132                 :  *
                                133                 :  *  1. Best case: the compiler exposes a 128-bit type.
                                134                 :  *     We perform two 64x64-bit multiplications, add the higher 64 bits of the
                                135                 :  *     lower result to the higher result, and shift by j - 64 bits.
                                136                 :  *
                                137                 :  *     We explicitly cast from 64-bit to 128-bit, so the compiler can tell
                                138                 :  *     that these are only 64-bit inputs, and can map these to the best
                                139                 :  *     possible sequence of assembly instructions. x86-64 machines happen to
                                140                 :  *     have matching assembly instructions for 64x64-bit multiplications and
                                141                 :  *     128-bit shifts.
                                142                 :  *
                                143                 :  *  2. Second best case: the compiler exposes intrinsics for the x86-64
                                144                 :  *     assembly instructions mentioned in 1.
                                145                 :  *
                                146                 :  *  3. We only have 64x64 bit instructions that return the lower 64 bits of
                                147                 :  *     the result, i.e., we have to use plain C.
                                148                 :  *
                                149                 :  *     Our inputs are less than the full width, so we have three options:
                                150                 :  *     a. Ignore this fact and just implement the intrinsics manually.
                                151                 :  *     b. Split both into 31-bit pieces, which guarantees no internal
                                152                 :  *        overflow, but requires extra work upfront (unless we change the
                                153                 :  *        lookup table).
                                154                 :  *     c. Split only the first factor into 31-bit pieces, which also
                                155                 :  *        guarantees no internal overflow, but requires extra work since the
                                156                 :  *        intermediate results are not perfectly aligned.
                                157                 :  */
                                158                 : #if defined(HAVE_INT128)
                                159                 : 
                                160                 : /*  Best case: use 128-bit type. */
                                161                 : static inline uint64
                                162         2390298 : mulShift(const uint64 m, const uint64 *const mul, const int32 j)
                                163                 : {
                                164         2390298 :     const uint128 b0 = ((uint128) m) * mul[0];
                                165         2390298 :     const uint128 b2 = ((uint128) m) * mul[1];
                                166                 : 
                                167         2390298 :     return (uint64) (((b0 >> 64) + b2) >> (j - 64));
                                168                 : }
                                169                 : 
                                170                 : static inline uint64
                                171          796766 : mulShiftAll(const uint64 m, const uint64 *const mul, const int32 j,
                                172                 :             uint64 *const vp, uint64 *const vm, const uint32 mmShift)
                                173                 : {
                                174          796766 :     *vp = mulShift(4 * m + 2, mul, j);
                                175          796766 :     *vm = mulShift(4 * m - 1 - mmShift, mul, j);
                                176          796766 :     return mulShift(4 * m, mul, j);
                                177                 : }
                                178                 : 
                                179                 : #elif defined(HAS_64_BIT_INTRINSICS)
                                180                 : 
                                181                 : static inline uint64
                                182                 : mulShift(const uint64 m, const uint64 *const mul, const int32 j)
                                183                 : {
                                184                 :     /* m is maximum 55 bits */
                                185                 :     uint64      high1;
                                186                 : 
                                187                 :     /* 128 */
                                188                 :     const uint64 low1 = umul128(m, mul[1], &high1);
                                189                 : 
                                190                 :     /* 64 */
                                191                 :     uint64      high0;
                                192                 :     uint64      sum;
                                193                 : 
                                194                 :     /* 64 */
                                195                 :     umul128(m, mul[0], &high0);
                                196                 :     /* 0 */
                                197                 :     sum = high0 + low1;
                                198                 : 
                                199                 :     if (sum < high0)
                                200                 :     {
                                201                 :         ++high1;
                                202                 :         /* overflow into high1 */
                                203                 :     }
                                204                 :     return shiftright128(sum, high1, j - 64);
                                205                 : }
                                206                 : 
                                207                 : static inline uint64
                                208                 : mulShiftAll(const uint64 m, const uint64 *const mul, const int32 j,
                                209                 :             uint64 *const vp, uint64 *const vm, const uint32 mmShift)
                                210                 : {
                                211                 :     *vp = mulShift(4 * m + 2, mul, j);
                                212                 :     *vm = mulShift(4 * m - 1 - mmShift, mul, j);
                                213                 :     return mulShift(4 * m, mul, j);
                                214                 : }
                                215                 : 
                                216                 : #else                           /* // !defined(HAVE_INT128) &&
                                217                 :                                  * !defined(HAS_64_BIT_INTRINSICS) */
                                218                 : 
                                219                 : static inline uint64
                                220                 : mulShiftAll(uint64 m, const uint64 *const mul, const int32 j,
                                221                 :             uint64 *const vp, uint64 *const vm, const uint32 mmShift)
                                222                 : {
                                223                 :     m <<= 1;                  /* m is maximum 55 bits */
                                224                 : 
                                225                 :     uint64      tmp;
                                226                 :     const uint64 lo = umul128(m, mul[0], &tmp);
                                227                 :     uint64      hi;
                                228                 :     const uint64 mid = tmp + umul128(m, mul[1], &hi);
                                229                 : 
                                230                 :     hi += mid < tmp;         /* overflow into hi */
                                231                 : 
                                232                 :     const uint64 lo2 = lo + mul[0];
                                233                 :     const uint64 mid2 = mid + mul[1] + (lo2 < lo);
                                234                 :     const uint64 hi2 = hi + (mid2 < mid);
                                235                 : 
                                236                 :     *vp = shiftright128(mid2, hi2, j - 64 - 1);
                                237                 : 
                                238                 :     if (mmShift == 1)
                                239                 :     {
                                240                 :         const uint64 lo3 = lo - mul[0];
                                241                 :         const uint64 mid3 = mid - mul[1] - (lo3 > lo);
                                242                 :         const uint64 hi3 = hi - (mid3 > mid);
                                243                 : 
                                244                 :         *vm = shiftright128(mid3, hi3, j - 64 - 1);
                                245                 :     }
                                246                 :     else
                                247                 :     {
                                248                 :         const uint64 lo3 = lo + lo;
                                249                 :         const uint64 mid3 = mid + mid + (lo3 < lo);
                                250                 :         const uint64 hi3 = hi + hi + (mid3 < mid);
                                251                 :         const uint64 lo4 = lo3 - mul[0];
                                252                 :         const uint64 mid4 = mid3 - mul[1] - (lo4 > lo3);
                                253                 :         const uint64 hi4 = hi3 - (mid4 > mid3);
