Age Owner TLA Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * barrier.c
4 : * Barriers for synchronizing cooperating processes.
5 : *
6 : * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
7 : * Portions Copyright (c) 1994, Regents of the University of California
8 : *
9 : * From Wikipedia[1]: "In parallel computing, a barrier is a type of
10 : * synchronization method. A barrier for a group of threads or processes in
11 : * the source code means any thread/process must stop at this point and cannot
12 : * proceed until all other threads/processes reach this barrier."
13 : *
14 : * This implementation of barriers allows for static sets of participants
15 : * known up front, or dynamic sets of participants which processes can join or
16 : * leave at any time. In the dynamic case, a phase number can be used to
17 : * track progress through a parallel algorithm, and may be necessary to
18 : * synchronize with the current phase of a multi-phase algorithm when a new
19 : * participant joins. In the static case, the phase number is used
20 : * internally, but it isn't strictly necessary for client code to access it
21 : * because the phase can only advance when the declared number of participants
22 : * reaches the barrier, so client code should be in no doubt about the current
23 : * phase of computation at all times.
24 : *
25 : * Consider a parallel algorithm that involves separate phases of computation
26 : * A, B and C where the output of each phase is needed before the next phase
27 : * can begin.
28 : *
29 : * In the case of a static barrier initialized with 4 participants, each
30 : * participant works on phase A, then calls BarrierArriveAndWait to wait until
31 : * all 4 participants have reached that point. When BarrierArriveAndWait
32 : * returns control, each participant can work on B, and so on. Because the
33 : * barrier knows how many participants to expect, the phases of computation
34 : * don't need labels or numbers, since each process's program counter implies
35 : * the current phase. Even if some of the processes are slow to start up and
36 : * begin running phase A, the other participants are expecting them and will
37 : * patiently wait at the barrier. The code could be written as follows:
38 : *
39 : * perform_a();
40 : * BarrierArriveAndWait(&barrier, ...);
41 : * perform_b();
42 : * BarrierArriveAndWait(&barrier, ...);
43 : * perform_c();
44 : * BarrierArriveAndWait(&barrier, ...);
45 : *
46 : * If the number of participants is not known up front, then a dynamic barrier
47 : * is needed and the number should be set to zero at initialization. New
48 : * complications arise because the number necessarily changes over time as
49 : * participants attach and detach, and therefore phases B, C or even the end
50 : * of processing may be reached before any given participant has started
51 : * running and attached. Therefore the client code must perform an initial
52 : * test of the phase number after attaching, because it needs to find out
53 : * which phase of the algorithm has been reached by any participants that are
54 : * already attached in order to synchronize with that work. Once the program
55 : * counter or some other representation of current progress is synchronized
56 : * with the barrier's phase, normal control flow can be used just as in the
57 : * static case. Our example could be written using a switch statement with
58 : * cases that fall-through, as follows:
59 : *
60 : * phase = BarrierAttach(&barrier);
61 : * switch (phase)
62 : * {
63 : * case PHASE_A:
64 : * perform_a();
65 : * BarrierArriveAndWait(&barrier, ...);
66 : * case PHASE_B:
67 : * perform_b();
68 : * BarrierArriveAndWait(&barrier, ...);
69 : * case PHASE_C:
70 : * perform_c();
71 : * BarrierArriveAndWait(&barrier, ...);
72 : * }
73 : * BarrierDetach(&barrier);
74 : *
75 : * Static barriers behave similarly to POSIX's pthread_barrier_t. Dynamic
76 : * barriers behave similarly to Java's java.util.concurrent.Phaser.
77 : *
78 : * [1] https://en.wikipedia.org/wiki/Barrier_(computer_science)
79 : *
80 : * IDENTIFICATION
81 : * src/backend/storage/ipc/barrier.c
82 : *
83 : *-------------------------------------------------------------------------
84 : */
85 :
86 : #include "postgres.h"
87 : #include "storage/barrier.h"
88 :
89 : static inline bool BarrierDetachImpl(Barrier *barrier, bool arrive);
90 :
91 : /*
92 : * Initialize this barrier. To use a static party size, provide the number of
93 : * participants to wait for at each phase indicating that that number of
94 : * backends is implicitly attached. To use a dynamic party size, specify zero
95 : * here and then use BarrierAttach() and
96 : * BarrierDetach()/BarrierArriveAndDetach() to register and deregister
97 : * participants explicitly.
