Age Owner TLA Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * mcv.c
4 : * POSTGRES multivariate MCV lists
5 : *
6 : *
7 : * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
8 : * Portions Copyright (c) 1994, Regents of the University of California
9 : *
10 : * IDENTIFICATION
11 : * src/backend/statistics/mcv.c
12 : *
13 : *-------------------------------------------------------------------------
14 : */
15 : #include "postgres.h"
16 :
17 : #include <math.h>
18 :
19 : #include "access/htup_details.h"
20 : #include "catalog/pg_collation.h"
21 : #include "catalog/pg_statistic_ext.h"
22 : #include "catalog/pg_statistic_ext_data.h"
23 : #include "fmgr.h"
24 : #include "funcapi.h"
25 : #include "nodes/nodeFuncs.h"
26 : #include "optimizer/clauses.h"
27 : #include "statistics/extended_stats_internal.h"
28 : #include "statistics/statistics.h"
29 : #include "utils/array.h"
30 : #include "utils/builtins.h"
31 : #include "utils/bytea.h"
32 : #include "utils/fmgroids.h"
33 : #include "utils/fmgrprotos.h"
34 : #include "utils/lsyscache.h"
35 : #include "utils/selfuncs.h"
36 : #include "utils/syscache.h"
37 : #include "utils/typcache.h"
38 :
39 : /*
40 : * Computes size of a serialized MCV item, depending on the number of
41 : * dimensions (columns) the statistic is defined on. The datum values are
42 : * stored in a separate array (deduplicated, to minimize the size), and
43 : * so the serialized items only store uint16 indexes into that array.
44 : *
45 : * Each serialized item stores (in this order):
46 : *
47 : * - indexes to values (ndim * sizeof(uint16))
48 : * - null flags (ndim * sizeof(bool))
49 : * - frequency (sizeof(double))
50 : * - base_frequency (sizeof(double))
51 : *
52 : * There is no alignment padding within an MCV item.
53 : * So in total each MCV item requires this many bytes:
54 : *
55 : * ndim * (sizeof(uint16) + sizeof(bool)) + 2 * sizeof(double)
56 : */
57 : #define ITEM_SIZE(ndims) \
58 : ((ndims) * (sizeof(uint16) + sizeof(bool)) + 2 * sizeof(double))
59 :
60 : /*
61 : * Used to compute size of serialized MCV list representation.
62 : */
63 : #define MinSizeOfMCVList \
64 : (VARHDRSZ + sizeof(uint32) * 3 + sizeof(AttrNumber))
65 :
66 : /*
67 : * Size of the serialized MCV list, excluding the space needed for
68 : * deduplicated per-dimension values. The macro is meant to be used
69 : * when it's not yet safe to access the serialized info about amount
70 : * of data for each column.
71 : */
72 : #define SizeOfMCVList(ndims,nitems) \
73 : ((MinSizeOfMCVList + sizeof(Oid) * (ndims)) + \
74 : ((ndims) * sizeof(DimensionInfo)) + \
75 : ((nitems) * ITEM_SIZE(ndims)))
76 :
77 : static MultiSortSupport build_mss(StatsBuildData *data);
78 :
79 : static SortItem *build_distinct_groups(int numrows, SortItem *items,
80 : MultiSortSupport mss, int *ndistinct);
81 :
82 : static SortItem **build_column_frequencies(SortItem *groups, int ngroups,
83 : MultiSortSupport mss, int *ncounts);
84 :
85 : static int count_distinct_groups(int numrows, SortItem *items,
86 : MultiSortSupport mss);
87 :
88 : /*
89 : * Compute new value for bitmap item, considering whether it's used for
90 : * clauses connected by AND/OR.
91 : */
92 : #define RESULT_MERGE(value, is_or, match) \
93 : ((is_or) ? ((value) || (match)) : ((value) && (match)))
94 :
95 : /*
96 : * When processing a list of clauses, the bitmap item may get set to a value
97 : * such that additional clauses can't change it. For example, when processing
98 : * a list of clauses connected to AND, as soon as the item gets set to 'false'
99 : * then it'll remain like that. Similarly clauses connected by OR and 'true'.
100 : *
101 : * Returns true when the value in the bitmap can't change no matter how the
102 : * remaining clauses are evaluated.
103 : */
104 : #define RESULT_IS_FINAL(value, is_or) ((is_or) ? (value) : (!(value)))
105 :
106 : /*
107 : * get_mincount_for_mcv_list
108 : * Determine the minimum number of times a value needs to appear in
109 : * the sample for it to be included in the MCV list.
110 : *
111 : * We want to keep only values that appear sufficiently often in the
112 : * sample that it is reasonable to extrapolate their sample frequencies to
113 : * the entire table. We do this by placing an upper bound on the relative
114 : * standard error of the sample frequency, so that any estimates the
115 : * planner generates from the MCV statistics can be expected to be
116 : * reasonably accurate.
117 : *
118 : * Since we are sampling without replacement, the sample frequency of a
119 : * particular value is described by a hypergeometric distribution. A
120 : * common rule of thumb when estimating errors in this situation is to
121 : * require at least 10 instances of the value in the sample, in which case
122 : * the distribution can be approximated by a normal distribution, and
123 : * standard error analysis techniques can be applied. Given a sample size
124 : * of n, a population size of N, and a sample frequency of p=cnt/n, the
125 : * standard error of the proportion p is given by
126 : * SE = sqrt(p*(1-p)/n) * sqrt((N-n)/(N-1))
127 : * where the second term is the finite population correction. To get
128 : * reasonably accurate planner estimates, we impose an upper bound on the
129 : * relative standard error of 20% -- i.e., SE/p < 0.2. This 20% relative
130 : * error bound is fairly arbitrary, but has been found empirically to work
131 : * well. Rearranging this formula gives a lower bound on the number of
132 : * instances of the value seen:
133 : * cnt > n*(N-n) / (N-n+0.04*n*(N-1))
134 : * This bound is at most 25, and approaches 0 as n approaches 0 or N. The
135 : * case where n approaches 0 cannot happen in practice, since the sample
136 : * size is at least 300. The case where n approaches N corresponds to
137 : * sampling the whole table, in which case it is reasonable to keep
138 : * the whole MCV list (have no lower bound), so it makes sense to apply
139 : * this formula for all inputs, even though the above derivation is
140 : * technically only valid when the right hand side is at least around 10.
141 : *
142 : * An alternative way to look at this formula is as follows -- assume that
143 : * the number of instances of the value seen scales up to the entire
144 : * table, so that the population count is K=N*cnt/n. Then the distribution
145 : * in the sample is a hypergeometric distribution parameterised by N, n
146 : * and K, and the bound above is mathematically equivalent to demanding
147 : * that the standard deviation of that distribution is less than 20% of
148 : * its mean. Thus the relative errors in any planner estimates produced
149 : * from the MCV statistics are likely to be not too large.
150 : */
151 : static double
1474 tomas.vondra 152 CBC 90 : get_mincount_for_mcv_list(int samplerows, double totalrows)
153 : {
154 90 : double n = samplerows;
155 90 : double N = totalrows;
156 : double numer,
157 : denom;
158 :
159 90 : numer = n * (N - n);
160 90 : denom = N - n + 0.04 * n * (N - 1);
161 :
162 : /* Guard against division by zero (possible if n = N = 1) */
163 90 : if (denom == 0.0)
164 6 : return 0.0;
165 :
166 84 : return numer / denom;
167 : }
168 :
169 : /*
170 : * Builds MCV list from the set of sampled rows.
171 : *
172 : * The algorithm is quite simple:
173 : *
174 : * (1) sort the data (default collation, '<' for the data type)
175 : *
176 : * (2) count distinct groups, decide how many to keep
177 : *
178 : * (3) build the MCV list using the threshold determined in (2)
179 : *
180 : * (4) remove rows represented by the MCV from the sample
181 : *
182 : */
183 : MCVList *
744 184 90 : statext_mcv_build(StatsBuildData *data, double totalrows, int stattarget)
185 : {
186 : int i,
187 : numattrs,
188 : numrows,
189 : ngroups,
190 : nitems;
191 : double mincount;
192 : SortItem *items;
193 : SortItem *groups;
1474 194 90 : MCVList *mcvlist = NULL;
195 : MultiSortSupport mss;
196 :
197 : /* comparator for all the columns */
744 198 90 : mss = build_mss(data);
199 :
200 : /* sort the rows */
201 90 : items = build_sorted_items(data, &nitems, mss,
202 : data->nattnums, data->attnums);
203 :
1474 204 90 : if (!items)
1474 tomas.vondra 205 UBC 0 : return NULL;
206 :
207 : /* for convenience */
744 tomas.vondra 208 CBC 90 : numattrs = data->nattnums;
209 90 : numrows = data->numrows;
210 :
211 : /* transform the sorted rows into groups (sorted by frequency) */
1474 212 90 : groups = build_distinct_groups(nitems, items, mss, &ngroups);
213 :
214 : /*
215 : * The maximum number of MCV items to store, based on the statistics
216 : * target we computed for the statistics object (from the target set for
217 : * the object itself, attributes and the system default). In any case, we
218 : * can't keep more groups than we have available.
219 : */
1307 220 90 : nitems = stattarget;
1474 221 90 : if (nitems > ngroups)
222 54 : nitems = ngroups;
223 :
224 : /*
225 : * Decide how many items to keep in the MCV list. We can't use the same
226 : * algorithm as per-column MCV lists, because that only considers the
227 : * actual group frequency - but we're primarily interested in how the
228 : * actual frequency differs from the base frequency (product of simple
229 : * per-column frequencies, as if the columns were independent).
230 : *
231 : * Using the same algorithm might exclude items that are close to the
232 : * "average" frequency of the sample. But that does not say whether the
233 : * observed frequency is close to the base frequency or not. We also need
234 : * to consider unexpectedly uncommon items (again, compared to the base
235 : * frequency), and the single-column algorithm does not have to.
236 : *
237 : * We simply decide how many items to keep by computing the minimum count
238 : * using get_mincount_for_mcv_list() and then keep all items that seem to
239 : * be more common than that.
240 : */
241 90 : mincount = get_mincount_for_mcv_list(numrows, totalrows);
242 :
243 : /*
244 : * Walk the groups until we find the first group with a count below the
245 : * mincount threshold (the index of that group is the number of groups we
246 : * want to keep).
247 : */
248 4386 : for (i = 0; i < nitems; i++)
249 : {
250 4296 : if (groups[i].count < mincount)
251 : {
1474 tomas.vondra 252 UBC 0 : nitems = i;
253 0 : break;
254 : }
255 : }
256 :
257 : /*
258 : * At this point, we know the number of items for the MCV list. There
259 : * might be none (for uniform distribution with many groups), and in that
260 : * case, there will be no MCV list. Otherwise, construct the MCV list.
261 : */
1474 tomas.vondra 262 CBC 90 : if (nitems > 0)
263 : {
264 : int j;
265 : SortItem key;
266 : MultiSortSupport tmp;
267 :
268 : /* frequencies for values in each attribute */
269 : SortItem **freqs;
270 : int *nfreqs;
271 :
272 : /* used to search values */
1375 273 90 : tmp = (MultiSortSupport) palloc(offsetof(MultiSortSupportData, ssup)
274 : + sizeof(SortSupportData));
275 :
276 : /* compute frequencies for values in each column */
277 90 : nfreqs = (int *) palloc0(sizeof(int) * numattrs);
278 90 : freqs = build_column_frequencies(groups, ngroups, mss, nfreqs);
279 :
280 : /*
281 : * Allocate the MCV list structure, set the global parameters.