                                254                 : 
                                255                 :         *vm = shiftright128(mid4, hi4, j - 64);
                                256                 :     }
                                257                 : 
                                258                 :     return shiftright128(mid, hi, j - 64 - 1);
                                259                 : }
                                260                 : 
                                261                 : #endif                          /* // HAS_64_BIT_INTRINSICS */
                                262                 : 
                                263                 : static inline uint32
                                264         1980847 : decimalLength(const uint64 v)
                                265                 : {
                                266                 :     /* This is slightly faster than a loop. */
                                267                 :     /* The average output length is 16.38 digits, so we check high-to-low. */
                                268                 :     /* Function precondition: v is not an 18, 19, or 20-digit number. */
                                269                 :     /* (17 digits are sufficient for round-tripping.) */
                                270         1980847 :     Assert(v < 100000000000000000L);
                                271         1980847 :     if (v >= 10000000000000000L)
                                272                 :     {
                                273          141097 :         return 17;
                                274                 :     }
                                275         1839750 :     if (v >= 1000000000000000L)
                                276                 :     {
                                277          332181 :         return 16;
                                278                 :     }
                                279         1507569 :     if (v >= 100000000000000L)
                                280                 :     {
                                281           30843 :         return 15;
                                282                 :     }
                                283         1476726 :     if (v >= 10000000000000L)
                                284                 :     {
                                285            5458 :         return 14;
                                286                 :     }
                                287         1471268 :     if (v >= 1000000000000L)
                                288                 :     {
                                289             176 :         return 13;
                                290                 :     }
                                291         1471092 :     if (v >= 100000000000L)
                                292                 :     {
                                293              65 :         return 12;
                                294                 :     }
                                295         1471027 :     if (v >= 10000000000L)
                                296                 :     {
                                297              69 :         return 11;
                                298                 :     }
                                299         1470958 :     if (v >= 1000000000L)
                                300                 :     {
                                301           21754 :         return 10;
                                302                 :     }
                                303         1449204 :     if (v >= 100000000L)
                                304                 :     {
                                305           23283 :         return 9;
                                306                 :     }
                                307         1425921 :     if (v >= 10000000L)
                                308                 :     {
                                309            2678 :         return 8;
                                310                 :     }
                                311         1423243 :     if (v >= 1000000L)
                                312                 :     {
                                313           56850 :         return 7;
                                314                 :     }
                                315         1366393 :     if (v >= 100000L)
                                316                 :     {
                                317            6225 :         return 6;
                                318                 :     }
                                319         1360168 :     if (v >= 10000L)
                                320                 :     {
                                321          183596 :         return 5;
                                322                 :     }
                                323         1176572 :     if (v >= 1000L)
                                324                 :     {
                                325          362322 :         return 4;
                                326                 :     }
                                327          814250 :     if (v >= 100L)
                                328                 :     {
                                329          673199 :         return 3;
                                330                 :     }
                                331          141051 :     if (v >= 10L)
                                332                 :     {
                                333          122054 :         return 2;
                                334                 :     }
                                335           18997 :     return 1;
                                336                 : }
                                337                 : 
                                338                 : /*  A floating decimal representing m * 10^e. */
                                339                 : typedef struct floating_decimal_64
                                340                 : {
                                341                 :     uint64      mantissa;
                                342                 :     int32       exponent;
                                343                 : } floating_decimal_64;
                                344                 : 
                                345                 : static inline floating_decimal_64
                                346          796766 : d2d(const uint64 ieeeMantissa, const uint32 ieeeExponent)
                                347                 : {
                                348                 :     int32       e2;
                                349                 :     uint64      m2;
                                350                 : 
                                351          796766 :     if (ieeeExponent == 0)
                                352                 :     {
                                353                 :         /* We subtract 2 so that the bounds computation has 2 additional bits. */
                                354              63 :         e2 = 1 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2;
                                355              63 :         m2 = ieeeMantissa;
                                356                 :     }
                                357                 :     else
                                358                 :     {
                                359          796703 :         e2 = ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2;
                                360          796703 :         m2 = (UINT64CONST(1) << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
                                361                 :     }
                                362                 : 
                                363                 : #if STRICTLY_SHORTEST
                                364                 :     const bool  even = (m2 & 1) == 0;
                                365                 :     const bool  acceptBounds = even;
                                366                 : #else
                                367          796766 :     const bool  acceptBounds = false;
                                368                 : #endif
                                369                 : 
                                370                 :     /* Step 2: Determine the interval of legal decimal representations. */
                                371          796766 :     const uint64 mv = 4 * m2;
                                372                 : 
                                373                 :     /* Implicit bool -> int conversion. True is 1, false is 0. */
                                374          796766 :     const uint32 mmShift = ieeeMantissa != 0 || ieeeExponent <= 1;
                                375                 : 
                                376                 :     /* We would compute mp and mm like this: */
                                377                 :     /* uint64 mp = 4 * m2 + 2; */
                                378                 :     /* uint64 mm = mv - 1 - mmShift; */
                                379                 : 
                                380                 :     /* Step 3: Convert to a decimal power base using 128-bit arithmetic. */
                                381                 :     uint64      vr,
                                382                 :                 vp,
                                383                 :                 vm;
                                384                 :     int32       e10;
                                385          796766 :     bool        vmIsTrailingZeros = false;
                                386          796766 :     bool        vrIsTrailingZeros = false;
                                387                 : 
                                388          796766 :     if (e2 >= 0)
                                389                 :     {
                                390                 :         /*
                                391                 :          * I tried special-casing q == 0, but there was no effect on
                                392                 :          * performance.
