Age Owner TLA Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * plancat.c
4 : * routines for accessing the system catalogs
5 : *
6 : *
7 : * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
8 : * Portions Copyright (c) 1994, Regents of the University of California
9 : *
10 : *
11 : * IDENTIFICATION
12 : * src/backend/optimizer/util/plancat.c
13 : *
14 : *-------------------------------------------------------------------------
15 : */
16 : #include "postgres.h"
17 :
18 : #include <math.h>
19 :
20 : #include "access/genam.h"
21 : #include "access/htup_details.h"
22 : #include "access/nbtree.h"
23 : #include "access/sysattr.h"
24 : #include "access/table.h"
25 : #include "access/tableam.h"
26 : #include "access/transam.h"
27 : #include "access/xlog.h"
28 : #include "catalog/catalog.h"
29 : #include "catalog/heap.h"
30 : #include "catalog/pg_am.h"
31 : #include "catalog/pg_proc.h"
32 : #include "catalog/pg_statistic_ext.h"
33 : #include "catalog/pg_statistic_ext_data.h"
34 : #include "foreign/fdwapi.h"
35 : #include "miscadmin.h"
36 : #include "nodes/makefuncs.h"
37 : #include "nodes/nodeFuncs.h"
38 : #include "nodes/supportnodes.h"
39 : #include "optimizer/clauses.h"
40 : #include "optimizer/cost.h"
41 : #include "optimizer/optimizer.h"
42 : #include "optimizer/plancat.h"
43 : #include "optimizer/prep.h"
44 : #include "parser/parse_relation.h"
45 : #include "parser/parsetree.h"
46 : #include "partitioning/partdesc.h"
47 : #include "rewrite/rewriteManip.h"
48 : #include "statistics/statistics.h"
49 : #include "storage/bufmgr.h"
50 : #include "utils/builtins.h"
51 : #include "utils/lsyscache.h"
52 : #include "utils/partcache.h"
53 : #include "utils/rel.h"
54 : #include "utils/snapmgr.h"
55 : #include "utils/syscache.h"
56 :
57 : /* GUC parameter */
58 : int constraint_exclusion = CONSTRAINT_EXCLUSION_PARTITION;
59 :
60 : /* Hook for plugins to get control in get_relation_info() */
61 : get_relation_info_hook_type get_relation_info_hook = NULL;
62 :
63 :
64 : static void get_relation_foreign_keys(PlannerInfo *root, RelOptInfo *rel,
65 : Relation relation, bool inhparent);
66 : static bool infer_collation_opclass_match(InferenceElem *elem, Relation idxRel,
67 : List *idxExprs);
68 : static List *get_relation_constraints(PlannerInfo *root,
69 : Oid relationObjectId, RelOptInfo *rel,
70 : bool include_noinherit,
71 : bool include_notnull,
72 : bool include_partition);
73 : static List *build_index_tlist(PlannerInfo *root, IndexOptInfo *index,
74 : Relation heapRelation);
75 : static List *get_relation_statistics(RelOptInfo *rel, Relation relation);
76 : static void set_relation_partition_info(PlannerInfo *root, RelOptInfo *rel,
77 : Relation relation);
78 : static PartitionScheme find_partition_scheme(PlannerInfo *root,
79 : Relation relation);
80 : static void set_baserel_partition_key_exprs(Relation relation,
81 : RelOptInfo *rel);
82 : static void set_baserel_partition_constraint(Relation relation,
83 : RelOptInfo *rel);
84 :
85 :
86 : /*
87 : * get_relation_info -
88 : * Retrieves catalog information for a given relation.
89 : *
90 : * Given the Oid of the relation, return the following info into fields
91 : * of the RelOptInfo struct:
92 : *
93 : * min_attr lowest valid AttrNumber
94 : * max_attr highest valid AttrNumber
95 : * indexlist list of IndexOptInfos for relation's indexes
96 : * statlist list of StatisticExtInfo for relation's statistic objects
97 : * serverid if it's a foreign table, the server OID
98 : * fdwroutine if it's a foreign table, the FDW function pointers
99 : * pages number of pages
100 : * tuples number of tuples
101 : * rel_parallel_workers user-defined number of parallel workers
102 : *
103 : * Also, add information about the relation's foreign keys to root->fkey_list.