282 : */
1473 283 90 : mcvlist = (MCVList *) palloc0(offsetof(MCVList, items) +
284 90 : sizeof(MCVItem) * nitems);
285 :
1474 286 90 : mcvlist->magic = STATS_MCV_MAGIC;
287 90 : mcvlist->type = STATS_MCV_TYPE_BASIC;
288 90 : mcvlist->ndimensions = numattrs;
289 90 : mcvlist->nitems = nitems;
290 :
291 : /* store info about data type OIDs */
292 345 : for (i = 0; i < numattrs; i++)
744 293 255 : mcvlist->types[i] = data->stats[i]->attrtypid;
294 :
295 : /* Copy the first chunk of groups into the result. */
1474 296 4386 : for (i = 0; i < nitems; i++)
297 : {
298 : /* just point to the proper place in the list */
1473 299 4296 : MCVItem *item = &mcvlist->items[i];
300 :
301 4296 : item->values = (Datum *) palloc(sizeof(Datum) * numattrs);
302 4296 : item->isnull = (bool *) palloc(sizeof(bool) * numattrs);
303 :
304 : /* copy values for the group */
1474 305 4296 : memcpy(item->values, groups[i].values, sizeof(Datum) * numattrs);
306 4296 : memcpy(item->isnull, groups[i].isnull, sizeof(bool) * numattrs);
307 :
308 : /* groups should be sorted by frequency in descending order */
309 4296 : Assert((i == 0) || (groups[i - 1].count >= groups[i].count));
310 :
311 : /* group frequency */
312 4296 : item->frequency = (double) groups[i].count / numrows;
313 :
314 : /* base frequency, if the attributes were independent */
315 4296 : item->base_frequency = 1.0;
316 16425 : for (j = 0; j < numattrs; j++)
317 : {
318 : SortItem *freq;
319 :
320 : /* single dimension */
1375 321 12129 : tmp->ndims = 1;
322 12129 : tmp->ssup[0] = mss->ssup[j];
323 :
324 : /* fill search key */
325 12129 : key.values = &groups[i].values[j];
326 12129 : key.isnull = &groups[i].isnull[j];
327 :
328 12129 : freq = (SortItem *) bsearch_arg(&key, freqs[j], nfreqs[j],
329 : sizeof(SortItem),
330 : multi_sort_compare, tmp);
331 :
332 12129 : item->base_frequency *= ((double) freq->count) / numrows;
333 : }
334 : }
335 :
336 90 : pfree(nfreqs);
337 90 : pfree(freqs);
338 : }
339 :
1474 340 90 : pfree(items);
341 90 : pfree(groups);
342 :
343 90 : return mcvlist;
344 : }
345 :
346 : /*
347 : * build_mss
348 : * Build a MultiSortSupport for the given StatsBuildData.
349 : */
350 : static MultiSortSupport
744 351 90 : build_mss(StatsBuildData *data)
352 : {
353 : int i;
354 90 : int numattrs = data->nattnums;
355 :
356 : /* Sort by multiple columns (using array of SortSupport) */
1474 357 90 : MultiSortSupport mss = multi_sort_init(numattrs);
358 :
359 : /* prepare the sort functions for all the attributes */
360 345 : for (i = 0; i < numattrs; i++)
361 : {
744 362 255 : VacAttrStats *colstat = data->stats[i];
363 : TypeCacheEntry *type;
364 :
1474 365 255 : type = lookup_type_cache(colstat->attrtypid, TYPECACHE_LT_OPR);
366 255 : if (type->lt_opr == InvalidOid) /* shouldn't happen */
1474 tomas.vondra 367 UBC 0 : elog(ERROR, "cache lookup failed for ordering operator for type %u",
368 : colstat->attrtypid);
369 :
1361 tomas.vondra 370 CBC 255 : multi_sort_add_dimension(mss, i, type->lt_opr, colstat->attrcollid);
371 : }
372 :
1474 373 90 : return mss;
374 : }
375 :
376 : /*
377 : * count_distinct_groups
378 : * Count distinct combinations of SortItems in the array.
379 : *
380 : * The array is assumed to be sorted according to the MultiSortSupport.
381 : */
382 : static int
383 90 : count_distinct_groups(int numrows, SortItem *items, MultiSortSupport mss)
384 : {
385 : int i;
386 : int ndistinct;
387 :
388 90 : ndistinct = 1;
389 229509 : for (i = 1; i < numrows; i++)
390 : {
391 : /* make sure the array really is sorted */
392 229419 : Assert(multi_sort_compare(&items[i], &items[i - 1], mss) >= 0);
393 :
394 229419 : if (multi_sort_compare(&items[i], &items[i - 1], mss) != 0)
395 38856 : ndistinct += 1;
396 : }
397 :
398 90 : return ndistinct;
399 : }
400 :
401 : /*
402 : * compare_sort_item_count
403 : * Comparator for sorting items by count (frequencies) in descending
404 : * order.
405 : */
406 : static int
271 tgl 407 39378 : compare_sort_item_count(const void *a, const void *b, void *arg)
408 : {
1474 tomas.vondra 409 39378 : SortItem *ia = (SortItem *) a;
410 39378 : SortItem *ib = (SortItem *) b;
411 :
412 39378 : if (ia->count == ib->count)
413 38904 : return 0;
414 474 : else if (ia->count > ib->count)
415 315 : return -1;
416 :
417 159 : return 1;
418 : }
419 :
420 : /*
421 : * build_distinct_groups
422 : * Build an array of SortItems for distinct groups and counts matching
423 : * items.
424 : *
425 : * The 'items' array is assumed to be sorted.
426 : */
427 : static SortItem *
428 90 : build_distinct_groups(int numrows, SortItem *items, MultiSortSupport mss,
429 : int *ndistinct)
430 : {
431 : int i,
432 : j;
433 90 : int ngroups = count_distinct_groups(numrows, items, mss);
434 :
435 90 : SortItem *groups = (SortItem *) palloc(ngroups * sizeof(SortItem));
436 :
437 90 : j = 0;
438 90 : groups[0] = items[0];
439 90 : groups[0].count = 1;
440 :
441 229509 : for (i = 1; i < numrows; i++)
442 : {
443 : /* Assume sorted in ascending order. */
444 229419 : Assert(multi_sort_compare(&items[i], &items[i - 1], mss) >= 0);
445 :
446 : /* New distinct group detected. */
447 229419 : if (multi_sort_compare(&items[i], &items[i - 1], mss) != 0)
448 : {
449 38856 : groups[++j] = items[i];
450 38856 : groups[j].count = 0;
451 : }
452 :
453 229419 : groups[j].count++;
454 : }
455 :
456 : /* ensure we filled the expected number of distinct groups */
457 90 : Assert(j + 1 == ngroups);
458 :
459 : /* Sort the distinct groups by frequency (in descending order). */
61 peter 460 GNC 90 : qsort_interruptible(groups, ngroups, sizeof(SortItem),
461 : compare_sort_item_count, NULL);
462 :
1474 tomas.vondra 463 CBC 90 : *ndistinct = ngroups;
464 90 : return groups;
465 : }
466 :
467 : /* compare sort items (single dimension) */
468 : static int
1375 469 417045 : sort_item_compare(const void *a, const void *b, void *arg)
470 : {
1060 tgl 471 417045 : SortSupport ssup = (SortSupport) arg;
1375 tomas.vondra 472 417045 : SortItem *ia = (SortItem *) a;
473 417045 : SortItem *ib = (SortItem *) b;
474 :
475 834090 : return ApplySortComparator(ia->values[0], ia->isnull[0],
476 417045 : ib->values[0], ib->isnull[0],
477 : ssup);
478 : }
479 :
480 : /*
481 : * build_column_frequencies
482 : * Compute frequencies of values in each column.
483 : *
484 : * This returns an array of SortItems for each attribute the MCV is built
485 : * on, with a frequency (number of occurrences) for each value. This is
486 : * then used to compute "base" frequency of MCV items.
487 : *
488 : * All the memory is allocated in a single chunk, so that a single pfree
489 : * is enough to release it. We do not allocate space for values/isnull
490 : * arrays in the SortItems, because we can simply point into the input
491 : * groups directly.
492 : */
493 : static SortItem **
494 90 : build_column_frequencies(SortItem *groups, int ngroups,
495 : MultiSortSupport mss, int *ncounts)
496 : {
497 : int i,
498 : dim;
499 : SortItem **result;
500 : char *ptr;
501 :
502 90 : Assert(groups);
503 90 : Assert(ncounts);
504 :
505 : /* allocate arrays for all columns as a single chunk */
506 90 : ptr = palloc(MAXALIGN(sizeof(SortItem *) * mss->ndims) +
1060 tgl 507 90 : mss->ndims * MAXALIGN(sizeof(SortItem) * ngroups));
508 :
509 : /* initial array of pointers */
1375 tomas.vondra 510 90 : result = (SortItem **) ptr;
511 90 : ptr += MAXALIGN(sizeof(SortItem *) * mss->ndims);
512 :
513 345 : for (dim = 0; dim < mss->ndims; dim++)
514 : {
1060 tgl 515 255 : SortSupport ssup = &mss->ssup[dim];
516 :
517 : /* array of values for a single column */
1375 tomas.vondra 518 255 : result[dim] = (SortItem *) ptr;
519 255 : ptr += MAXALIGN(sizeof(SortItem) * ngroups);
520 :
521 : /* extract data for the dimension */
522 113484 : for (i = 0; i < ngroups; i++)
523 : {
524 : /* point into the input groups */
525 113229 : result[dim][i].values = &groups[i].values[dim];
526 113229 : result[dim][i].isnull = &groups[i].isnull[dim];
527 113229 : result[dim][i].count = groups[i].count;
528 : }
529 :
530 : /* sort the values, deduplicate */
61 peter 531 GNC 255 : qsort_interruptible(result[dim], ngroups, sizeof(SortItem),
532 : sort_item_compare, ssup);
533 :
534 : /*
535 : * Identify distinct values, compute frequency (there might be
536 : * multiple MCV items containing this value, so we need to sum counts
537 : * from all of them.
538 : */
1375 tomas.vondra 539 CBC 255 : ncounts[dim] = 1;
540 113229 : for (i = 1; i < ngroups; i++)
541 : {
1060 tgl 542 112974 : if (sort_item_compare(&result[dim][i - 1], &result[dim][i], ssup) == 0)
543 : {
544 68091 : result[dim][ncounts[dim] - 1].count += result[dim][i].count;
1375 tomas.vondra 545 68091 : continue;
546 : }
547 :
548 44883 : result[dim][ncounts[dim]] = result[dim][i];
549 :
550 44883 : ncounts[dim]++;
551 : }
552 : }
553 :
554 90 : return result;
555 : }
556 :
557 : /*
558 : * statext_mcv_load
559 : * Load the MCV list for the indicated pg_statistic_ext_data tuple.
560 : */
561 : MCVList *
448 562 240 : statext_mcv_load(Oid mvoid, bool inh)
563 : {
564 : MCVList *result;
565 : bool isnull;
566 : Datum mcvlist;
567 240 : HeapTuple htup = SearchSysCache2(STATEXTDATASTXOID,
568 : ObjectIdGetDatum(mvoid), BoolGetDatum(inh));
569 :
1474 570 240 : if (!HeapTupleIsValid(htup))
1474 tomas.vondra 571 UBC 0 : elog(ERROR, "cache lookup failed for statistics object %u", mvoid);
572 :
1396 tomas.vondra 573 CBC 240 : mcvlist = SysCacheGetAttr(STATEXTDATASTXOID, htup,
574 : Anum_pg_statistic_ext_data_stxdmcv, &isnull);
575 :
1474 576 240 : if (isnull)
1473 tomas.vondra 577 UBC 0 : elog(ERROR,
578 : "requested statistics kind \"%c\" is not yet built for statistics object %u",
579 : STATS_EXT_DEPENDENCIES, mvoid);
580 :
1473 tomas.vondra 581 CBC 240 : result = statext_mcv_deserialize(DatumGetByteaP(mcvlist));
582 :
583 240 : ReleaseSysCache(htup);
584 :
585 240 : return result;
586 : }
587 :
588 :
589 : /*
590 : * statext_mcv_serialize
591 : * Serialize MCV list into a pg_mcv_list value.
592 : *
593 : * The MCV items may include values of various data types, and it's reasonable
594 : * to expect redundancy (values for a given attribute, repeated for multiple
595 : * MCV list items). So we deduplicate the values into arrays, and then replace
596 : * the values by indexes into those arrays.
597 : *
598 : * The overall structure of the serialized representation looks like this:
599 : *
600 : * +---------------+----------------+---------------------+-------+
601 : * | header fields | dimension info | deduplicated values | items |
602 : * +---------------+----------------+---------------------+-------+
603 : *
604 : * Where dimension info stores information about the type of the K-th
605 : * attribute (e.g. typlen, typbyval and length of deduplicated values).
606 : * Deduplicated values store deduplicated values for each attribute. And
607 : * items store the actual MCV list items, with values replaced by indexes into
608 : * the arrays.
609 : *
610 : * When serializing the items, we use uint16 indexes. The number of MCV items
611 : * is limited by the statistics target (which is capped to 10k at the moment).
612 : * We might increase this to 65k and still fit into uint16, so there's a bit of
613 : * slack. Furthermore, this limit is on the number of distinct values per column,
614 : * and we usually have few of those (and various combinations of them for the
615 : * those MCV list). So uint16 seems fine for now.