                                393                 :          *
                                394                 :          * This expr is slightly faster than max(0, log10Pow2(e2) - 1).
                                395                 :          */
                                396             992 :         const uint32 q = log10Pow2(e2) - (e2 > 3);
                                397             992 :         const int32 k = DOUBLE_POW5_INV_BITCOUNT + pow5bits(q) - 1;
                                398             992 :         const int32 i = -e2 + q + k;
                                399                 : 
                                400             992 :         e10 = q;
                                401                 : 
                                402             992 :         vr = mulShiftAll(m2, DOUBLE_POW5_INV_SPLIT[q], i, &vp, &vm, mmShift);
                                403                 : 
                                404             992 :         if (q <= 21)
                                405                 :         {
                                406                 :             /*
                                407                 :              * This should use q <= 22, but I think 21 is also safe. Smaller
                                408                 :              * values may still be safe, but it's more difficult to reason
                                409                 :              * about them.
                                410                 :              *
                                411                 :              * Only one of mp, mv, and mm can be a multiple of 5, if any.
                                412                 :              */
                                413             698 :             const uint32 mvMod5 = (uint32) (mv - 5 * div5(mv));
                                414                 : 
                                415             698 :             if (mvMod5 == 0)
                                416                 :             {
                                417             105 :                 vrIsTrailingZeros = multipleOfPowerOf5(mv, q);
                                418                 :             }
                                419             593 :             else if (acceptBounds)
                                420                 :             {
                                421                 :                 /*----
                                422                 :                  * Same as min(e2 + (~mm & 1), pow5Factor(mm)) >= q
                                423                 :                  * <=> e2 + (~mm & 1) >= q && pow5Factor(mm) >= q
                                424                 :                  * <=> true && pow5Factor(mm) >= q, since e2 >= q.
                                425                 :                  *----
                                426                 :                  */
 1516 rhodiumtoad               427 UBC           0 :                 vmIsTrailingZeros = multipleOfPowerOf5(mv - 1 - mmShift, q);
                                428                 :             }
                                429                 :             else
                                430                 :             {
                                431                 :                 /* Same as min(e2 + 1, pow5Factor(mp)) >= q. */
 1516 rhodiumtoad               432 CBC         593 :                 vp -= multipleOfPowerOf5(mv + 2, q);
                                433                 :             }
                                434                 :         }
                                435                 :     }
                                436                 :     else
                                437                 :     {
                                438                 :         /*
                                439                 :          * This expression is slightly faster than max(0, log10Pow5(-e2) - 1).
                                440                 :          */
                                441          795774 :         const uint32 q = log10Pow5(-e2) - (-e2 > 1);
                                442          795774 :         const int32 i = -e2 - q;
                                443          795774 :         const int32 k = pow5bits(i) - DOUBLE_POW5_BITCOUNT;
                                444          795774 :         const int32 j = q - k;
                                445                 : 
                                446          795774 :         e10 = q + e2;
                                447                 : 
                                448          795774 :         vr = mulShiftAll(m2, DOUBLE_POW5_SPLIT[i], j, &vp, &vm, mmShift);
                                449                 : 
                                450          795774 :         if (q <= 1)
                                451                 :         {
                                452                 :             /*
                                453                 :              * {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q
                                454                 :              * trailing 0 bits.
                                455                 :              */
                                456                 :             /* mv = 4 * m2, so it always has at least two trailing 0 bits. */
                                457              60 :             vrIsTrailingZeros = true;
                                458              60 :             if (acceptBounds)
                                459                 :             {
                                460                 :                 /*
                                461                 :                  * mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff
                                462                 :                  * mmShift == 1.
                                463                 :                  */
 1516 rhodiumtoad               464 UBC           0 :                 vmIsTrailingZeros = mmShift == 1;
                                465                 :             }
                                466                 :             else
                                467                 :             {
                                468                 :                 /*
                                469                 :                  * mp = mv + 2, so it always has at least one trailing 0 bit.
                                470                 :                  */
 1516 rhodiumtoad               471 CBC          60 :                 --vp;
                                472                 :             }
                                473                 :         }
                                474          795714 :         else if (q < 63)
                                475                 :         {
                                476                 :             /* TODO(ulfjack):Use a tighter bound here. */
                                477                 :             /*
                                478                 :              * We need to compute min(ntz(mv), pow5Factor(mv) - e2) >= q - 1
                                479                 :              */
                                480                 :             /* <=> ntz(mv) >= q - 1 && pow5Factor(mv) - e2 >= q - 1 */
                                481                 :             /* <=> ntz(mv) >= q - 1 (e2 is negative and -e2 >= q) */
                                482                 :             /* <=> (mv & ((1 << (q - 1)) - 1)) == 0 */
                                483                 : 
                                484                 :             /*
                                485                 :              * We also need to make sure that the left shift does not
                                486                 :              * overflow.
                                487                 :              */
                                488          795340 :             vrIsTrailingZeros = multipleOfPowerOf2(mv, q - 1);
                                489                 :         }
                                490                 :     }
                                491                 : 
                                492                 :     /*
                                493                 :      * Step 4: Find the shortest decimal representation in the interval of
                                494                 :      * legal representations.