104 : *
105 : * Also, initialize the attr_needed[] and attr_widths[] arrays. In most
106 : * cases these are left as zeroes, but sometimes we need to compute attr
107 : * widths here, and we may as well cache the results for costsize.c.
108 : *
109 : * If inhparent is true, all we need to do is set up the attr arrays:
110 : * the RelOptInfo actually represents the appendrel formed by an inheritance
111 : * tree, and so the parent rel's physical size and index information isn't
112 : * important for it, however, for partitioned tables, we do populate the
113 : * indexlist as the planner uses unique indexes as unique proofs for certain
114 : * optimizations.
115 : */
116 : void
6046 tgl 117 GIC 185453 : get_relation_info(PlannerInfo *root, Oid relationObjectId, bool inhparent,
118 : RelOptInfo *rel)
119 : {
7365 tgl 120 CBC 185453 : Index varno = rel->relid;
121 : Relation relation;
122 : bool hasindex;
7370 123 185453 : List *indexinfos = NIL;
124 :
125 : /*
6031 bruce 126 ECB : * We need not lock the relation since it was already locked, either by
127 : * the rewriter or when expand_inherited_rtentry() added it to the query's
128 : * rangetable.
129 : */
1539 andres 130 GIC 185453 : relation = table_open(relationObjectId, NoLock);
131 :
132 : /*
174 tgl 133 ECB : * Relations without a table AM can be used in a query only if they are of
134 : * special-cased relkinds. This check prevents us from crashing later if,
135 : * for example, a view's ON SELECT rule has gone missing. Note that
136 : * table_open() already rejected indexes and composite types; spell the
137 : * error the same way it does.
138 : */
174 tgl 139 GIC 185453 : if (!relation->rd_tableam)
140 : {
141 8546 : if (!(relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE ||
174 tgl 142 CBC 7424 : relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE))
174 tgl 143 UIC 0 : ereport(ERROR,
174 tgl 144 ECB : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
145 : errmsg("cannot open relation \"%s\"",
174 tgl 146 EUB : RelationGetRelationName(relation)),
147 : errdetail_relkind_not_supported(relation->rd_rel->relkind)));
148 : }
149 :
150 : /* Temporary and unlogged relations are inaccessible during recovery. */
748 bruce 151 GIC 185453 : if (!RelationIsPermanent(relation) && RecoveryInProgress())
4324 rhaas 152 UIC 0 : ereport(ERROR,
153 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
4324 rhaas 154 ECB : errmsg("cannot access temporary or unlogged relations during recovery")));
4324 rhaas 155 EUB :
7224 tgl 156 GIC 185453 : rel->min_attr = FirstLowInvalidHeapAttributeNumber + 1;
157 185453 : rel->max_attr = RelationGetNumberOfAttributes(relation);
4842 rhaas 158 185453 : rel->reltablespace = RelationGetForm(relation)->reltablespace;
9345 bruce 159 ECB :
6703 tgl 160 CBC 185453 : Assert(rel->max_attr >= rel->min_attr);
161 185453 : rel->attr_needed = (Relids *)
6703 tgl 162 GIC 185453 : palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(Relids));
6703 tgl 163 CBC 185453 : rel->attr_widths = (int32 *)
164 185453 : palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(int32));
6703 tgl 165 ECB :
166 : /*
6046 167 : * Estimate relation size --- unless it's an inheritance parent, in which
168 : * case the size we want is not the rel's own size but the size of its
169 : * inheritance tree. That will be computed in set_append_rel_size().
170 : */
6046 tgl 171 GIC 185453 : if (!inhparent)
172 162862 : estimate_rel_size(relation, rel->attr_widths - rel->min_attr,
4195 173 162862 : &rel->pages, &rel->tuples, &rel->allvisfrac);
6703 tgl 174 ECB :
2495 175 : /* Retrieve the parallel_workers reloption, or -1 if not set. */
2495 tgl 176 CBC 185453 : rel->rel_parallel_workers = RelationGetParallelWorkers(relation, -1);
177 :
178 : /*
6385 bruce 179 ECB : * Make list of indexes. Ignore indexes on system catalogs if told to.