616 : *
617 : * We don't really expect the serialization to save as much space as for
618 : * histograms, as we are not doing any bucket splits (which is the source
619 : * of high redundancy in histograms).
620 : *
621 : * TODO: Consider packing boolean flags (NULL) for each item into a single char
622 : * (or a longer type) instead of using an array of bool items.
623 : */
624 : bytea *
1418 tgl 625 90 : statext_mcv_serialize(MCVList *mcvlist, VacAttrStats **stats)
626 : {
627 : int i;
628 : int dim;
1474 tomas.vondra 629 90 : int ndims = mcvlist->ndimensions;
630 :
631 : SortSupport ssup;
632 : DimensionInfo *info;
633 :
634 : Size total_length;
635 :
636 : /* serialized items (indexes into arrays, etc.) */
637 : bytea *raw;
638 : char *ptr;
639 : char *endptr PG_USED_FOR_ASSERTS_ONLY;
640 :
641 : /* values per dimension (and number of non-NULL values) */
642 90 : Datum **values = (Datum **) palloc0(sizeof(Datum *) * ndims);
643 90 : int *counts = (int *) palloc0(sizeof(int) * ndims);
644 :
645 : /*
646 : * We'll include some rudimentary information about the attribute types
647 : * (length, by-val flag), so that we don't have to look them up while
648 : * deserializing the MCV list (we already have the type OID in the
649 : * header). This is safe because when changing the type of the attribute
650 : * the statistics gets dropped automatically. We need to store the info
651 : * about the arrays of deduplicated values anyway.
652 : */
653 90 : info = (DimensionInfo *) palloc0(sizeof(DimensionInfo) * ndims);
654 :
655 : /* sort support data for all attributes included in the MCV list */
656 90 : ssup = (SortSupport) palloc0(sizeof(SortSupportData) * ndims);
657 :
658 : /* collect and deduplicate values for each dimension (attribute) */
659 345 : for (dim = 0; dim < ndims; dim++)
660 : {
661 : int ndistinct;
662 : TypeCacheEntry *typentry;
663 :
664 : /*
665 : * Lookup the LT operator (can't get it from stats extra_data, as we
666 : * don't know how to interpret that - scalar vs. array etc.).
667 : */
668 255 : typentry = lookup_type_cache(stats[dim]->attrtypid, TYPECACHE_LT_OPR);
669 :
670 : /* copy important info about the data type (length, by-value) */
671 255 : info[dim].typlen = stats[dim]->attrtype->typlen;
672 255 : info[dim].typbyval = stats[dim]->attrtype->typbyval;
673 :
674 : /* allocate space for values in the attribute and collect them */
675 255 : values[dim] = (Datum *) palloc0(sizeof(Datum) * mcvlist->nitems);
676 :
677 12384 : for (i = 0; i < mcvlist->nitems; i++)
678 : {
679 : /* skip NULL values - we don't need to deduplicate those */
1473 680 12129 : if (mcvlist->items[i].isnull[dim])
1474 681 33 : continue;
682 :
683 : /* append the value at the end */
1473 684 12096 : values[dim][counts[dim]] = mcvlist->items[i].values[dim];
1474 685 12096 : counts[dim] += 1;
686 : }
687 :
688 : /* if there are just NULL values in this dimension, we're done */
689 255 : if (counts[dim] == 0)
690 3 : continue;
691 :
692 : /* sort and deduplicate the data */
693 252 : ssup[dim].ssup_cxt = CurrentMemoryContext;
1361 694 252 : ssup[dim].ssup_collation = stats[dim]->attrcollid;
1474 695 252 : ssup[dim].ssup_nulls_first = false;
696 :
697 252 : PrepareSortSupportFromOrderingOp(typentry->lt_opr, &ssup[dim]);
698 :
271 tgl 699 252 : qsort_interruptible(values[dim], counts[dim], sizeof(Datum),
700 252 : compare_scalars_simple, &ssup[dim]);
701 :
702 : /*
703 : * Walk through the array and eliminate duplicate values, but keep the
704 : * ordering (so that we can do a binary search later). We know there's
705 : * at least one item as (counts[dim] != 0), so we can skip the first
706 : * element.
707 : */
1474 tomas.vondra 708 252 : ndistinct = 1; /* number of distinct values */
709 12096 : for (i = 1; i < counts[dim]; i++)
710 : {
711 : /* expect sorted array */
712 11844 : Assert(compare_datums_simple(values[dim][i - 1], values[dim][i], &ssup[dim]) <= 0);
713 :
714 : /* if the value is the same as the previous one, we can skip it */
715 11844 : if (!compare_datums_simple(values[dim][i - 1], values[dim][i], &ssup[dim]))
716 4977 : continue;
717 :
718 6867 : values[dim][ndistinct] = values[dim][i];
719 6867 : ndistinct += 1;
720 : }
721 :
722 : /* we must not exceed PG_UINT16_MAX, as we use uint16 indexes */
723 252 : Assert(ndistinct <= PG_UINT16_MAX);
724 :
725 : /*
726 : * Store additional info about the attribute - number of deduplicated
727 : * values, and also size of the serialized data. For fixed-length data
728 : * types this is trivial to compute, for varwidth types we need to
729 : * actually walk the array and sum the sizes.
730 : */
731 252 : info[dim].nvalues = ndistinct;
732 :
1060 tgl 733 252 : if (info[dim].typbyval) /* by-value data types */
734 : {
1374 tomas.vondra 735 186 : info[dim].nbytes = info[dim].nvalues * info[dim].typlen;
736 :
737 : /*
738 : * We copy the data into the MCV item during deserialization, so
739 : * we don't need to allocate any extra space.
740 : */
741 186 : info[dim].nbytes_aligned = 0;
742 : }
1060 tgl 743 66 : else if (info[dim].typlen > 0) /* fixed-length by-ref */
744 : {
745 : /*
746 : * We don't care about alignment in the serialized data, so we
747 : * pack the data as much as possible. But we also track how much
748 : * data will be needed after deserialization, and in that case we
749 : * need to account for alignment of each item.
750 : *
751 : * Note: As the items are fixed-length, we could easily compute
752 : * this during deserialization, but we do it here anyway.
753 : */
1474 tomas.vondra 754 12 : info[dim].nbytes = info[dim].nvalues * info[dim].typlen;
1374 755 12 : info[dim].nbytes_aligned = info[dim].nvalues * MAXALIGN(info[dim].typlen);
756 : }
1474 757 54 : else if (info[dim].typlen == -1) /* varlena */
758 : {
759 54 : info[dim].nbytes = 0;
1374 760 54 : info[dim].nbytes_aligned = 0;
1474 761 1437 : for (i = 0; i < info[dim].nvalues; i++)
762 : {
763 : Size len;
764 :
765 : /*
766 : * For varlena values, we detoast the values and store the
767 : * length and data separately. We don't bother with alignment
768 : * here, which means that during deserialization we need to
769 : * copy the fields and only access the copies.
770 : */
771 1383 : values[dim][i] = PointerGetDatum(PG_DETOAST_DATUM(values[dim][i]));
772 :
773 : /* serialized length (uint32 length + data) */
1374 774 1383 : len = VARSIZE_ANY_EXHDR(values[dim][i]);
1060 tgl 775 1383 : info[dim].nbytes += sizeof(uint32); /* length */
776 1383 : info[dim].nbytes += len; /* value (no header) */
777 :
778 : /*
779 : * During deserialization we'll build regular varlena values
780 : * with full headers, and we need to align them properly.
781 : */
1374 tomas.vondra 782 1383 : info[dim].nbytes_aligned += MAXALIGN(VARHDRSZ + len);
783 : }
784 : }
1474 tomas.vondra 785 UBC 0 : else if (info[dim].typlen == -2) /* cstring */
786 : {
787 0 : info[dim].nbytes = 0;
1374 788 0 : info[dim].nbytes_aligned = 0;
1474 789 0 : for (i = 0; i < info[dim].nvalues; i++)
790 : {
791 : Size len;
792 :
793 : /*
794 : * cstring is handled similar to varlena - first we store the
795 : * length as uint32 and then the data. We don't care about
796 : * alignment, which means that during deserialization we need
797 : * to copy the fields and only access the copies.
798 : */
799 :
800 : /* c-strings include terminator, so +1 byte */
1472 801 0 : len = strlen(DatumGetCString(values[dim][i])) + 1;
1060 tgl 802 0 : info[dim].nbytes += sizeof(uint32); /* length */
803 0 : info[dim].nbytes += len; /* value */
804 :
805 : /* space needed for properly aligned deserialized copies */
1374 tomas.vondra 806 0 : info[dim].nbytes_aligned += MAXALIGN(len);
807 : }
808 : }
809 :
810 : /* we know (count>0) so there must be some data */
1474 tomas.vondra 811 CBC 252 : Assert(info[dim].nbytes > 0);
812 : }
813 :
814 : /*
815 : * Now we can finally compute how much space we'll actually need for the
816 : * whole serialized MCV list (varlena header, MCV header, dimension info
817 : * for each attribute, deduplicated values and items).
818 : */
1060 tgl 819 90 : total_length = (3 * sizeof(uint32)) /* magic + type + nitems */
820 : + sizeof(AttrNumber) /* ndimensions */
821 90 : + (ndims * sizeof(Oid)); /* attribute types */
822 :
823 : /* dimension info */
1374 tomas.vondra 824 90 : total_length += ndims * sizeof(DimensionInfo);
825 :
826 : /* add space for the arrays of deduplicated values */
1474 827 345 : for (i = 0; i < ndims; i++)
1374 828 255 : total_length += info[i].nbytes;
829 :
830 : /*
831 : * And finally account for the items (those are fixed-length, thanks to
832 : * replacing values with uint16 indexes into the deduplicated arrays).
833 : */
834 90 : total_length += mcvlist->nitems * ITEM_SIZE(dim);
835 :
836 : /*
837 : * Allocate space for the whole serialized MCV list (we'll skip bytes, so
838 : * we set them to zero to make the result more compressible).
839 : */
840 90 : raw = (bytea *) palloc0(VARHDRSZ + total_length);
841 90 : SET_VARSIZE(raw, VARHDRSZ + total_length);
842 :
1467 843 90 : ptr = VARDATA(raw);
1374 844 90 : endptr = ptr + total_length;
845 :
846 : /* copy the MCV list header fields, one by one */
1467 847 90 : memcpy(ptr, &mcvlist->magic, sizeof(uint32));
848 90 : ptr += sizeof(uint32);
849 :
850 90 : memcpy(ptr, &mcvlist->type, sizeof(uint32));
851 90 : ptr += sizeof(uint32);
852 :
853 90 : memcpy(ptr, &mcvlist->nitems, sizeof(uint32));
854 90 : ptr += sizeof(uint32);
855 :
856 90 : memcpy(ptr, &mcvlist->ndimensions, sizeof(AttrNumber));
857 90 : ptr += sizeof(AttrNumber);
858 :
859 90 : memcpy(ptr, mcvlist->types, sizeof(Oid) * ndims);
860 90 : ptr += (sizeof(Oid) * ndims);
861 :
862 : /* store information about the attributes (data amounts, ...) */
1473 863 90 : memcpy(ptr, info, sizeof(DimensionInfo) * ndims);
1374 864 90 : ptr += sizeof(DimensionInfo) * ndims;
865 :
866 : /* Copy the deduplicated values for all attributes to the output. */
1474 867 345 : for (dim = 0; dim < ndims; dim++)
868 : {
869 : /* remember the starting point for Asserts later */
1473 870 255 : char *start PG_USED_FOR_ASSERTS_ONLY = ptr;
871 :
1474 872 7374 : for (i = 0; i < info[dim].nvalues; i++)
873 : {
1473 874 7119 : Datum value = values[dim][i];
875 :
1474 876 7119 : if (info[dim].typbyval) /* passed by value */
877 : {
878 : Datum tmp;
879 :
880 : /*
881 : * For byval types, we need to copy just the significant bytes
882 : * - we can't use memcpy directly, as that assumes
883 : * little-endian behavior. store_att_byval does almost what
884 : * we need, but it requires a properly aligned buffer - the
885 : * output buffer does not guarantee that. So we simply use a
886 : * local Datum variable (which guarantees proper alignment),
887 : * and then copy the value from it.