                                495                 :      */
                                496          796766 :     uint32      removed = 0;
                                497          796766 :     uint8       lastRemovedDigit = 0;
                                498                 :     uint64      output;
                                499                 : 
                                500                 :     /* On average, we remove ~2 digits. */
                                501          796766 :     if (vmIsTrailingZeros || vrIsTrailingZeros)
                                502                 :     {
                                503                 :         /* General case, which happens rarely (~0.7%). */
                                504                 :         for (;;)
                                505         2275371 :         {
                                506         2434995 :             const uint64 vpDiv10 = div10(vp);
                                507         2434995 :             const uint64 vmDiv10 = div10(vm);
                                508                 : 
                                509         2434995 :             if (vpDiv10 <= vmDiv10)
                                510          159624 :                 break;
                                511                 : 
                                512         2275371 :             const uint32 vmMod10 = (uint32) (vm - 10 * vmDiv10);
                                513         2275371 :             const uint64 vrDiv10 = div10(vr);
                                514         2275371 :             const uint32 vrMod10 = (uint32) (vr - 10 * vrDiv10);
                                515                 : 
                                516         2275371 :             vmIsTrailingZeros &= vmMod10 == 0;
                                517         2275371 :             vrIsTrailingZeros &= lastRemovedDigit == 0;
                                518         2275371 :             lastRemovedDigit = (uint8) vrMod10;
                                519         2275371 :             vr = vrDiv10;
                                520         2275371 :             vp = vpDiv10;
                                521         2275371 :             vm = vmDiv10;
                                522         2275371 :             ++removed;
                                523                 :         }
                                524                 : 
                                525          159624 :         if (vmIsTrailingZeros)
                                526                 :         {
                                527                 :             for (;;)
 1516 rhodiumtoad               528 UBC           0 :             {
                                529               0 :                 const uint64 vmDiv10 = div10(vm);
                                530               0 :                 const uint32 vmMod10 = (uint32) (vm - 10 * vmDiv10);
                                531                 : 
                                532               0 :                 if (vmMod10 != 0)
                                533               0 :                     break;
                                534                 : 
                                535               0 :                 const uint64 vpDiv10 = div10(vp);
                                536               0 :                 const uint64 vrDiv10 = div10(vr);
                                537               0 :                 const uint32 vrMod10 = (uint32) (vr - 10 * vrDiv10);
                                538                 : 
                                539               0 :                 vrIsTrailingZeros &= lastRemovedDigit == 0;
                                540               0 :                 lastRemovedDigit = (uint8) vrMod10;
                                541               0 :                 vr = vrDiv10;
                                542               0 :                 vp = vpDiv10;
                                543               0 :                 vm = vmDiv10;
                                544               0 :                 ++removed;
                                545                 :             }
                                546                 :         }
                                547                 : 
 1516 rhodiumtoad               548 CBC      159624 :         if (vrIsTrailingZeros && lastRemovedDigit == 5 && vr % 2 == 0)
                                549                 :         {
                                550                 :             /* Round even if the exact number is .....50..0. */
                                551              15 :             lastRemovedDigit = 4;
                                552                 :         }
                                553                 : 
                                554                 :         /*
                                555                 :          * We need to take vr + 1 if vr is outside bounds or we need to round
                                556                 :          * up.
                                557                 :          */
                                558          159624 :         output = vr + ((vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5);
                                559                 :     }
                                560                 :     else
                                561                 :     {
                                562                 :         /*
                                563                 :          * Specialized for the common case (~99.3%). Percentages below are
                                564                 :          * relative to this.
                                565                 :          */
                                566          637142 :         bool        roundUp = false;
                                567          637142 :         const uint64 vpDiv100 = div100(vp);
                                568          637142 :         const uint64 vmDiv100 = div100(vm);
                                569                 : 
                                570          637142 :         if (vpDiv100 > vmDiv100)
                                571                 :         {
                                572                 :             /* Optimization:remove two digits at a time(~86.2 %). */
                                573          569809 :             const uint64 vrDiv100 = div100(vr);
                                574          569809 :             const uint32 vrMod100 = (uint32) (vr - 100 * vrDiv100);
                                575                 : 
                                576          569809 :             roundUp = vrMod100 >= 50;
                                577          569809 :             vr = vrDiv100;
                                578          569809 :             vp = vpDiv100;
                                579          569809 :             vm = vmDiv100;
                                580          569809 :             removed += 2;
                                581                 :         }
                                582                 : 
                                583                 :         /*----
                                584                 :          * Loop iterations below (approximately), without optimization
                                585                 :          * above:
                                586                 :          *
                                587                 :          * 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%,
                                588                 :          * 6+: 0.02%
                                589                 :          *
                                590                 :          * Loop iterations below (approximately), with optimization
                                591                 :          * above:
                                592                 :          *
                                593                 :          * 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02%
                                594                 :          *----
                                595                 :          */
                                596                 :         for (;;)
                                597         1471376 :         {
                                598         2108518 :             const uint64 vpDiv10 = div10(vp);
                                599         2108518 :             const uint64 vmDiv10 = div10(vm);
                                600                 : 
                                601         2108518 :             if (vpDiv10 <= vmDiv10)
                                602          637142 :                 break;
                                603                 : 
                                604         1471376 :             const uint64 vrDiv10 = div10(vr);
                                605         1471376 :             const uint32 vrMod10 = (uint32) (vr - 10 * vrDiv10);
                                606                 : 
                                607         1471376 :             roundUp = vrMod10 >= 5;
                                608         1471376 :             vr = vrDiv10;
                                609         1471376 :             vp = vpDiv10;
                                610         1471376 :             vm = vmDiv10;
                                611         1471376 :             ++removed;
                                612                 :         }
                                613                 : 
                                614                 :         /*
                                615                 :          * We need to take vr + 1 if vr is outside bounds or we need to round
                                616                 :          * up.