180 : * Don't bother with indexes from traditional inheritance parents. For
181 : * partitioned tables, we need a list of at least unique indexes as these
182 : * serve as unique proofs for certain planner optimizations. However,
183 : * let's not discriminate here and just record all partitioned indexes
184 : * whether they're unique indexes or not.
185 : */
90 drowley 186 GNC 185453 : if ((inhparent && relation->rd_rel->relkind != RELKIND_PARTITIONED_TABLE)
187 170266 : || (IgnoreSystemIndexes && IsSystemRelation(relation)))
7370 tgl 188 GIC 15187 : hasindex = false;
189 : else
190 170266 : hasindex = relation->rd_rel->relhasindex;
191 :
192 185453 : if (hasindex)
9345 bruce 193 ECB : {
6892 neilc 194 : List *indexoidlist;
6096 tgl 195 : LOCKMODE lmode;
196 : ListCell *l;
8397 bruce 197 :
7370 tgl 198 GIC 132355 : indexoidlist = RelationGetIndexList(relation);
9345 bruce 199 ECB :
200 : /*
201 : * For each index, we get the same type of lock that the executor will
202 : * need, and do not release it. This saves a couple of trips to the
203 : * shared lock manager while not creating any real loss of
204 : * concurrency, because no schema changes could be happening on the
1466 tgl 205 : * index while we hold lock on the parent rel, and no lock type used
206 : * for queries blocks any other kind of index operation.
207 : */
1466 tgl 208 GIC 132355 : lmode = root->simple_rte_array[varno]->rellockmode;
209 :
6892 neilc 210 407142 : foreach(l, indexoidlist)
211 : {
6888 212 274787 : Oid indexoid = lfirst_oid(l);
213 : Relation indexRelation;
214 : Form_pg_index index;
2639 tgl 215 ECB : IndexAmRoutine *amroutine;
216 : IndexOptInfo *info;
1828 teodor 217 : int ncolumns,
218 : nkeycolumns;
7370 tgl 219 : int i;
220 :
221 : /*
222 : * Extract info from the relation descriptor for the index.
223 : */
6096 tgl 224 GIC 274787 : indexRelation = index_open(indexoid, lmode);
7256 225 274787 : index = indexRelation->rd_index;
226 :
227 : /*
228 : * Ignore invalid indexes, since they can't safely be used for
229 : * queries. Note that this is OK because the data structure we
230 : * are constructing is only used by the planner --- the executor
3784 tgl 231 ECB : * still needs to insert into "invalid" indexes, if they're marked
1564 peter_e 232 : * indisready.
233 : */
1564 peter_e 234 GIC 274787 : if (!index->indisvalid)
235 : {
6071 tgl 236 11 : index_close(indexRelation, NoLock);
237 11 : continue;
238 : }
239 :
240 : /*
241 : * If the index is valid, but cannot yet be used, ignore it; but
5624 bruce 242 ECB : * mark the plan we are generating as transient. See
243 : * src/backend/access/heap/README.HOT for discussion.