888 : */
1473 889 5181 : store_att_byval(&tmp, value, info[dim].typlen);
890 :
891 5181 : memcpy(ptr, &tmp, info[dim].typlen);
892 5181 : ptr += info[dim].typlen;
893 : }
1414 akapila 894 1938 : else if (info[dim].typlen > 0) /* passed by reference */
895 : {
896 : /* no special alignment needed, treated as char array */
1473 tomas.vondra 897 555 : memcpy(ptr, DatumGetPointer(value), info[dim].typlen);
898 555 : ptr += info[dim].typlen;
899 : }
1474 900 1383 : else if (info[dim].typlen == -1) /* varlena */
901 : {
1374 902 1383 : uint32 len = VARSIZE_ANY_EXHDR(DatumGetPointer(value));
903 :
904 : /* copy the length */
905 1383 : memcpy(ptr, &len, sizeof(uint32));
906 1383 : ptr += sizeof(uint32);
907 :
908 : /* data from the varlena value (without the header) */
909 1383 : memcpy(ptr, VARDATA_ANY(DatumGetPointer(value)), len);
910 1383 : ptr += len;
911 : }
1474 tomas.vondra 912 UBC 0 : else if (info[dim].typlen == -2) /* cstring */
913 : {
1374 914 0 : uint32 len = (uint32) strlen(DatumGetCString(value)) + 1;
915 :
916 : /* copy the length */
917 0 : memcpy(ptr, &len, sizeof(uint32));
918 0 : ptr += sizeof(uint32);
919 :
920 : /* value */
1473 921 0 : memcpy(ptr, DatumGetCString(value), len);
1374 922 0 : ptr += len;
923 : }
924 :
925 : /* no underflows or overflows */
1473 tomas.vondra 926 CBC 7119 : Assert((ptr > start) && ((ptr - start) <= info[dim].nbytes));
927 : }
928 :
929 : /* we should get exactly nbytes of data for this dimension */
930 255 : Assert((ptr - start) == info[dim].nbytes);
931 : }
932 :
933 : /* Serialize the items, with uint16 indexes instead of the values. */
1474 934 4386 : for (i = 0; i < mcvlist->nitems; i++)
935 : {
1473 936 4296 : MCVItem *mcvitem = &mcvlist->items[i];
937 :
938 : /* don't write beyond the allocated space */
1374 939 4296 : Assert(ptr <= (endptr - ITEM_SIZE(dim)));
940 :
941 : /* copy NULL and frequency flags into the serialized MCV */
942 4296 : memcpy(ptr, mcvitem->isnull, sizeof(bool) * ndims);
943 4296 : ptr += sizeof(bool) * ndims;
944 :
945 4296 : memcpy(ptr, &mcvitem->frequency, sizeof(double));
946 4296 : ptr += sizeof(double);
947 :
948 4296 : memcpy(ptr, &mcvitem->base_frequency, sizeof(double));
949 4296 : ptr += sizeof(double);
950 :
951 : /* store the indexes last */
1474 952 16425 : for (dim = 0; dim < ndims; dim++)
953 : {
1374 954 12129 : uint16 index = 0;
955 : Datum *value;
956 :
957 : /* do the lookup only for non-NULL values */
958 12129 : if (!mcvitem->isnull[dim])
959 : {
960 12096 : value = (Datum *) bsearch_arg(&mcvitem->values[dim], values[dim],
961 12096 : info[dim].nvalues, sizeof(Datum),
962 12096 : compare_scalars_simple, &ssup[dim]);
963 :
1060 tgl 964 12096 : Assert(value != NULL); /* serialization or deduplication
965 : * error */
966 :
967 : /* compute index within the deduplicated array */
1374 tomas.vondra 968 12096 : index = (uint16) (value - values[dim]);
969 :
970 : /* check the index is within expected bounds */
971 12096 : Assert(index < info[dim].nvalues);
972 : }
973 :
974 : /* copy the index into the serialized MCV */
975 12129 : memcpy(ptr, &index, sizeof(uint16));
976 12129 : ptr += sizeof(uint16);
977 : }
978 :
979 : /* make sure we don't overflow the allocated value */
980 4296 : Assert(ptr <= endptr);
981 : }
982 :
983 : /* at this point we expect to match the total_length exactly */
984 90 : Assert(ptr == endptr);
985 :
1474 986 90 : pfree(values);
987 90 : pfree(counts);
988 :
1374 989 90 : return raw;
990 : }
991 :
992 : /*
993 : * statext_mcv_deserialize
994 : * Reads serialized MCV list into MCVList structure.
995 : *
996 : * All the memory needed by the MCV list is allocated as a single chunk, so
997 : * it's possible to simply pfree() it at once.
998 : */
999 : MCVList *
1474 1000 246 : statext_mcv_deserialize(bytea *data)
1001 : {
1002 : int dim,
1003 : i;
1004 : Size expected_size;
1005 : MCVList *mcvlist;
1006 : char *raw;
1007 : char *ptr;
1008 : char *endptr PG_USED_FOR_ASSERTS_ONLY;
1009 :
1010 : int ndims,
1011 : nitems;
1012 246 : DimensionInfo *info = NULL;
1013 :
1014 : /* local allocation buffer (used only for deserialization) */
1473 1015 246 : Datum **map = NULL;
1016 :
1017 : /* MCV list */
1018 : Size mcvlen;
1019 :
1020 : /* buffer used for the result */
1021 : Size datalen;
1022 : char *dataptr;
1023 : char *valuesptr;
1024 : char *isnullptr;
1025 :
1474 1026 246 : if (data == NULL)
1474 tomas.vondra 1027 UBC 0 : return NULL;
1028 :
1029 : /*
1030 : * We can't possibly deserialize a MCV list if there's not even a complete
1031 : * header. We need an explicit formula here, because we serialize the
1032 : * header fields one by one, so we need to ignore struct alignment.
1033 : */
1467 tomas.vondra 1034 CBC 246 : if (VARSIZE_ANY(data) < MinSizeOfMCVList)
44 peter 1035 UNC 0 : elog(ERROR, "invalid MCV size %zu (expected at least %zu)",
1036 : VARSIZE_ANY(data), MinSizeOfMCVList);
1037 :
1038 : /* read the MCV list header */
1473 tomas.vondra 1039 CBC 246 : mcvlist = (MCVList *) palloc0(offsetof(MCVList, items));
1040 :
1041 : /* pointer to the data part (skip the varlena header) */
1467 1042 246 : raw = (char *) data;
1374 1043 246 : ptr = VARDATA_ANY(raw);
1044 246 : endptr = (char *) raw + VARSIZE_ANY(data);
1045 :
1046 : /* get the header and perform further sanity checks */
1467 1047 246 : memcpy(&mcvlist->magic, ptr, sizeof(uint32));
1048 246 : ptr += sizeof(uint32);
1049 :
1050 246 : memcpy(&mcvlist->type, ptr, sizeof(uint32));
1051 246 : ptr += sizeof(uint32);
1052 :
1053 246 : memcpy(&mcvlist->nitems, ptr, sizeof(uint32));
1054 246 : ptr += sizeof(uint32);
1055 :
1056 246 : memcpy(&mcvlist->ndimensions, ptr, sizeof(AttrNumber));
1057 246 : ptr += sizeof(AttrNumber);
1058 :
1474 1059 246 : if (mcvlist->magic != STATS_MCV_MAGIC)
1474 tomas.vondra 1060 UBC 0 : elog(ERROR, "invalid MCV magic %u (expected %u)",
1061 : mcvlist->magic, STATS_MCV_MAGIC);
1062 :
1474 tomas.vondra 1063 CBC 246 : if (mcvlist->type != STATS_MCV_TYPE_BASIC)
1474 tomas.vondra 1064 UBC 0 : elog(ERROR, "invalid MCV type %u (expected %u)",
1065 : mcvlist->type, STATS_MCV_TYPE_BASIC);
1066 :
1474 tomas.vondra 1067 CBC 246 : if (mcvlist->ndimensions == 0)
1474 tomas.vondra 1068 UBC 0 : elog(ERROR, "invalid zero-length dimension array in MCVList");
1474 tomas.vondra 1069 CBC 246 : else if ((mcvlist->ndimensions > STATS_MAX_DIMENSIONS) ||
1070 246 : (mcvlist->ndimensions < 0))
1474 tomas.vondra 1071 UBC 0 : elog(ERROR, "invalid length (%d) dimension array in MCVList",
1072 : mcvlist->ndimensions);
1073 :
1474 tomas.vondra 1074 CBC 246 : if (mcvlist->nitems == 0)
1474 tomas.vondra 1075 UBC 0 : elog(ERROR, "invalid zero-length item array in MCVList");
1474 tomas.vondra 1076 CBC 246 : else if (mcvlist->nitems > STATS_MCVLIST_MAX_ITEMS)
1474 tomas.vondra 1077 UBC 0 : elog(ERROR, "invalid length (%u) item array in MCVList",
1078 : mcvlist->nitems);
1079 :
1474 tomas.vondra 1080 CBC 246 : nitems = mcvlist->nitems;
1081 246 : ndims = mcvlist->ndimensions;
1082 :
1083 : /*
1084 : * Check amount of data including DimensionInfo for all dimensions and
1085 : * also the serialized items (including uint16 indexes). Also, walk
1086 : * through the dimension information and add it to the sum.
1087 : */
1467 1088 246 : expected_size = SizeOfMCVList(ndims, nitems);
1089 :
1090 : /*
1091 : * Check that we have at least the dimension and info records, along with
1092 : * the items. We don't know the size of the serialized values yet. We need
1093 : * to do this check first, before accessing the dimension info.
1094 : */
1095 246 : if (VARSIZE_ANY(data) < expected_size)
44 peter 1096 UNC 0 : elog(ERROR, "invalid MCV size %zu (expected %zu)",
1097 : VARSIZE_ANY(data), expected_size);
1098 :
1099 : /* Now copy the array of type Oids. */
1454 tomas.vondra 1100 CBC 246 : memcpy(mcvlist->types, ptr, sizeof(Oid) * ndims);
1467 1101 246 : ptr += (sizeof(Oid) * ndims);
1102 :
1103 : /* Now it's safe to access the dimension info. */
1374 1104 246 : info = palloc(ndims * sizeof(DimensionInfo));
1105 :
1106 246 : memcpy(info, ptr, ndims * sizeof(DimensionInfo));
1107 246 : ptr += (ndims * sizeof(DimensionInfo));
1108 :
1109 : /* account for the value arrays */
1474 1110 1059 : for (dim = 0; dim < ndims; dim++)
1111 : {
1112 : /*
1113 : * XXX I wonder if we can/should rely on asserts here. Maybe those
1114 : * checks should be done every time?
1115 : */
1116 813 : Assert(info[dim].nvalues >= 0);
1117 813 : Assert(info[dim].nbytes >= 0);
1118 :
1374 1119 813 : expected_size += info[dim].nbytes;
1120 : }
1121 :
1122 : /*
1123 : * Now we know the total expected MCV size, including all the pieces
1124 : * (header, dimension info. items and deduplicated data). So do the final
1125 : * check on size.
1126 : */
1467 1127 246 : if (VARSIZE_ANY(data) != expected_size)
44 peter 1128 UNC 0 : elog(ERROR, "invalid MCV size %zu (expected %zu)",
1129 : VARSIZE_ANY(data), expected_size);
1130 :
1131 : /*
1132 : * We need an array of Datum values for each dimension, so that we can
1133 : * easily translate the uint16 indexes later. We also need a top-level
1134 : * array of pointers to those per-dimension arrays.
1135 : *
1136 : * While allocating the arrays for dimensions, compute how much space we
1137 : * need for a copy of the by-ref data, as we can't simply point to the
1138 : * original values (it might go away).
1139 : */
1473 tomas.vondra 1140 CBC 246 : datalen = 0; /* space for by-ref data */
1469 michael 1141 246 : map = (Datum **) palloc(ndims * sizeof(Datum *));
1142 :
1474 tomas.vondra 1143 1059 : for (dim = 0; dim < ndims; dim++)
1144 : {
1473 1145 813 : map[dim] = (Datum *) palloc(sizeof(Datum) * info[dim].nvalues);
1146 :
1147 : /* space needed for a copy of data for by-ref types */
1374 1148 813 : datalen += info[dim].nbytes_aligned;
1149 : }
1150 :
1151 : /*
1152 : * Now resize the MCV list so that the allocation includes all the data.
1153 : *
1154 : * Allocate space for a copy of the data, as we can't simply reference the
1155 : * serialized data - it's not aligned properly, and it may disappear while
1156 : * we're still using the MCV list, e.g. due to catcache release.
1157 : *
1158 : * We do care about alignment here, because we will allocate all the
1159 : * pieces at once, but then use pointers to different parts.