                                617                 :          */
                                618          637142 :         output = vr + (vr == vm || roundUp);
                                619                 :     }
                                620                 : 
                                621          796766 :     const int32 exp = e10 + removed;
                                622                 : 
                                623                 :     floating_decimal_64 fd;
                                624                 : 
                                625          796766 :     fd.exponent = exp;
                                626          796766 :     fd.mantissa = output;
                                627          796766 :     return fd;
                                628                 : }
                                629                 : 
                                630                 : static inline int
                                631         1979049 : to_chars_df(const floating_decimal_64 v, const uint32 olength, char *const result)
                                632                 : {
                                633                 :     /* Step 5: Print the decimal representation. */
                                634         1979049 :     int         index = 0;
                                635                 : 
                                636         1979049 :     uint64      output = v.mantissa;
                                637         1979049 :     int32       exp = v.exponent;
                                638                 : 
                                639                 :     /*----
                                640                 :      * On entry, mantissa * 10^exp is the result to be output.
                                641                 :      * Caller has already done the - sign if needed.
                                642                 :      *
                                643                 :      * We want to insert the point somewhere depending on the output length
                                644                 :      * and exponent, which might mean adding zeros:
                                645                 :      *
                                646                 :      *            exp  | format
                                647                 :      *            1+   |  ddddddddd000000
                                648                 :      *            0    |  ddddddddd
                                649                 :      *  -1 .. -len+1   |  dddddddd.d to d.ddddddddd
                                650                 :      *  -len ...       |  0.ddddddddd to 0.000dddddd
                                651                 :      */
                                652         1979049 :     uint32      i = 0;
                                653         1979049 :     int32       nexp = exp + olength;
                                654                 : 
                                655         1979049 :     if (nexp <= 0)
                                656                 :     {
                                657                 :         /* -nexp is number of 0s to add after '.' */
                                658          129825 :         Assert(nexp >= -3);
                                659                 :         /* 0.000ddddd */
                                660          129825 :         index = 2 - nexp;
                                661                 :         /* won't need more than this many 0s */
                                662          129825 :         memcpy(result, "0.000000", 8);
                                663                 :     }
                                664         1849224 :     else if (exp < 0)
                                665                 :     {
                                666                 :         /*
                                667                 :          * dddd.dddd; leave space at the start and move the '.' in after
                                668                 :          */
                                669          665188 :         index = 1;
                                670                 :     }
                                671                 :     else
                                672                 :     {
                                673                 :         /*
                                674                 :          * We can save some code later by pre-filling with zeros. We know that
                                675                 :          * there can be no more than 16 output digits in this form, otherwise
                                676                 :          * we would not choose fixed-point output.
                                677                 :          */
                                678         1184036 :         Assert(exp < 16 && exp + olength <= 16);
                                679         1184036 :         memset(result, '0', 16);
                                680                 :     }
                                681                 : 
                                682                 :     /*
                                683                 :      * We prefer 32-bit operations, even on 64-bit platforms. We have at most
                                684                 :      * 17 digits, and uint32 can store 9 digits. If output doesn't fit into
                                685                 :      * uint32, we cut off 8 digits, so the rest will fit into uint32.
                                686                 :      */
                                687         1979049 :     if ((output >> 32) != 0)
                                688                 :     {
                                689                 :         /* Expensive 64-bit division. */
                                690          508619 :         const uint64 q = div1e8(output);
                                691          508619 :         uint32      output2 = (uint32) (output - 100000000 * q);
                                692          508619 :         const uint32 c = output2 % 10000;
                                693                 : 
                                694          508619 :         output = q;
                                695          508619 :         output2 /= 10000;
                                696                 : 
                                697          508619 :         const uint32 d = output2 % 10000;
                                698          508619 :         const uint32 c0 = (c % 100) << 1;
                                699          508619 :         const uint32 c1 = (c / 100) << 1;
                                700          508619 :         const uint32 d0 = (d % 100) << 1;
                                701          508619 :         const uint32 d1 = (d / 100) << 1;
                                702                 : 
                                703          508619 :         memcpy(result + index + olength - i - 2, DIGIT_TABLE + c0, 2);
                                704          508619 :         memcpy(result + index + olength - i - 4, DIGIT_TABLE + c1, 2);
                                705          508619 :         memcpy(result + index + olength - i - 6, DIGIT_TABLE + d0, 2);
                                706          508619 :         memcpy(result + index + olength - i - 8, DIGIT_TABLE + d1, 2);
                                707          508619 :         i += 8;
                                708                 :     }
                                709                 : 
                                710         1979049 :     uint32      output2 = (uint32) output;
                                711                 : 
                                712         2967189 :     while (output2 >= 10000)
                                713                 :     {
                                714          988140 :         const uint32 c = output2 - 10000 * (output2 / 10000);
                                715          988140 :         const uint32 c0 = (c % 100) << 1;
                                716          988140 :         const uint32 c1 = (c / 100) << 1;
                                717                 : 
                                718          988140 :         output2 /= 10000;
                                719          988140 :         memcpy(result + index + olength - i - 2, DIGIT_TABLE + c0, 2);
                                720          988140 :         memcpy(result + index + olength - i - 4, DIGIT_TABLE + c1, 2);
                                721          988140 :         i += 4;
                                722                 :     }
                                723         1979049 :     if (output2 >= 100)
                                724                 :     {
                                725         1457639 :         const uint32 c = (output2 % 100) << 1;
                                726                 : 
                                727         1457639 :         output2 /= 100;
                                728         1457639 :         memcpy(result + index + olength - i - 2, DIGIT_TABLE + c, 2);
                                729         1457639 :         i += 2;
                                730                 :     }
                                731         1979049 :     if (output2 >= 10)
                                732                 :     {
                                733          851969 :         const uint32 c = output2 << 1;
                                734                 : 
                                735          851969 :         memcpy(result + index + olength - i - 2, DIGIT_TABLE + c, 2);
                                736                 :     }
                                737                 :     else
                                738                 :     {
                                739         1127080 :         result[index] = (char) ('0' + output2);
                                740                 :     }
                                741                 : 
                                742         1979049 :     if (index == 1)
                                743                 :     {
                                744                 :         /*
                                745                 :          * nexp is 1..15 here, representing the number of digits before the
                                746                 :          * point. A value of 16 is not possible because we switch to
                                747                 :          * scientific notation when the display exponent reaches 15.