98 : */
99 : void
1957 andres 100 CBC 681 : BarrierInit(Barrier *barrier, int participants)
101 : {
102 681 : SpinLockInit(&barrier->mutex);
103 681 : barrier->participants = participants;
104 681 : barrier->arrived = 0;
105 681 : barrier->phase = 0;
106 681 : barrier->elected = 0;
107 681 : barrier->static_party = participants > 0;
108 681 : ConditionVariableInit(&barrier->condition_variable);
109 681 : }
110 :
111 : /*
112 : * Arrive at this barrier, wait for all other attached participants to arrive
113 : * too and then return. Increments the current phase. The caller must be
114 : * attached.
115 : *
116 : * While waiting, pg_stat_activity shows a wait_event_type and wait_event
117 : * controlled by the wait_event_info passed in, which should be a value from
118 : * one of the WaitEventXXX enums defined in pgstat.h.
119 : *
120 : * Return true in one arbitrarily chosen participant. Return false in all
121 : * others. The return code can be used to elect one participant to execute a
122 : * phase of work that must be done serially while other participants wait.
123 : */
124 : bool
125 2146 : BarrierArriveAndWait(Barrier *barrier, uint32 wait_event_info)
126 : {
127 2146 : bool release = false;
128 : bool elected;
129 : int start_phase;
130 : int next_phase;
131 :
132 2146 : SpinLockAcquire(&barrier->mutex);
133 2146 : start_phase = barrier->phase;
134 2146 : next_phase = start_phase + 1;
135 2146 : ++barrier->arrived;
136 2146 : if (barrier->arrived == barrier->participants)
137 : {
138 1929 : release = true;
139 1929 : barrier->arrived = 0;
140 1929 : barrier->phase = next_phase;
141 1929 : barrier->elected = next_phase;
142 : }
143 2146 : SpinLockRelease(&barrier->mutex);
144 :
145 : /*
146 : * If we were the last expected participant to arrive, we can release our
147 : * peers and return true to indicate that this backend has been elected to
148 : * perform any serial work.
149 : */
150 2146 : if (release)
151 : {
152 1929 : ConditionVariableBroadcast(&barrier->condition_variable);
153 :
154 1929 : return true;
155 : }
156 :
157 : /*
158 : * Otherwise we have to wait for the last participant to arrive and
159 : * advance the phase.
160 : */
161 217 : elected = false;
162 217 : ConditionVariablePrepareToSleep(&barrier->condition_variable);
163 : for (;;)
164 : {
165 : /*
166 : * We know that phase must either be start_phase, indicating that we
167 : * need to keep waiting, or next_phase, indicating that the last
168 : * participant that we were waiting for has either arrived or detached
169 : * so that the next phase has begun. The phase cannot advance any
170 : * further than that without this backend's participation, because
171 : * this backend is attached.
172 : */
173 434 : SpinLockAcquire(&barrier->mutex);
174 434 : Assert(barrier->phase == start_phase || barrier->phase == next_phase);
175 434 : release = barrier->phase == next_phase;
176 434 : if (release && barrier->elected != next_phase)
177 : {
178 : /*
179 : * Usually the backend that arrives last and releases the other
180 : * backends is elected to return true (see above), so that it can
181 : * begin processing serial work while it has a CPU timeslice.
182 : * However, if the barrier advanced because someone detached, then
183 : * one of the backends that is awoken will need to be elected.
184 : */
185 5 : barrier->elected = barrier->phase;
186 5 : elected = true;
187 : }
188 434 : SpinLockRelease(&barrier->mutex);
189 434 : if (release)
190 217 : break;
191 217 : ConditionVariableSleep(&barrier->condition_variable, wait_event_info);
192 : }
193 217 : ConditionVariableCancelSleep();
194 :
195 217 : return elected;
196 : }
197 :
198 : /*
199 : * Arrive at this barrier, but detach rather than waiting. Returns true if
200 : * the caller was the last to detach.
201 : */
202 : bool
203 599 : BarrierArriveAndDetach(Barrier *barrier)
204 : {
205 599 : return BarrierDetachImpl(barrier, true);
206 : }
207 :
208 : /*
209 : * Arrive at a barrier, and detach all but the last to arrive. Returns true if
210 : * the caller was the last to arrive, and is therefore still attached.