1160 : */
1472 1161 246 : mcvlen = MAXALIGN(offsetof(MCVList, items) + (sizeof(MCVItem) * nitems));
1162 :
1163 : /* arrays of values and isnull flags for all MCV items */
1471 1164 246 : mcvlen += nitems * MAXALIGN(sizeof(Datum) * ndims);
1165 246 : mcvlen += nitems * MAXALIGN(sizeof(bool) * ndims);
1166 :
1167 : /* we don't quite need to align this, but it makes some asserts easier */
1472 1168 246 : mcvlen += MAXALIGN(datalen);
1169 :
1170 : /* now resize the deserialized MCV list, and compute pointers to parts */
1473 1171 246 : mcvlist = repalloc(mcvlist, mcvlen);
1172 :
1173 : /* pointer to the beginning of values/isnull arrays */
1472 1174 246 : valuesptr = (char *) mcvlist
1175 246 : + MAXALIGN(offsetof(MCVList, items) + (sizeof(MCVItem) * nitems));
1176 :
1471 1177 246 : isnullptr = valuesptr + (nitems * MAXALIGN(sizeof(Datum) * ndims));
1178 :
1179 246 : dataptr = isnullptr + (nitems * MAXALIGN(sizeof(bool) * ndims));
1180 :
1181 : /*
1182 : * Build mapping (index => value) for translating the serialized data into
1183 : * the in-memory representation.
1184 : */
1474 1185 1059 : for (dim = 0; dim < ndims; dim++)
1186 : {
1187 : /* remember start position in the input array */
1473 1188 813 : char *start PG_USED_FOR_ASSERTS_ONLY = ptr;
1189 :
1474 1190 813 : if (info[dim].typbyval)
1191 : {
1192 : /* for by-val types we simply copy data into the mapping */
1473 1193 21963 : for (i = 0; i < info[dim].nvalues; i++)
1194 : {
1195 21429 : Datum v = 0;
1196 :
1197 21429 : memcpy(&v, ptr, info[dim].typlen);
1198 21429 : ptr += info[dim].typlen;
1199 :
1200 21429 : map[dim][i] = fetch_att(&v, true, info[dim].typlen);
1201 :
1202 : /* no under/overflow of input array */
1203 21429 : Assert(ptr <= (start + info[dim].nbytes));
1204 : }
1205 : }
1206 : else
1207 : {
1208 : /* for by-ref types we need to also make a copy of the data */
1209 :
1210 : /* passed by reference, but fixed length (name, tid, ...) */
1474 1211 279 : if (info[dim].typlen > 0)
1212 : {
1213 1101 : for (i = 0; i < info[dim].nvalues; i++)
1214 : {
1473 1215 1080 : memcpy(dataptr, ptr, info[dim].typlen);
1216 1080 : ptr += info[dim].typlen;
1217 :
1218 : /* just point into the array */
1219 1080 : map[dim][i] = PointerGetDatum(dataptr);
1374 1220 1080 : dataptr += MAXALIGN(info[dim].typlen);
1221 : }
1222 : }
1474 1223 258 : else if (info[dim].typlen == -1)
1224 : {
1225 : /* varlena */
1226 7494 : for (i = 0; i < info[dim].nvalues; i++)
1227 : {
1228 : uint32 len;
1229 :
1230 : /* read the uint32 length */
1374 1231 7236 : memcpy(&len, ptr, sizeof(uint32));
1232 7236 : ptr += sizeof(uint32);
1233 :
1234 : /* the length is data-only */
1235 7236 : SET_VARSIZE(dataptr, len + VARHDRSZ);
1236 7236 : memcpy(VARDATA(dataptr), ptr, len);
1237 7236 : ptr += len;
1238 :
1239 : /* just point into the array */
1473 1240 7236 : map[dim][i] = PointerGetDatum(dataptr);
1241 :
1242 : /* skip to place of the next deserialized value */
1374 1243 7236 : dataptr += MAXALIGN(len + VARHDRSZ);
1244 : }
1245 : }
1474 tomas.vondra 1246 UBC 0 : else if (info[dim].typlen == -2)
1247 : {
1248 : /* cstring */
1249 0 : for (i = 0; i < info[dim].nvalues; i++)
1250 : {
1251 : uint32 len;
1252 :
1374 1253 0 : memcpy(&len, ptr, sizeof(uint32));
1254 0 : ptr += sizeof(uint32);
1255 :
1473 1256 0 : memcpy(dataptr, ptr, len);
1374 1257 0 : ptr += len;
1258 :
1259 : /* just point into the array */
1473 1260 0 : map[dim][i] = PointerGetDatum(dataptr);
1472 1261 0 : dataptr += MAXALIGN(len);
1262 : }
1263 : }
1264 :
1265 : /* no under/overflow of input array */
1473 tomas.vondra 1266 CBC 279 : Assert(ptr <= (start + info[dim].nbytes));
1267 :
1268 : /* no overflow of the output mcv value */
1269 279 : Assert(dataptr <= ((char *) mcvlist + mcvlen));
1270 : }
1271 :
1272 : /* check we consumed input data for this dimension exactly */
1273 813 : Assert(ptr == (start + info[dim].nbytes));
1274 : }
1275 :
1276 : /* we should have also filled the MCV list exactly */
1277 246 : Assert(dataptr == ((char *) mcvlist + mcvlen));
1278 :
1279 : /* deserialize the MCV items and translate the indexes to Datums */
1474 1280 15219 : for (i = 0; i < nitems; i++)
1281 : {
1473 1282 14973 : MCVItem *item = &mcvlist->items[i];
1283 :
1284 14973 : item->values = (Datum *) valuesptr;
1471 1285 14973 : valuesptr += MAXALIGN(sizeof(Datum) * ndims);
1286 :
1287 14973 : item->isnull = (bool *) isnullptr;
1288 14973 : isnullptr += MAXALIGN(sizeof(bool) * ndims);
1289 :
1374 1290 14973 : memcpy(item->isnull, ptr, sizeof(bool) * ndims);
1291 14973 : ptr += sizeof(bool) * ndims;
1292 :
1293 14973 : memcpy(&item->frequency, ptr, sizeof(double));
1294 14973 : ptr += sizeof(double);
1295 :
1296 14973 : memcpy(&item->base_frequency, ptr, sizeof(double));
1297 14973 : ptr += sizeof(double);
1298 :
1299 : /* finally translate the indexes (for non-NULL only) */
1474 1300 66894 : for (dim = 0; dim < ndims; dim++)
1301 : {
1302 : uint16 index;
1303 :
1374 1304 51921 : memcpy(&index, ptr, sizeof(uint16));
1305 51921 : ptr += sizeof(uint16);
1306 :
1307 51921 : if (item->isnull[dim])
1308 153 : continue;
1309 :
1310 51768 : item->values[dim] = map[dim][index];
1311 : }
1312 :
1313 : /* check we're not overflowing the input */
1314 14973 : Assert(ptr <= endptr);
1315 : }
1316 :
1317 : /* check that we processed all the data */
1318 246 : Assert(ptr == endptr);
1319 :
1320 : /* release the buffers used for mapping */
1473 1321 1059 : for (dim = 0; dim < ndims; dim++)
1322 813 : pfree(map[dim]);
1323 :
1324 246 : pfree(map);
1325 :
1474 1326 246 : return mcvlist;
1327 : }
1328 :
1329 : /*
1330 : * SRF with details about buckets of a histogram:
1331 : *
1332 : * - item ID (0...nitems)
1333 : * - values (string array)
1334 : * - nulls only (boolean array)
1335 : * - frequency (double precision)
1336 : * - base_frequency (double precision)
1337 : *
1338 : * The input is the OID of the statistics, and there are no rows returned if
1339 : * the statistics contains no histogram.
1340 : */
1341 : Datum
1342 15 : pg_stats_ext_mcvlist_items(PG_FUNCTION_ARGS)
1343 : {
1344 : FuncCallContext *funcctx;
1345 :
1346 : /* stuff done only on the first call of the function */
1347 15 : if (SRF_IS_FIRSTCALL())
1348 : {
1349 : MemoryContext oldcontext;
1350 : MCVList *mcvlist;
1351 : TupleDesc tupdesc;
1352 :
1353 : /* create a function context for cross-call persistence */
1354 6 : funcctx = SRF_FIRSTCALL_INIT();
1355 :
1356 : /* switch to memory context appropriate for multiple function calls */
1357 6 : oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
1358 :
1359 6 : mcvlist = statext_mcv_deserialize(PG_GETARG_BYTEA_P(0));
1360 :
1361 6 : funcctx->user_fctx = mcvlist;
1362 :
1363 : /* total number of tuples to be returned */
1364 6 : funcctx->max_calls = 0;
1365 6 : if (funcctx->user_fctx != NULL)
1366 6 : funcctx->max_calls = mcvlist->nitems;
1367 :
1368 : /* Build a tuple descriptor for our result type */
1369 6 : if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE)
1474 tomas.vondra 1370 UBC 0 : ereport(ERROR,
1371 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1372 : errmsg("function returning record called in context "
1373 : "that cannot accept type record")));
1375 tomas.vondra 1374 CBC 6 : tupdesc = BlessTupleDesc(tupdesc);
1375 :
1376 : /*
1377 : * generate attribute metadata needed later to produce tuples from raw
1378 : * C strings
1379 : */
1380 6 : funcctx->attinmeta = TupleDescGetAttInMetadata(tupdesc);
1381 :
1474 1382 6 : MemoryContextSwitchTo(oldcontext);
1383 : }
1384 :
1385 : /* stuff done on every call of the function */
1386 15 : funcctx = SRF_PERCALL_SETUP();
1387 :
1060 tgl 1388 15 : if (funcctx->call_cntr < funcctx->max_calls) /* do when there is more
1389 : * left to send */
1390 : {
1391 : Datum values[5];
1392 : bool nulls[5];
1393 : HeapTuple tuple;
1394 : Datum result;
1375 tomas.vondra 1395 9 : ArrayBuildState *astate_values = NULL;
1396 9 : ArrayBuildState *astate_nulls = NULL;
1397 :
1398 : int i;
1399 : MCVList *mcvlist;
1400 : MCVItem *item;
1401 :
1474 1402 9 : mcvlist = (MCVList *) funcctx->user_fctx;
1403 :
1375 1404 9 : Assert(funcctx->call_cntr < mcvlist->nitems);
1405 :
1406 9 : item = &mcvlist->items[funcctx->call_cntr];
1407 :
1474 1408 36 : for (i = 0; i < mcvlist->ndimensions; i++)
1409 : {
1410 :
1375 1411 27 : astate_nulls = accumArrayResult(astate_nulls,
1060 tgl 1412 27 : BoolGetDatum(item->isnull[i]),
1413 : false,
1414 : BOOLOID,
1415 : CurrentMemoryContext);
1416 :
1375 tomas.vondra 1417 27 : if (!item->isnull[i])
1418 : {
1419 : bool isvarlena;
1420 : Oid outfunc;
1421 : FmgrInfo fmgrinfo;
1422 : Datum val;
1423 : text *txt;
1424 :
1425 : /* lookup output func for the type */
1426 15 : getTypeOutputInfo(mcvlist->types[i], &outfunc, &isvarlena);
1427 15 : fmgr_info(outfunc, &fmgrinfo);
1428 :
1429 15 : val = FunctionCall1(&fmgrinfo, item->values[i]);
1430 15 : txt = cstring_to_text(DatumGetPointer(val));
1431 :
1432 15 : astate_values = accumArrayResult(astate_values,
1433 : PointerGetDatum(txt),
1434 : false,
1435 : TEXTOID,
1436 : CurrentMemoryContext);
1437 : }
1438 : else
1439 12 : astate_values = accumArrayResult(astate_values,
1440 : (Datum) 0,
1441 : true,
1442 : TEXTOID,
1443 : CurrentMemoryContext);
1444 : }
1445 :
1446 9 : values[0] = Int32GetDatum(funcctx->call_cntr);
224 peter 1447 GNC 9 : values[1] = makeArrayResult(astate_values, CurrentMemoryContext);
1448 9 : values[2] = makeArrayResult(astate_nulls, CurrentMemoryContext);
1375 tomas.vondra 1449 CBC 9 : values[3] = Float8GetDatum(item->frequency);
1450 9 : values[4] = Float8GetDatum(item->base_frequency);
1451 :
1452 : /* no NULLs in the tuple */
1453 9 : memset(nulls, 0, sizeof(nulls));
1454 :
1455 : /* build a tuple */
1456 9 : tuple = heap_form_tuple(funcctx->attinmeta->tupdesc, values, nulls);
1457 :
1458 : /* make the tuple into a datum */
1474 1459 9 : result = HeapTupleGetDatum(tuple);
1460 :
1461 9 : SRF_RETURN_NEXT(funcctx, result);
1462 : }
1463 : else /* do when there is no more left */
1464 : {
1465 6 : SRF_RETURN_DONE(funcctx);
1466 : }
1467 : }
1468 :
1469 : /*
1470 : * pg_mcv_list_in - input routine for type pg_mcv_list.