                                748                 :          */
                                749          665188 :         Assert(nexp < 16);
                                750                 :         /* gcc only seems to want to optimize memmove for small 2^n */
                                751          665188 :         if (nexp & 8)
                                752                 :         {
                                753             380 :             memmove(result + index - 1, result + index, 8);
                                754             380 :             index += 8;
                                755                 :         }
                                756          665188 :         if (nexp & 4)
                                757                 :         {
                                758            3094 :             memmove(result + index - 1, result + index, 4);
                                759            3094 :             index += 4;
                                760                 :         }
                                761          665188 :         if (nexp & 2)
                                762                 :         {
                                763          656173 :             memmove(result + index - 1, result + index, 2);
                                764          656173 :             index += 2;
                                765                 :         }
                                766          665188 :         if (nexp & 1)
                                767                 :         {
                                768          551499 :             result[index - 1] = result[index];
                                769                 :         }
                                770          665188 :         result[nexp] = '.';
                                771          665188 :         index = olength + 1;
                                772                 :     }
                                773         1313861 :     else if (exp >= 0)
                                774                 :     {
                                775                 :         /* we supplied the trailing zeros earlier, now just set the length. */
                                776         1184036 :         index = olength + exp;
                                777                 :     }
                                778                 :     else
                                779                 :     {
                                780          129825 :         index = olength + (2 - nexp);
                                781                 :     }
                                782                 : 
                                783         1979049 :     return index;
                                784                 : }
                                785                 : 
                                786                 : static inline int
                                787         1980847 : to_chars(floating_decimal_64 v, const bool sign, char *const result)
                                788                 : {
                                789                 :     /* Step 5: Print the decimal representation. */
                                790         1980847 :     int         index = 0;
                                791                 : 
                                792         1980847 :     uint64      output = v.mantissa;
                                793         1980847 :     uint32      olength = decimalLength(output);
                                794         1980847 :     int32       exp = v.exponent + olength - 1;
                                795                 : 
                                796         1980847 :     if (sign)
                                797                 :     {
                                798           65609 :         result[index++] = '-';
                                799                 :     }
                                800                 : 
                                801                 :     /*
                                802                 :      * The thresholds for fixed-point output are chosen to match printf
                                803                 :      * defaults. Beware that both the code of to_chars_df and the value of
                                804                 :      * DOUBLE_SHORTEST_DECIMAL_LEN are sensitive to these thresholds.
                                805                 :      */
                                806         1980847 :     if (exp >= -4 && exp < 15)
                                807         1979049 :         return to_chars_df(v, olength, result + index) + sign;
                                808                 : 
                                809                 :     /*
                                810                 :      * If v.exponent is exactly 0, we might have reached here via the small
                                811                 :      * integer fast path, in which case v.mantissa might contain trailing
                                812                 :      * (decimal) zeros. For scientific notation we need to move these zeros
                                813                 :      * into the exponent. (For fixed point this doesn't matter, which is why
                                814                 :      * we do this here rather than above.)
                                815                 :      *
                                816                 :      * Since we already calculated the display exponent (exp) above based on
                                817                 :      * the old decimal length, that value does not change here. Instead, we
                                818                 :      * just reduce the display length for each digit removed.
                                819                 :      *
                                820                 :      * If we didn't get here via the fast path, the raw exponent will not
                                821                 :      * usually be 0, and there will be no trailing zeros, so we pay no more
                                822                 :      * than one div10/multiply extra cost. We claw back half of that by
                                823                 :      * checking for divisibility by 2 before dividing by 10.
                                824                 :      */
                                825            1798 :     if (v.exponent == 0)
                                826                 :     {
                                827             555 :         while ((output & 1) == 0)
                                828                 :         {
                                829             513 :             const uint64 q = div10(output);
                                830             513 :             const uint32 r = (uint32) (output - 10 * q);
                                831                 : 
                                832             513 :             if (r != 0)
                                833             288 :                 break;
                                834             225 :             output = q;
                                835             225 :             --olength;
                                836                 :         }
                                837                 :     }
                                838                 : 
                                839                 :     /*----
                                840                 :      * Print the decimal digits.
                                841                 :      *
                                842                 :      * The following code is equivalent to:
                                843                 :      *
                                844                 :      * for (uint32 i = 0; i < olength - 1; ++i) {
                                845                 :      *   const uint32 c = output % 10; output /= 10;
                                846                 :      *   result[index + olength - i] = (char) ('0' + c);
                                847                 :      * }
                                848                 :      * result[index] = '0' + output % 10;
                                849                 :      *----
                                850                 :      */
                                851                 : 
                                852            1798 :     uint32      i = 0;
                                853                 : 
                                854                 :     /*
                                855                 :      * We prefer 32-bit operations, even on 64-bit platforms. We have at most
                                856                 :      * 17 digits, and uint32 can store 9 digits. If output doesn't fit into
                                857                 :      * uint32, we cut off 8 digits, so the rest will fit into uint32.