244 : */
5680 tgl 245 GIC 274776 : if (index->indcheckxmin &&
5680 tgl 246 GBC 3 : !TransactionIdPrecedes(HeapTupleHeaderGetXmin(indexRelation->rd_indextuple->t_data),
5680 tgl 247 EUB : TransactionXmin))
248 : {
5680 tgl 249 UIC 0 : root->glob->transientPlan = true;
250 0 : index_close(indexRelation, NoLock);
5680 tgl 251 LBC 0 : continue;
252 : }
5680 tgl 253 ECB :
7370 tgl 254 CBC 274776 : info = makeNode(IndexOptInfo);
7370 tgl 255 ECB :
7370 tgl 256 CBC 274776 : info->indexoid = index->indexrelid;
4842 rhaas 257 274776 : info->reltablespace =
258 274776 : RelationGetForm(indexRelation)->reltablespace;
6587 tgl 259 GIC 274776 : info->rel = rel;
7256 tgl 260 CBC 274776 : info->ncolumns = ncolumns = index->indnatts;
1828 teodor 261 274776 : info->nkeycolumns = nkeycolumns = index->indnkeyatts;
1828 teodor 262 ECB :
7256 tgl 263 CBC 274776 : info->indexkeys = (int *) palloc(sizeof(int) * ncolumns);
1823 teodor 264 274776 : info->indexcollations = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
1828 teodor 265 GIC 274776 : info->opfamily = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
1828 teodor 266 CBC 274776 : info->opcintype = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
2936 heikki.linnakangas 267 GIC 274776 : info->canreturn = (bool *) palloc(sizeof(bool) * ncolumns);
7719 tgl 268 ECB :
7256 tgl 269 CBC 812384 : for (i = 0; i < ncolumns; i++)
270 : {
6585 tgl 271 GIC 537608 : info->indexkeys[i] = index->indkey.values[i];
1828 teodor 272 CBC 537608 : info->canreturn[i] = index_can_return(indexRelation, i + 1);
273 : }
1828 teodor 274 ECB :
1828 teodor 275 CBC 812181 : for (i = 0; i < nkeycolumns; i++)
1828 teodor 276 ECB : {
5792 tgl 277 GIC 537405 : info->opfamily[i] = indexRelation->rd_opfamily[i];
278 537405 : info->opcintype[i] = indexRelation->rd_opcintype[i];
1823 teodor 279 CBC 537405 : info->indexcollations[i] = indexRelation->rd_indcollation[i];
280 : }
281 :
7370 tgl 282 GIC 274776 : info->relam = indexRelation->rd_rel->relam;
283 :
284 : /*
285 : * We don't have an AM for partitioned indexes, so we'll just
286 : * NULLify the AM related fields for those.
287 : */
90 drowley 288 GNC 274776 : if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
289 : {
290 : /* We copy just the fields we need, not all of rd_indam */
291 271843 : amroutine = indexRelation->rd_indam;
292 271843 : info->amcanorderbyop = amroutine->amcanorderbyop;
293 271843 : info->amoptionalkey = amroutine->amoptionalkey;
294 271843 : info->amsearcharray = amroutine->amsearcharray;
295 271843 : info->amsearchnulls = amroutine->amsearchnulls;
296 271843 : info->amcanparallel = amroutine->amcanparallel;
297 271843 : info->amhasgettuple = (amroutine->amgettuple != NULL);
298 543686 : info->amhasgetbitmap = amroutine->amgetbitmap != NULL &&
299 271843 : relation->rd_tableam->scan_bitmap_next_block != NULL;
300 534161 : info->amcanmarkpos = (amroutine->ammarkpos != NULL &&
301 262318 : amroutine->amrestrpos != NULL);
302 271843 : info->amcostestimate = amroutine->amcostestimate;
303 271843 : Assert(info->amcostestimate != NULL);
304 :
305 : /* Fetch index opclass options */
306 271843 : info->opclassoptions = RelationGetIndexAttOptions(indexRelation, true);
307 :
308 : /*
309 : * Fetch the ordering information for the index, if any.
310 : */
311 271843 : if (info->relam == BTREE_AM_OID)
7370 tgl 312 ECB : {
313 : /*
314 : * If it's a btree index, we can use its opfamily OIDs
315 : * directly as the sort ordering opfamily OIDs.
316 : */
90 drowley 317 GNC 262318 : Assert(amroutine->amcanorder);
5934 tgl 318 ECB :
90 drowley 319 GNC 262318 : info->sortopfamily = info->opfamily;
320 262318 : info->reverse_sort = (bool *) palloc(sizeof(bool) * nkeycolumns);
321 262318 : info->nulls_first = (bool *) palloc(sizeof(bool) * nkeycolumns);
322 :
323 658021 : for (i = 0; i < nkeycolumns; i++)
324 : {
325 395703 : int16 opt = indexRelation->rd_indoption[i];
326 :
327 395703 : info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
328 395703 : info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
329 : }
330 : }
331 9525 : else if (amroutine->amcanorder)
90 drowley 332 EUB : {
333 : /*
334 : * Otherwise, identify the corresponding btree opfamilies
335 : * by trying to map this index's "<" operators into btree.