1471 : *
1472 : * pg_mcv_list is real enough to be a table column, but it has no operations
1473 : * of its own, and disallows input too
1474 : */
1475 : Datum
1474 tomas.vondra 1476 UBC 0 : pg_mcv_list_in(PG_FUNCTION_ARGS)
1477 : {
1478 : /*
1479 : * pg_mcv_list stores the data in binary form and parsing text input is
1480 : * not needed, so disallow this.
1481 : */
1482 0 : ereport(ERROR,
1483 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1484 : errmsg("cannot accept a value of type %s", "pg_mcv_list")));
1485 :
1486 : PG_RETURN_VOID(); /* keep compiler quiet */
1487 : }
1488 :
1489 :
1490 : /*
1491 : * pg_mcv_list_out - output routine for type pg_mcv_list.
1492 : *
1493 : * MCV lists are serialized into a bytea value, so we simply call byteaout()
1494 : * to serialize the value into text. But it'd be nice to serialize that into
1495 : * a meaningful representation (e.g. for inspection by people).
1496 : *
1497 : * XXX This should probably return something meaningful, similar to what
1498 : * pg_dependencies_out does. Not sure how to deal with the deduplicated
1499 : * values, though - do we want to expand that or not?
1500 : */
1501 : Datum
1502 0 : pg_mcv_list_out(PG_FUNCTION_ARGS)
1503 : {
1504 0 : return byteaout(fcinfo);
1505 : }
1506 :
1507 : /*
1508 : * pg_mcv_list_recv - binary input routine for type pg_mcv_list.
1509 : */
1510 : Datum
1511 0 : pg_mcv_list_recv(PG_FUNCTION_ARGS)
1512 : {
1513 0 : ereport(ERROR,
1514 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1515 : errmsg("cannot accept a value of type %s", "pg_mcv_list")));
1516 :
1517 : PG_RETURN_VOID(); /* keep compiler quiet */
1518 : }
1519 :
1520 : /*
1521 : * pg_mcv_list_send - binary output routine for type pg_mcv_list.
1522 : *
1523 : * MCV lists are serialized in a bytea value (although the type is named
1524 : * differently), so let's just send that.
1525 : */
1526 : Datum
1527 0 : pg_mcv_list_send(PG_FUNCTION_ARGS)
1528 : {
1529 0 : return byteasend(fcinfo);
1530 : }
1531 :
1532 : /*
1533 : * match the attribute/expression to a dimension of the statistic
1534 : *
1535 : * Returns the zero-based index of the matching statistics dimension.
1536 : * Optionally determines the collation.
1537 : */
1538 : static int
744 tomas.vondra 1539 CBC 576 : mcv_match_expression(Node *expr, Bitmapset *keys, List *exprs, Oid *collid)
1540 : {
1541 : int idx;
1542 :
1543 576 : if (IsA(expr, Var))
1544 : {
1545 : /* simple Var, so just lookup using varattno */
1546 453 : Var *var = (Var *) expr;
1547 :
1548 453 : if (collid)
1549 420 : *collid = var->varcollid;
1550 :
1551 453 : idx = bms_member_index(keys, var->varattno);
1552 :
247 tgl 1553 453 : if (idx < 0)
247 tgl 1554 UBC 0 : elog(ERROR, "variable not found in statistics object");
1555 : }
1556 : else
1557 : {
1558 : /* expression - lookup in stats expressions */
1559 : ListCell *lc;
1560 :
744 tomas.vondra 1561 CBC 123 : if (collid)
1562 120 : *collid = exprCollation(expr);
1563 :
1564 : /* expressions are stored after the simple columns */
247 tgl 1565 123 : idx = bms_num_members(keys);
744 tomas.vondra 1566 228 : foreach(lc, exprs)
1567 : {
1568 228 : Node *stat_expr = (Node *) lfirst(lc);
1569 :
1570 228 : if (equal(expr, stat_expr))
1571 123 : break;
1572 :
1573 105 : idx++;
1574 : }
1575 :
247 tgl 1576 123 : if (lc == NULL)
247 tgl 1577 UBC 0 : elog(ERROR, "expression not found in statistics object");
1578 : }
1579 :
744 tomas.vondra 1580 CBC 576 : return idx;
1581 : }
1582 :
1583 : /*
1584 : * mcv_get_match_bitmap
1585 : * Evaluate clauses using the MCV list, and update the match bitmap.
1586 : *
1587 : * A match bitmap keeps match/mismatch status for each MCV item, and we
1588 : * update it based on additional clauses. We also use it to skip items
1589 : * that can't possibly match (e.g. item marked as "mismatch" can't change
1590 : * to "match" when evaluating AND clause list).
1591 : *
1592 : * The function also returns a flag indicating whether there was an
1593 : * equality condition for all attributes, the minimum frequency in the MCV
1594 : * list, and a total MCV frequency (sum of frequencies for all items).
1595 : *
1596 : * XXX Currently the match bitmap uses a bool for each MCV item, which is
1597 : * somewhat wasteful as we could do with just a single bit, thus reducing
1598 : * the size to ~1/8. It would also allow us to combine bitmaps simply using
1599 : * & and |, which should be faster than min/max. The bitmaps are fairly
1600 : * small, though (thanks to the cap on the MCV list size).
1601 : */
1602 : static bool *
1474 1603 357 : mcv_get_match_bitmap(PlannerInfo *root, List *clauses,
1604 : Bitmapset *keys, List *exprs,
1605 : MCVList *mcvlist, bool is_or)
1606 : {
1607 : ListCell *l;
1608 : bool *matches;
1609 :
1474 tomas.vondra 1610 ECB : /* The bitmap may be partially built. */
1474 tomas.vondra 1611 CBC 357 : Assert(clauses != NIL);
1612 357 : Assert(mcvlist != NULL);
1474 tomas.vondra 1613 GIC 357 : Assert(mcvlist->nitems > 0);
1474 tomas.vondra 1614 CBC 357 : Assert(mcvlist->nitems <= STATS_MCVLIST_MAX_ITEMS);
1474 tomas.vondra 1615 ECB :
1474 tomas.vondra 1616 GIC 357 : matches = palloc(sizeof(bool) * mcvlist->nitems);
439 michael 1617 357 : memset(matches, !is_or, sizeof(bool) * mcvlist->nitems);
1618 :
1619 : /*
1620 : * Loop through the list of clauses, and for each of them evaluate all the
1474 tomas.vondra 1621 ECB : * MCV items not yet eliminated by the preceding clauses.
1622 : */
1474 tomas.vondra 1623 CBC 1017 : foreach(l, clauses)
1624 : {
1474 tomas.vondra 1625 GIC 660 : Node *clause = (Node *) lfirst(l);
1474 tomas.vondra 1626 ECB :
1627 : /* if it's a RestrictInfo, then extract the clause */
1474 tomas.vondra 1628 GIC 660 : if (IsA(clause, RestrictInfo))
1629 609 : clause = (Node *) ((RestrictInfo *) clause)->clause;
1630 :
1631 : /*
1632 : * Handle the various types of clauses - OpClause, NullTest and
1474 tomas.vondra 1633 ECB : * AND/OR/NOT
1634 : */
1474 tomas.vondra 1635 CBC 660 : if (is_opclause(clause))
1636 : {
1474 tomas.vondra 1637 GIC 438 : OpExpr *expr = (OpExpr *) clause;
1638 : FmgrInfo opproc;
1639 :
1640 : /* valid only after examine_opclause_args returns true */
1641 : Node *clause_expr;
1642 : Const *cst;
1643 : bool expronleft;
1644 : int idx;
744 tomas.vondra 1645 ECB : Oid collid;
1646 :
1366 tomas.vondra 1647 GIC 438 : fmgr_info(get_opcode(expr->opno), &opproc);
1474 tomas.vondra 1648 ECB :
744 tomas.vondra 1649 EUB : /* extract the var/expr and const from the expression */
744 tomas.vondra 1650 GIC 438 : if (!examine_opclause_args(expr->args, &clause_expr, &cst, &expronleft))
744 tomas.vondra 1651 UIC 0 : elog(ERROR, "incompatible clause");
744 tomas.vondra 1652 ECB :
1653 : /* match the attribute/expression to a dimension of the statistic */
744 tomas.vondra 1654 GIC 438 : idx = mcv_match_expression(clause_expr, keys, exprs, &collid);
1655 :
1656 : /*
1657 : * Walk through the MCV items and evaluate the current clause. We
1658 : * can skip items that were already ruled out, and terminate if
744 tomas.vondra 1659 ECB : * there are no remaining MCV items that might possibly match.
1660 : */
228 drowley 1661 GNC 29316 : for (int i = 0; i < mcvlist->nitems; i++)
1474 tomas.vondra 1662 ECB : {
744 tomas.vondra 1663 GIC 28878 : bool match = true;
744 tomas.vondra 1664 CBC 28878 : MCVItem *item = &mcvlist->items[i];
1665 :
744 tomas.vondra 1666 GIC 28878 : Assert(idx >= 0);
1667 :
1668 : /*
1669 : * When the MCV item or the Const value is NULL we can treat
1670 : * this as a mismatch. We must not call the operator because
744 tomas.vondra 1671 ECB : * of strictness.
1672 : */
744 tomas.vondra 1673 CBC 28878 : if (item->isnull[idx] || cst->constisnull)
1474 tomas.vondra 1674 ECB : {
744 tomas.vondra 1675 GIC 24 : matches[i] = RESULT_MERGE(matches[i], is_or, false);
1676 24 : continue;
1677 : }
1678 :
1679 : /*
1680 : * Skip MCV items that can't change result in the bitmap. Once
1681 : * the value gets false for AND-lists, or true for OR-lists,
744 tomas.vondra 1682 ECB : * we don't need to look at more clauses.
1683 : */
744 tomas.vondra 1684 GIC 28854 : if (RESULT_IS_FINAL(matches[i], is_or))
1685 13482 : continue;
1686 :
1687 : /*
1688 : * First check whether the constant is below the lower
1689 : * boundary (in that case we can skip the bucket, because
1690 : * there's no overlap).
1691 : *
1692 : * We don't store collations used to build the statistics, but
1693 : * we can use the collation for the attribute itself, as
1694 : * stored in varcollid. We do reset the statistics after a
1695 : * type change (including collation change), so this is OK.
1696 : * For expressions, we use the collation extracted from the
744 tomas.vondra 1697 ECB : * expression itself.