211 : */
212 : bool
871 tmunro 213 499 : BarrierArriveAndDetachExceptLast(Barrier *barrier)
214 : {
215 499 : SpinLockAcquire(&barrier->mutex);
216 499 : if (barrier->participants > 1)
217 : {
218 91 : --barrier->participants;
219 91 : SpinLockRelease(&barrier->mutex);
220 :
221 91 : return false;
222 : }
223 408 : Assert(barrier->participants == 1);
224 408 : ++barrier->phase;
225 408 : SpinLockRelease(&barrier->mutex);
226 :
227 408 : return true;
228 : }
229 :
230 : /*
231 : * Attach to a barrier. All waiting participants will now wait for this
232 : * participant to call BarrierArriveAndWait(), BarrierDetach() or
233 : * BarrierArriveAndDetach(). Return the current phase.
234 : */
235 : int
1957 andres 236 1518 : BarrierAttach(Barrier *barrier)
237 : {
238 : int phase;
239 :
240 1518 : Assert(!barrier->static_party);
241 :
242 1518 : SpinLockAcquire(&barrier->mutex);
243 1518 : ++barrier->participants;
244 1518 : phase = barrier->phase;
245 1518 : SpinLockRelease(&barrier->mutex);
246 :
247 1518 : return phase;
248 : }
249 :
250 : /*
251 : * Detach from a barrier. This may release other waiters from
252 : * BarrierArriveAndWait() and advance the phase if they were only waiting for
253 : * this backend. Return true if this participant was the last to detach.
254 : */
255 : bool
256 828 : BarrierDetach(Barrier *barrier)
257 : {
258 828 : return BarrierDetachImpl(barrier, false);
259 : }
260 :
261 : /*
262 : * Return the current phase of a barrier. The caller must be attached.
263 : */
264 : int
265 629126 : BarrierPhase(Barrier *barrier)
266 : {
267 : /*
268 : * It is OK to read barrier->phase without locking, because it can't
269 : * change without us (we are attached to it), and we executed a memory
270 : * barrier when we either attached or participated in changing it last
271 : * time.
272 : */
273 629126 : return barrier->phase;
274 : }
275 :
276 : /*
277 : * Return an instantaneous snapshot of the number of participants currently
278 : * attached to this barrier. For debugging purposes only.
279 : */
280 : int
281 30 : BarrierParticipants(Barrier *barrier)
282 : {
283 : int participants;
284 :
285 30 : SpinLockAcquire(&barrier->mutex);
286 30 : participants = barrier->participants;
287 30 : SpinLockRelease(&barrier->mutex);
288 :
289 30 : return participants;
290 : }
291 :
292 : /*
293 : * Detach from a barrier. If 'arrive' is true then also increment the phase
294 : * if there are no other participants. If there are other participants
295 : * waiting, then the phase will be advanced and they'll be released if they
296 : * were only waiting for the caller. Return true if this participant was the
297 : * last to detach.
298 : */
299 : static inline bool
300 1427 : BarrierDetachImpl(Barrier *barrier, bool arrive)
301 : {
302 : bool release;
303 : bool last;
304 :
305 1427 : Assert(!barrier->static_party);
306 :
307 1427 : SpinLockAcquire(&barrier->mutex);
308 1427 : Assert(barrier->participants > 0);
309 1427 : --barrier->participants;
310 :
311 : /*
312 : * If any other participants are waiting and we were the last participant
313 : * waited for, release them. If no other participants are waiting, but
314 : * this is a BarrierArriveAndDetach() call, then advance the phase too.
315 : */
316 1427 : if ((arrive || barrier->participants > 0) &&
317 709 : barrier->arrived == barrier->participants)
318 : {
319 494 : release = true;
320 494 : barrier->arrived = 0;
321 494 : ++barrier->phase;
322 : }
323 : else
324 933 : release = false;
325 :
326 1427 : last = barrier->participants == 0;
327 1427 : SpinLockRelease(&barrier->mutex);
328 :
329 1427 : if (release)
330 494 : ConditionVariableBroadcast(&barrier->condition_variable);
331 :
332 1427 : return last;
333 : }
|