336 : * Since "<" uniquely defines the behavior of a sort
337 : * order, this is a sufficient test.
338 : *
339 : * XXX This method is rather slow and also requires the
340 : * undesirable assumption that the other index AM numbers
341 : * its strategies the same as btree. It'd be better to
342 : * have a way to explicitly declare the corresponding
343 : * btree opfamily for each opfamily of the other index
344 : * type. But given the lack of current or foreseeable
345 : * amcanorder index types, it's not worth expending more
346 : * effort on now.
347 : */
90 drowley 348 UNC 0 : info->sortopfamily = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
349 0 : info->reverse_sort = (bool *) palloc(sizeof(bool) * nkeycolumns);
350 0 : info->nulls_first = (bool *) palloc(sizeof(bool) * nkeycolumns);
351 :
352 0 : for (i = 0; i < nkeycolumns; i++)
353 : {
354 0 : int16 opt = indexRelation->rd_indoption[i];
355 : Oid ltopr;
356 : Oid btopfamily;
357 : Oid btopcintype;
358 : int16 btstrategy;
359 :
360 0 : info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
361 0 : info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
362 :
363 0 : ltopr = get_opfamily_member(info->opfamily[i],
364 0 : info->opcintype[i],
365 0 : info->opcintype[i],
366 : BTLessStrategyNumber);
367 0 : if (OidIsValid(ltopr) &&
368 0 : get_ordering_op_properties(ltopr,
369 : &btopfamily,
370 : &btopcintype,
371 0 : &btstrategy) &&
372 0 : btopcintype == info->opcintype[i] &&
373 0 : btstrategy == BTLessStrategyNumber)
374 : {
375 : /* Successful mapping */
376 0 : info->sortopfamily[i] = btopfamily;
377 : }
378 : else
379 : {
380 : /* Fail ... quietly treat index as unordered */
381 0 : info->sortopfamily = NULL;
382 0 : info->reverse_sort = NULL;
383 0 : info->nulls_first = NULL;
384 0 : break;
385 : }
5934 tgl 386 EUB : }
7370 387 : }
388 : else
389 : {
90 drowley 390 GNC 9525 : info->sortopfamily = NULL;
391 9525 : info->reverse_sort = NULL;
392 9525 : info->nulls_first = NULL;
393 : }
7370 tgl 394 EUB : }
4514 395 : else
396 : {
90 drowley 397 GNC 2933 : info->amcanorderbyop = false;
398 2933 : info->amoptionalkey = false;
399 2933 : info->amsearcharray = false;
400 2933 : info->amsearchnulls = false;
401 2933 : info->amcanparallel = false;
402 2933 : info->amhasgettuple = false;
403 2933 : info->amhasgetbitmap = false;
404 2933 : info->amcanmarkpos = false;
405 2933 : info->amcostestimate = NULL;
406 :
4514 tgl 407 GIC 2933 : info->sortopfamily = NULL;
408 2933 : info->reverse_sort = NULL;
409 2933 : info->nulls_first = NULL;
410 : }
7441 tgl 411 ECB :
7256 412 : /*
413 : * Fetch the index expressions and predicate, if any. We must
414 : * modify the copies we obtain from the relcache to have the
415 : * correct varno for the parent relation, so that they match up
416 : * correctly against qual clauses.
417 : */
7256 tgl 418 CBC 274776 : info->indexprs = RelationGetIndexExpressions(indexRelation);
419 274776 : info->indpred = RelationGetIndexPredicate(indexRelation);
420 274776 : if (info->indexprs && varno != 1)
421 816 : ChangeVarNodes((Node *) info->indexprs, 1, varno, 0);
422 274776 : if (info->indpred && varno != 1)
423 63 : ChangeVarNodes((Node *) info->indpred, 1, varno, 0);
4198 tgl 424 ECB :
425 : /* Build targetlist using the completed indexprs data */
4198 tgl 426 CBC 274776 : info->indextlist = build_index_tlist(root, info, relation);
427 :
2118 428 274776 : info->indrestrictinfo = NIL; /* set later, in indxpath.c */
429 274776 : info->predOK = false; /* set later, in indxpath.c */
7256 430 274776 : info->unique = index->indisunique;
4186 tgl 431 GIC 274776 : info->immediate = index->indimmediate;
4435 432 274776 : info->hypothetical = false;
433 :
434 : /*
435 : * Estimate the index size. If it's not a partial index, we lock
436 : * the number-of-tuples estimate to equal the parent table; if it
437 : * is partial then we have to use the same methods as we would for
438 : * a table, except we can be sure that the index is not larger
439 : * than the table. We must ignore partitioned indexes here as as
440 : * there are not physical indexes.