1698 : */
744 tomas.vondra 1699 GIC 15372 : if (expronleft)
744 tomas.vondra 1700 CBC 14064 : match = DatumGetBool(FunctionCall2Coll(&opproc,
744 tomas.vondra 1701 ECB : collid,
744 tomas.vondra 1702 GIC 14064 : item->values[idx],
744 tomas.vondra 1703 CBC 14064 : cst->constvalue));
1704 : else
1705 1308 : match = DatumGetBool(FunctionCall2Coll(&opproc,
744 tomas.vondra 1706 ECB : collid,
744 tomas.vondra 1707 GIC 1308 : cst->constvalue,
1708 1308 : item->values[idx]));
744 tomas.vondra 1709 ECB :
1710 : /* update the match bitmap with the result */
744 tomas.vondra 1711 GIC 15372 : matches[i] = RESULT_MERGE(matches[i], is_or, match);
1121 tomas.vondra 1712 ECB : }
1713 : }
1121 tomas.vondra 1714 CBC 222 : else if (IsA(clause, ScalarArrayOpExpr))
1715 : {
1060 tgl 1716 GIC 102 : ScalarArrayOpExpr *expr = (ScalarArrayOpExpr *) clause;
1717 : FmgrInfo opproc;
1718 :
1719 : /* valid only after examine_opclause_args returns true */
1720 : Node *clause_expr;
1721 : Const *cst;
1722 : bool expronleft;
1723 : Oid collid;
1724 : int idx;
1725 :
1726 : /* array evaluation */
1727 : ArrayType *arrayval;
1728 : int16 elmlen;
1729 : bool elmbyval;
1730 : char elmalign;
1731 : int num_elems;
1732 : Datum *elem_values;
744 tomas.vondra 1733 ECB : bool *elem_nulls;
1734 :
1121 tomas.vondra 1735 GIC 102 : fmgr_info(get_opcode(expr->opno), &opproc);
1121 tomas.vondra 1736 ECB :
744 tomas.vondra 1737 EUB : /* extract the var/expr and const from the expression */
744 tomas.vondra 1738 GIC 102 : if (!examine_opclause_args(expr->args, &clause_expr, &cst, &expronleft))
744 tomas.vondra 1739 UIC 0 : elog(ERROR, "incompatible clause");
744 tomas.vondra 1740 ECB :
247 tgl 1741 EUB : /* We expect Var on left */
247 tgl 1742 GIC 102 : if (!expronleft)
247 tgl 1743 UIC 0 : elog(ERROR, "incompatible clause");
1744 :
1745 : /*
1746 : * Deconstruct the array constant, unless it's NULL (we'll cover
247 tgl 1747 ECB : * that case below)
1748 : */
247 tgl 1749 CBC 102 : if (!cst->constisnull)
247 tgl 1750 ECB : {
247 tgl 1751 GIC 102 : arrayval = DatumGetArrayTypeP(cst->constvalue);
247 tgl 1752 CBC 102 : get_typlenbyvalalign(ARR_ELEMTYPE(arrayval),
1753 : &elmlen, &elmbyval, &elmalign);
247 tgl 1754 GIC 102 : deconstruct_array(arrayval,
1755 : ARR_ELEMTYPE(arrayval),
1756 : elmlen, elmbyval, elmalign,
1757 : &elem_values, &elem_nulls, &num_elems);
1758 : }
1121 tomas.vondra 1759 ECB :
1760 : /* match the attribute/expression to a dimension of the statistic */
744 tomas.vondra 1761 GIC 102 : idx = mcv_match_expression(clause_expr, keys, exprs, &collid);
1762 :
1763 : /*
1764 : * Walk through the MCV items and evaluate the current clause. We
1765 : * can skip items that were already ruled out, and terminate if
744 tomas.vondra 1766 ECB : * there are no remaining MCV items that might possibly match.
1767 : */
228 drowley 1768 GNC 7848 : for (int i = 0; i < mcvlist->nitems; i++)
744 tomas.vondra 1769 ECB : {
1770 : int j;
578 michael 1771 GIC 7746 : bool match = !expr->useOr;
744 tomas.vondra 1772 7746 : MCVItem *item = &mcvlist->items[i];
1773 :
1774 : /*
1775 : * When the MCV item or the Const value is NULL we can treat
1776 : * this as a mismatch. We must not call the operator because
744 tomas.vondra 1777 ECB : * of strictness.
1778 : */
744 tomas.vondra 1779 CBC 7746 : if (item->isnull[idx] || cst->constisnull)
1121 tomas.vondra 1780 ECB : {
744 tomas.vondra 1781 GIC 9 : matches[i] = RESULT_MERGE(matches[i], is_or, false);
1782 9 : continue;
1783 : }
1784 :
1785 : /*
1786 : * Skip MCV items that can't change result in the bitmap. Once
1787 : * the value gets false for AND-lists, or true for OR-lists,
744 tomas.vondra 1788 ECB : * we don't need to look at more clauses.
1121 1789 : */
744 tomas.vondra 1790 GIC 7737 : if (RESULT_IS_FINAL(matches[i], is_or))
744 tomas.vondra 1791 CBC 4008 : continue;
1792 :
1793 14169 : for (j = 0; j < num_elems; j++)
1121 tomas.vondra 1794 ECB : {
744 tomas.vondra 1795 GIC 11817 : Datum elem_value = elem_values[j];
1796 11817 : bool elem_isnull = elem_nulls[j];
1797 : bool elem_match;
1121 tomas.vondra 1798 ECB :
1799 : /* NULL values always evaluate as not matching. */
744 tomas.vondra 1800 CBC 11817 : if (elem_isnull)
1121 tomas.vondra 1801 ECB : {
744 tomas.vondra 1802 GIC 1056 : match = RESULT_MERGE(match, expr->useOr, false);
1121 1803 1056 : continue;
1804 : }
1805 :
1806 : /*
1807 : * Stop evaluating the array elements once we reach a
1808 : * matching value that can't change - ALL() is the same as
744 tomas.vondra 1809 ECB : * AND-list, ANY() is the same as OR-list.
1121 1810 : */
744 tomas.vondra 1811 GIC 10761 : if (RESULT_IS_FINAL(match, expr->useOr))
744 tomas.vondra 1812 CBC 1377 : break;
1813 :
1814 9384 : elem_match = DatumGetBool(FunctionCall2Coll(&opproc,
1815 : collid,
744 tomas.vondra 1816 GIC 9384 : item->values[idx],
744 tomas.vondra 1817 ECB : elem_value));
1818 :
744 tomas.vondra 1819 GIC 9384 : match = RESULT_MERGE(match, expr->useOr, elem_match);
1820 : }
744 tomas.vondra 1821 ECB :
1822 : /* update the match bitmap with the result */
744 tomas.vondra 1823 GIC 3729 : matches[i] = RESULT_MERGE(matches[i], is_or, match);
1474 tomas.vondra 1824 ECB : }
1825 : }
1474 tomas.vondra 1826 CBC 120 : else if (IsA(clause, NullTest))
1474 tomas.vondra 1827 ECB : {
1474 tomas.vondra 1828 GIC 33 : NullTest *expr = (NullTest *) clause;
744 1829 33 : Node *clause_expr = (Node *) (expr->arg);
1474 tomas.vondra 1830 ECB :
1831 : /* match the attribute/expression to a dimension of the statistic */
744 tomas.vondra 1832 GIC 33 : int idx = mcv_match_expression(clause_expr, keys, exprs, NULL);
1833 :
1834 : /*
1835 : * Walk through the MCV items and evaluate the current clause. We
1836 : * can skip items that were already ruled out, and terminate if
1474 tomas.vondra 1837 ECB : * there are no remaining MCV items that might possibly match.
1838 : */
228 drowley 1839 GNC 3039 : for (int i = 0; i < mcvlist->nitems; i++)
1474 tomas.vondra 1840 ECB : {
1474 tomas.vondra 1841 GIC 3006 : bool match = false; /* assume mismatch */
1473 1842 3006 : MCVItem *item = &mcvlist->items[i];
1474 tomas.vondra 1843 ECB :
1844 : /* if the clause mismatches the MCV item, update the bitmap */
1474 tomas.vondra 1845 CBC 3006 : switch (expr->nulltesttype)
1474 tomas.vondra 1846 ECB : {
1474 tomas.vondra 1847 CBC 2106 : case IS_NULL:
1474 tomas.vondra 1848 GIC 2106 : match = (item->isnull[idx]) ? true : match;
1474 tomas.vondra 1849 CBC 2106 : break;
1474 tomas.vondra 1850 ECB :
1474 tomas.vondra 1851 CBC 900 : case IS_NOT_NULL:
1474 tomas.vondra 1852 GIC 900 : match = (!item->isnull[idx]) ? true : match;
1853 900 : break;
1854 : }
1474 tomas.vondra 1855 ECB :
1856 : /* now, update the match bitmap, depending on OR/AND type */
1362 tomas.vondra 1857 GIC 3006 : matches[i] = RESULT_MERGE(matches[i], is_or, match);
1474 tomas.vondra 1858 ECB : }
1859 : }
1474 tomas.vondra 1860 GIC 87 : else if (is_orclause(clause) || is_andclause(clause))
1861 30 : {
1862 : /* AND/OR clause, with all subclauses being compatible */
1474 tomas.vondra 1863 ECB :
1864 : int i;
1474 tomas.vondra 1865 GIC 30 : BoolExpr *bool_clause = ((BoolExpr *) clause);
1866 30 : List *bool_clauses = bool_clause->args;
1474 tomas.vondra 1867 ECB :
1868 : /* match/mismatch bitmap for each MCV item */
1474 tomas.vondra 1869 CBC 30 : bool *bool_matches = NULL;
1474 tomas.vondra 1870 ECB :
1474 tomas.vondra 1871 GIC 30 : Assert(bool_clauses != NIL);
1872 30 : Assert(list_length(bool_clauses) >= 2);
1474 tomas.vondra 1873 ECB :
1874 : /* build the match bitmap for the OR-clauses */
744 tomas.vondra 1875 GIC 30 : bool_matches = mcv_get_match_bitmap(root, bool_clauses, keys, exprs,
1474 1876 30 : mcvlist, is_orclause(clause));
1877 :
1878 : /*
1879 : * Merge the bitmap produced by mcv_get_match_bitmap into the
1880 : * current one. We need to consider if we're evaluating AND or OR
1474 tomas.vondra 1881 ECB : * condition when merging the results.
1882 : */
1474 tomas.vondra 1883 GIC 1878 : for (i = 0; i < mcvlist->nitems; i++)
1362 tomas.vondra 1884 CBC 1848 : matches[i] = RESULT_MERGE(matches[i], is_or, bool_matches[i]);
1885 :
1474 1886 30 : pfree(bool_matches);
1887 : }
1474 tomas.vondra 1888 GIC 57 : else if (is_notclause(clause))
1889 : {
1890 : /* NOT clause, with all subclauses compatible */
1474 tomas.vondra 1891 ECB :
1892 : int i;
1474 tomas.vondra 1893 GIC 15 : BoolExpr *not_clause = ((BoolExpr *) clause);
1894 15 : List *not_args = not_clause->args;
1474 tomas.vondra 1895 ECB :
1896 : /* match/mismatch bitmap for each MCV item */
1474 tomas.vondra 1897 CBC 15 : bool *not_matches = NULL;
1474 tomas.vondra 1898 ECB :
1474 tomas.vondra 1899 GIC 15 : Assert(not_args != NIL);
1900 15 : Assert(list_length(not_args) == 1);
1474 tomas.vondra 1901 ECB :
1902 : /* build the match bitmap for the NOT-clause */
744 tomas.vondra 1903 GIC 15 : not_matches = mcv_get_match_bitmap(root, not_args, keys, exprs,
1904 : mcvlist, false);
1905 :
1906 : /*
1907 : * Merge the bitmap produced by mcv_get_match_bitmap into the
1908 : * current one. We're handling a NOT clause, so invert the result
1362 tomas.vondra 1909 ECB : * before merging it into the global bitmap.
1474 1910 : */
1474 tomas.vondra 1911 GIC 75 : for (i = 0; i < mcvlist->nitems; i++)
1362 tomas.vondra 1912 CBC 60 : matches[i] = RESULT_MERGE(matches[i], is_or, !not_matches[i]);
1913 :
1474 1914 15 : pfree(not_matches);
1915 : }
1474 tomas.vondra 1916 GIC 42 : else if (IsA(clause, Var))
1917 : {
1474 tomas.vondra 1918 ECB : /* Var (has to be a boolean Var, possibly from below NOT) */
1919 :
1474 tomas.vondra 1920 GIC 39 : Var *var = (Var *) (clause);
1474 tomas.vondra 1921 ECB :
1922 : /* match the attribute to a dimension of the statistic */
1474 tomas.vondra 1923 CBC 39 : int idx = bms_member_index(keys, var->varattno);
1924 :
1474 tomas.vondra 1925 GIC 39 : Assert(var->vartype == BOOLOID);
1926 :
1927 : /*
1928 : * Walk through the MCV items and evaluate the current clause. We
1929 : * can skip items that were already ruled out, and terminate if
1474 tomas.vondra 1930 ECB : * there are no remaining MCV items that might possibly match.
1931 : */
228 drowley 1932 GNC 189 : for (int i = 0; i < mcvlist->nitems; i++)
1474 tomas.vondra 1933 ECB : {
1473 tomas.vondra 1934 GIC 150 : MCVItem *item = &mcvlist->items[i];
1474 1935 150 : bool match = false;
1474 tomas.vondra 1936 ECB :
1937 : /* if the item is NULL, it's a mismatch */
1474 tomas.vondra 1938 GIC 150 : if (!item->isnull[idx] && DatumGetBool(item->values[idx]))
1939 75 : match = true;
1474 tomas.vondra 1940 ECB :
1941 : /* update the result bitmap */
1362 tomas.vondra 1942 GIC 150 : matches[i] = RESULT_MERGE(matches[i], is_or, match);
1943 : }
1944 : }
1945 : else
1946 : {
1947 : /* Otherwise, it must be a bare boolean-returning expression */
1948 : int idx;
247 tgl 1949 ECB :
1950 : /* match the expression to a dimension of the statistic */
247 tgl 1951 GIC 3 : idx = mcv_match_expression(clause, keys, exprs, NULL);
1952 :
1953 : /*
1954 : * Walk through the MCV items and evaluate the current clause. We
1955 : * can skip items that were already ruled out, and terminate if
247 tgl 1956 ECB : * there are no remaining MCV items that might possibly match.