                                858                 :      */
                                859            1798 :     if ((output >> 32) != 0)
                                860                 :     {
                                861                 :         /* Expensive 64-bit division. */
                                862            1330 :         const uint64 q = div1e8(output);
                                863            1330 :         uint32      output2 = (uint32) (output - 100000000 * q);
                                864                 : 
                                865            1330 :         output = q;
                                866                 : 
                                867            1330 :         const uint32 c = output2 % 10000;
                                868                 : 
                                869            1330 :         output2 /= 10000;
                                870                 : 
                                871            1330 :         const uint32 d = output2 % 10000;
                                872            1330 :         const uint32 c0 = (c % 100) << 1;
                                873            1330 :         const uint32 c1 = (c / 100) << 1;
                                874            1330 :         const uint32 d0 = (d % 100) << 1;
                                875            1330 :         const uint32 d1 = (d / 100) << 1;
                                876                 : 
                                877            1330 :         memcpy(result + index + olength - i - 1, DIGIT_TABLE + c0, 2);
                                878            1330 :         memcpy(result + index + olength - i - 3, DIGIT_TABLE + c1, 2);
                                879            1330 :         memcpy(result + index + olength - i - 5, DIGIT_TABLE + d0, 2);
                                880            1330 :         memcpy(result + index + olength - i - 7, DIGIT_TABLE + d1, 2);
                                881            1330 :         i += 8;
                                882                 :     }
                                883                 : 
                                884            1798 :     uint32      output2 = (uint32) output;
                                885                 : 
                                886            3768 :     while (output2 >= 10000)
                                887                 :     {
                                888            1970 :         const uint32 c = output2 - 10000 * (output2 / 10000);
                                889                 : 
                                890            1970 :         output2 /= 10000;
                                891                 : 
                                892            1970 :         const uint32 c0 = (c % 100) << 1;
                                893            1970 :         const uint32 c1 = (c / 100) << 1;
                                894                 : 
                                895            1970 :         memcpy(result + index + olength - i - 1, DIGIT_TABLE + c0, 2);
                                896            1970 :         memcpy(result + index + olength - i - 3, DIGIT_TABLE + c1, 2);
                                897            1970 :         i += 4;
                                898                 :     }
                                899            1798 :     if (output2 >= 100)
                                900                 :     {
                                901             553 :         const uint32 c = (output2 % 100) << 1;
                                902                 : 
                                903             553 :         output2 /= 100;
                                904             553 :         memcpy(result + index + olength - i - 1, DIGIT_TABLE + c, 2);
                                905             553 :         i += 2;
                                906                 :     }
                                907            1798 :     if (output2 >= 10)
                                908                 :     {
                                909             753 :         const uint32 c = output2 << 1;
                                910                 : 
                                911                 :         /*
                                912                 :          * We can't use memcpy here: the decimal dot goes between these two
                                913                 :          * digits.
                                914                 :          */
                                915             753 :         result[index + olength - i] = DIGIT_TABLE[c + 1];
                                916             753 :         result[index] = DIGIT_TABLE[c];
                                917                 :     }
                                918                 :     else
                                919                 :     {
                                920            1045 :         result[index] = (char) ('0' + output2);
                                921                 :     }
                                922                 : 
                                923                 :     /* Print decimal point if needed. */
                                924            1798 :     if (olength > 1)
                                925                 :     {
                                926            1399 :         result[index + 1] = '.';
                                927            1399 :         index += olength + 1;
                                928                 :     }
                                929                 :     else
                                930                 :     {
                                931             399 :         ++index;
                                932                 :     }
                                933                 : 
                                934                 :     /* Print the exponent. */
                                935            1798 :     result[index++] = 'e';
                                936            1798 :     if (exp < 0)
                                937                 :     {
                                938             686 :         result[index++] = '-';
                                939             686 :         exp = -exp;
                                940                 :     }
                                941                 :     else
                                942            1112 :         result[index++] = '+';
                                943                 : 
                                944            1798 :     if (exp >= 100)
                                945                 :     {
                                946             596 :         const int32 c = exp % 10;
                                947                 : 
                                948             596 :         memcpy(result + index, DIGIT_TABLE + 2 * (exp / 10), 2);
                                949             596 :         result[index + 2] = (char) ('0' + c);
                                950             596 :         index += 3;
                                951                 :     }
                                952                 :     else
                                953                 :     {
                                954            1202 :         memcpy(result + index, DIGIT_TABLE + 2 * exp, 2);
                                955            1202 :         index += 2;
                                956                 :     }
                                957                 : 
                                958            1798 :     return index;
                                959                 : }
                                960                 : 
                                961                 : static inline bool
                                962         1980847 : d2d_small_int(const uint64 ieeeMantissa,
                                963                 :               const uint32 ieeeExponent,
                                964                 :               floating_decimal_64 *v)
                                965                 : {
                                966         1980847 :     const int32 e2 = (int32) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS;
                                967                 : 
                                968                 :     /*
                                969                 :      * Avoid using multiple "return false;" here since it tends to provoke the
                                970                 :      * compiler into inlining multiple copies of d2d, which is undesirable.
                                971                 :      */
                                972                 : 
                                973         1980847 :     if (e2 >= -DOUBLE_MANTISSA_BITS && e2 <= 0)
                                974                 :     {
                                975                 :         /*----
                                976                 :          * Since 2^52 <= m2 < 2^53 and 0 <= -e2 <= 52:
                                977                 :          *   1 <= f = m2 / 2^-e2 < 2^53.