1957 : */
228 drowley 1958 GNC 111 : for (int i = 0; i < mcvlist->nitems; i++)
247 tgl 1959 ECB : {
1960 : bool match;
247 tgl 1961 GIC 108 : MCVItem *item = &mcvlist->items[i];
247 tgl 1962 ECB :
1963 : /* "match" just means it's bool TRUE */
247 tgl 1964 GIC 108 : match = !item->isnull[idx] && DatumGetBool(item->values[idx]);
247 tgl 1965 ECB :
1966 : /* now, update the match bitmap, depending on OR/AND type */
247 tgl 1967 GIC 108 : matches[i] = RESULT_MERGE(matches[i], is_or, match);
1968 : }
1969 : }
1474 tomas.vondra 1970 ECB : }
1971 :
1474 tomas.vondra 1972 GIC 357 : return matches;
1973 : }
1974 :
1975 :
1976 : /*
1977 : * mcv_combine_selectivities
1978 : * Combine per-column and multi-column MCV selectivity estimates.
1979 : *
1980 : * simple_sel is a "simple" selectivity estimate (produced without using any
1981 : * extended statistics, essentially assuming independence of columns/clauses).
1982 : *
1983 : * mcv_sel and mcv_basesel are sums of the frequencies and base frequencies of
1984 : * all matching MCV items. The difference (mcv_sel - mcv_basesel) is then
1985 : * essentially interpreted as a correction to be added to simple_sel, as
1986 : * described below.
1987 : *
1988 : * mcv_totalsel is the sum of the frequencies of all MCV items (not just the
1989 : * matching ones). This is used as an upper bound on the portion of the
1990 : * selectivity estimates not covered by the MCV statistics.
1991 : *
1992 : * Note: While simple and base selectivities are defined in a quite similar
1993 : * way, the values are computed differently and are not therefore equal. The
1994 : * simple selectivity is computed as a product of per-clause estimates, while
1995 : * the base selectivity is computed by adding up base frequencies of matching
1996 : * items of the multi-column MCV list. So the values may differ for two main
1997 : * reasons - (a) the MCV list may not cover 100% of the data and (b) some of
1998 : * the MCV items did not match the estimated clauses.
1999 : *
2000 : * As both (a) and (b) reduce the base selectivity value, it generally holds
2001 : * that (simple_sel >= mcv_basesel). If the MCV list covers all the data, the
2002 : * values may be equal.
2003 : *
2004 : * So, other_sel = (simple_sel - mcv_basesel) is an estimate for the part not
2005 : * covered by the MCV list, and (mcv_sel - mcv_basesel) may be seen as a
2006 : * correction for the part covered by the MCV list. Those two statements are
2007 : * actually equivalent.
857 dean.a.rasheed 2008 ECB : */
2009 : Selectivity
857 dean.a.rasheed 2010 GIC 336 : mcv_combine_selectivities(Selectivity simple_sel,
2011 : Selectivity mcv_sel,
2012 : Selectivity mcv_basesel,
2013 : Selectivity mcv_totalsel)
2014 : {
2015 : Selectivity other_sel;
2016 : Selectivity sel;
857 dean.a.rasheed 2017 ECB :
2018 : /* estimated selectivity of values not covered by MCV matches */
857 dean.a.rasheed 2019 GIC 336 : other_sel = simple_sel - mcv_basesel;
2020 336 : CLAMP_PROBABILITY(other_sel);
857 dean.a.rasheed 2021 ECB :
2022 : /* this non-MCV selectivity cannot exceed 1 - mcv_totalsel */
857 dean.a.rasheed 2023 GIC 336 : if (other_sel > 1.0 - mcv_totalsel)
2024 222 : other_sel = 1.0 - mcv_totalsel;
857 dean.a.rasheed 2025 ECB :
2026 : /* overall selectivity is the sum of the MCV and non-MCV parts */
857 dean.a.rasheed 2027 GIC 336 : sel = mcv_sel + other_sel;
857 dean.a.rasheed 2028 CBC 336 : CLAMP_PROBABILITY(sel);
2029 :
857 dean.a.rasheed 2030 GIC 336 : return sel;
2031 : }
2032 :
2033 :
2034 : /*
2035 : * mcv_clauselist_selectivity
2036 : * Use MCV statistics to estimate the selectivity of an implicitly-ANDed
2037 : * list of clauses.
2038 : *
2039 : * This determines which MCV items match every clause in the list and returns
2040 : * the sum of the frequencies of those items.
2041 : *
2042 : * In addition, it returns the sum of the base frequencies of each of those
2043 : * items (that is the sum of the selectivities that each item would have if
2044 : * the columns were independent of one another), and the total selectivity of
2045 : * all the MCV items (not just the matching ones). These are expected to be
2046 : * used together with a "simple" selectivity estimate (one based only on
2047 : * per-column statistics) to produce an overall selectivity estimate that
2048 : * makes use of both per-column and multi-column statistics --- see
2049 : * mcv_combine_selectivities().
1474 tomas.vondra 2050 ECB : */
2051 : Selectivity
1474 tomas.vondra 2052 GIC 192 : mcv_clauselist_selectivity(PlannerInfo *root, StatisticExtInfo *stat,
2053 : List *clauses, int varRelid,
2054 : JoinType jointype, SpecialJoinInfo *sjinfo,
2055 : RelOptInfo *rel,
2056 : Selectivity *basesel, Selectivity *totalsel)
2057 : {
1474 tomas.vondra 2058 ECB : int i;
2059 : MCVList *mcv;
1474 tomas.vondra 2060 GIC 192 : Selectivity s = 0.0;
448 2061 192 : RangeTblEntry *rte = root->simple_rte_array[rel->relid];
1474 tomas.vondra 2062 ECB :
2063 : /* match/mismatch bitmap for each MCV item */
1474 tomas.vondra 2064 GIC 192 : bool *matches = NULL;
1474 tomas.vondra 2065 ECB :
2066 : /* load the MCV list stored in the statistics object */
448 tomas.vondra 2067 GIC 192 : mcv = statext_mcv_load(stat->statOid, rte->inh);
1474 tomas.vondra 2068 ECB :
2069 : /* build a match bitmap for the clauses */
744 tomas.vondra 2070 GIC 192 : matches = mcv_get_match_bitmap(root, clauses, stat->keys, stat->exprs,
2071 : mcv, false);
1474 tomas.vondra 2072 ECB :
2073 : /* sum frequencies for all the matching MCV items */
1474 tomas.vondra 2074 CBC 192 : *basesel = 0.0;
1474 tomas.vondra 2075 GIC 192 : *totalsel = 0.0;
1474 tomas.vondra 2076 CBC 12552 : for (i = 0; i < mcv->nitems; i++)
2077 : {
1473 2078 12360 : *totalsel += mcv->items[i].frequency;
2079 :
1474 2080 12360 : if (matches[i] != false)
1474 tomas.vondra 2081 ECB : {
1473 tomas.vondra 2082 GIC 231 : *basesel += mcv->items[i].base_frequency;
2083 231 : s += mcv->items[i].frequency;
2084 : }
1474 tomas.vondra 2085 ECB : }
2086 :
1474 tomas.vondra 2087 GIC 192 : return s;
2088 : }
2089 :
2090 :
2091 : /*
2092 : * mcv_clause_selectivity_or
2093 : * Use MCV statistics to estimate the selectivity of a clause that
2094 : * appears in an ORed list of clauses.
2095 : *
2096 : * As with mcv_clauselist_selectivity() this determines which MCV items match
2097 : * the clause and returns both the sum of the frequencies and the sum of the
2098 : * base frequencies of those items, as well as the sum of the frequencies of
2099 : * all MCV items (not just the matching ones) so that this information can be
2100 : * used by mcv_combine_selectivities() to produce a selectivity estimate that
2101 : * makes use of both per-column and multi-column statistics.
2102 : *
2103 : * Additionally, we return information to help compute the overall selectivity
2104 : * of the ORed list of clauses assumed to contain this clause. This function
2105 : * is intended to be called for each clause in the ORed list of clauses,
2106 : * allowing the overall selectivity to be computed using the following
2107 : * algorithm:
2108 : *
2109 : * Suppose P[n] = P(C[1] OR C[2] OR ... OR C[n]) is the combined selectivity
2110 : * of the first n clauses in the list. Then the combined selectivity taking
2111 : * into account the next clause C[n+1] can be written as
2112 : *
2113 : * P[n+1] = P[n] + P(C[n+1]) - P((C[1] OR ... OR C[n]) AND C[n+1])
2114 : *
2115 : * The final term above represents the overlap between the clauses examined so
2116 : * far and the (n+1)'th clause. To estimate its selectivity, we track the
2117 : * match bitmap for the ORed list of clauses examined so far and examine its
2118 : * intersection with the match bitmap for the (n+1)'th clause.
2119 : *
2120 : * We then also return the sums of the MCV item frequencies and base
2121 : * frequencies for the match bitmap intersection corresponding to the overlap
2122 : * term above, so that they can be combined with a simple selectivity estimate
2123 : * for that term.
2124 : *
2125 : * The parameter "or_matches" is an in/out parameter tracking the match bitmap
2126 : * for the clauses examined so far. The caller is expected to set it to NULL
2127 : * the first time it calls this function.
857 dean.a.rasheed 2128 ECB : */
2129 : Selectivity
857 dean.a.rasheed 2130 GIC 120 : mcv_clause_selectivity_or(PlannerInfo *root, StatisticExtInfo *stat,
2131 : MCVList *mcv, Node *clause, bool **or_matches,
2132 : Selectivity *basesel, Selectivity *overlap_mcvsel,
857 dean.a.rasheed 2133 ECB : Selectivity *overlap_basesel, Selectivity *totalsel)
2134 : {
857 dean.a.rasheed 2135 GIC 120 : Selectivity s = 0.0;
2136 : bool *new_matches;
2137 : int i;
857 dean.a.rasheed 2138 ECB :
2139 : /* build the OR-matches bitmap, if not built already */
857 dean.a.rasheed 2140 GIC 120 : if (*or_matches == NULL)
2141 48 : *or_matches = palloc0(sizeof(bool) * mcv->nitems);
857 dean.a.rasheed 2142 ECB :
2143 : /* build the match bitmap for the new clause */
857 dean.a.rasheed 2144 GIC 120 : new_matches = mcv_get_match_bitmap(root, list_make1(clause), stat->keys,
2145 : stat->exprs, mcv, false);
2146 :
2147 : /*
2148 : * Sum the frequencies for all the MCV items matching this clause and also
2149 : * those matching the overlap between this clause and any of the preceding
857 dean.a.rasheed 2150 ECB : * clauses as described above.
2151 : */
857 dean.a.rasheed 2152 CBC 120 : *basesel = 0.0;
2153 120 : *overlap_mcvsel = 0.0;
2154 120 : *overlap_basesel = 0.0;
857 dean.a.rasheed 2155 GIC 120 : *totalsel = 0.0;
857 dean.a.rasheed 2156 CBC 7758 : for (i = 0; i < mcv->nitems; i++)
2157 : {
2158 7638 : *totalsel += mcv->items[i].frequency;
2159 :
2160 7638 : if (new_matches[i])
857 dean.a.rasheed 2161 ECB : {
857 dean.a.rasheed 2162 GIC 168 : s += mcv->items[i].frequency;
857 dean.a.rasheed 2163 CBC 168 : *basesel += mcv->items[i].base_frequency;
2164 :
2165 168 : if ((*or_matches)[i])
857 dean.a.rasheed 2166 ECB : {
857 dean.a.rasheed 2167 GIC 72 : *overlap_mcvsel += mcv->items[i].frequency;
2168 72 : *overlap_basesel += mcv->items[i].base_frequency;
2169 : }
2170 : }
857 dean.a.rasheed 2171 ECB :
2172 : /* update the OR-matches bitmap for the next clause */
857 dean.a.rasheed 2173 GIC 7638 : (*or_matches)[i] = (*or_matches)[i] || new_matches[i];
857 dean.a.rasheed 2174 ECB : }
2175 :
857 dean.a.rasheed 2176 CBC 120 : pfree(new_matches);
2177 :
857 dean.a.rasheed 2178 GIC 120 : return s;
2179 : }
|