                                978                 :          *
                                979                 :          * Test if the lower -e2 bits of the significand are 0, i.e. whether
                                980                 :          * the fraction is 0. We can use ieeeMantissa here, since the implied
                                981                 :          * 1 bit can never be tested by this; the implied 1 can only be part
                                982                 :          * of a fraction if e2 < -DOUBLE_MANTISSA_BITS which we already
                                983                 :          * checked. (e.g. 0.5 gives ieeeMantissa == 0 and e2 == -53)
                                984                 :          */
                                985         1849284 :         const uint64 mask = (UINT64CONST(1) << -e2) - 1;
                                986         1849284 :         const uint64 fraction = ieeeMantissa & mask;
                                987                 : 
                                988         1849284 :         if (fraction == 0)
                                989                 :         {
                                990                 :             /*----
                                991                 :              * f is an integer in the range [1, 2^53).
                                992                 :              * Note: mantissa might contain trailing (decimal) 0's.
                                993                 :              * Note: since 2^53 < 10^16, there is no need to adjust
                                994                 :              * decimalLength().
                                995                 :              */
                                996         1184081 :             const uint64 m2 = (UINT64CONST(1) << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
                                997                 : 
                                998         1184081 :             v->mantissa = m2 >> -e2;
                                999         1184081 :             v->exponent = 0;
                               1000         1184081 :             return true;
                               1001                 :         }
                               1002                 :     }
                               1003                 : 
                               1004          796766 :     return false;
                               1005                 : }
                               1006                 : 
                               1007                 : /*
                               1008                 :  * Store the shortest decimal representation of the given double as an
                               1009                 :  * UNTERMINATED string in the caller's supplied buffer (which must be at least
                               1010                 :  * DOUBLE_SHORTEST_DECIMAL_LEN-1 bytes long).
                               1011                 :  *
                               1012                 :  * Returns the number of bytes stored.
                               1013                 :  */
                               1014                 : int
                               1015         1984142 : double_to_shortest_decimal_bufn(double f, char *result)
                               1016                 : {
                               1017                 :     /*
                               1018                 :      * Step 1: Decode the floating-point number, and unify normalized and
                               1019                 :      * subnormal cases.
                               1020                 :      */
                               1021         1984142 :     const uint64 bits = double_to_bits(f);
                               1022                 : 
                               1023                 :     /* Decode bits into sign, mantissa, and exponent. */
                               1024         1984142 :     const bool  ieeeSign = ((bits >> (DOUBLE_MANTISSA_BITS + DOUBLE_EXPONENT_BITS)) & 1) != 0;
                               1025         1984142 :     const uint64 ieeeMantissa = bits & ((UINT64CONST(1) << DOUBLE_MANTISSA_BITS) - 1);
                               1026         1984142 :     const uint32 ieeeExponent = (uint32) ((bits >> DOUBLE_MANTISSA_BITS) & ((1u << DOUBLE_EXPONENT_BITS) - 1));
                               1027                 : 
                               1028                 :     /* Case distinction; exit early for the easy cases. */
                               1029         1984142 :     if (ieeeExponent == ((1u << DOUBLE_EXPONENT_BITS) - 1u) || (ieeeExponent == 0 && ieeeMantissa == 0))
                               1030                 :     {
                               1031            3295 :         return copy_special_str(result, ieeeSign, (ieeeExponent != 0), (ieeeMantissa != 0));
                               1032                 :     }
                               1033                 : 
                               1034                 :     floating_decimal_64 v;
                               1035         1980847 :     const bool  isSmallInt = d2d_small_int(ieeeMantissa, ieeeExponent, &v);
                               1036                 : 
                               1037         1980847 :     if (!isSmallInt)
                               1038                 :     {
                               1039          796766 :         v = d2d(ieeeMantissa, ieeeExponent);
                               1040                 :     }
                               1041                 : 
                               1042         1980847 :     return to_chars(v, ieeeSign, result);
                               1043                 : }
                               1044                 : 
                               1045                 : /*
                               1046                 :  * Store the shortest decimal representation of the given double as a
                               1047                 :  * null-terminated string in the caller's supplied buffer (which must be at
                               1048                 :  * least DOUBLE_SHORTEST_DECIMAL_LEN bytes long).
                               1049                 :  *
                               1050                 :  * Returns the string length.
                               1051                 :  */
                               1052                 : int
                               1053         1984142 : double_to_shortest_decimal_buf(double f, char *result)
                               1054                 : {
                               1055         1984142 :     const int   index = double_to_shortest_decimal_bufn(f, result);
                               1056                 : 
                               1057                 :     /* Terminate the string. */
                               1058         1984142 :     Assert(index < DOUBLE_SHORTEST_DECIMAL_LEN);
                               1059         1984142 :     result[index] = '\0';
                               1060         1984142 :     return index;
                               1061                 : }
                               1062                 : 
                               1063                 : /*
                               1064                 :  * Return the shortest decimal representation as a null-terminated palloc'd
                               1065                 :  * string (outside the backend, uses malloc() instead).
                               1066                 :  *
                               1067                 :  * Caller is responsible for freeing the result.
                               1068                 :  */
                               1069                 : char *
 1516 rhodiumtoad              1070 UBC           0 : double_to_shortest_decimal(double f)
                               1071                 : {
                               1072               0 :     char       *const result = (char *) palloc(DOUBLE_SHORTEST_DECIMAL_LEN);
                               1073                 : 
                               1074               0 :     double_to_shortest_decimal_buf(f, result);
                               1075               0 :     return result;
                               1076                 : }
        

Generated by: LCOV version v1.16-55-g56c0a2a