6703 tgl 441 ECB : */
90 drowley 442 GNC 274776 : if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
6703 tgl 443 ECB : {
90 drowley 444 GNC 271843 : if (info->indpred == NIL)
445 : {
446 271381 : info->pages = RelationGetNumberOfBlocks(indexRelation);
6703 tgl 447 CBC 271381 : info->tuples = rel->tuples;
448 : }
449 : else
450 : {
451 : double allvisfrac; /* dummy */
452 :
90 drowley 453 GNC 462 : estimate_rel_size(indexRelation, NULL,
454 462 : &info->pages, &info->tuples, &allvisfrac);
455 462 : if (info->tuples > rel->tuples)
456 9 : info->tuples = rel->tuples;
457 : }
458 :
459 271843 : if (info->relam == BTREE_AM_OID)
460 : {
461 : /*
462 : * For btrees, get tree height while we have the index
463 : * open
464 : */
8 andres 465 262318 : info->tree_height = _bt_getrootheight(indexRelation, relation);
466 : }
467 : else
468 : {
469 : /* For other index types, just set it to "unknown" for now */
90 drowley 470 9525 : info->tree_height = -1;
471 : }
472 : }
473 : else
474 : {
475 : /* Zero these out for partitioned indexes */
476 2933 : info->pages = 0;
477 2933 : info->tuples = 0.0;
3740 tgl 478 GIC 2933 : info->tree_height = -1;
3740 tgl 479 ECB : }
480 :
6096 tgl 481 CBC 274776 : index_close(indexRelation, NoLock);
7370 tgl 482 ECB :
483 : /*
484 : * We've historically used lcons() here. It'd make more sense to
485 : * use lappend(), but that causes the planner to change behavior
486 : * in cases where two indexes seem equally attractive. For now,
487 : * stick with lcons() --- few tables should have so many indexes
1362 488 : * that the O(N^2) behavior of lcons() is really a problem.
489 : */
7370 tgl 490 CBC 274776 : indexinfos = lcons(info, indexinfos);
7370 tgl 491 ECB : }
492 :
6888 neilc 493 GIC 132355 : list_free(indexoidlist);
9345 bruce 494 ECB : }
495 :
7370 tgl 496 GIC 185453 : rel->indexlist = indexinfos;
497 :
2207 alvherre 498 185453 : rel->statlist = get_relation_statistics(rel, relation);
499 :
2891 tgl 500 ECB : /* Grab foreign-table info using the relcache, while we have it */
3686 tgl 501 GIC 185453 : if (relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
502 : {
2891 503 1122 : rel->serverid = GetForeignServerIdByRelId(RelationGetRelid(relation));
3686 504 1122 : rel->fdwroutine = GetFdwRoutineForRelation(relation, true);
2900 rhaas 505 ECB : }
506 : else
507 : {
2891 tgl 508 GIC 184331 : rel->serverid = InvalidOid;
3686 509 184331 : rel->fdwroutine = NULL;
510 : }
2891 tgl 511 ECB :
2486 512 : /* Collect info about relation's foreign keys, if relevant */
2349 tgl 513 CBC 185446 : get_relation_foreign_keys(root, rel, relation, inhparent);
514 :
515 : /* Collect info about functions implemented by the rel's table AM. */
771 drowley 516 185446 : if (relation->rd_tableam &&
771 drowley 517 GIC 176907 : relation->rd_tableam->scan_set_tidrange != NULL &&
518 176907 : relation->rd_tableam->scan_getnextslot_tidrange != NULL)
519 176907 : rel->amflags |= AMFLAG_HAS_TID_RANGE;
520 :
521 : /*
522 : * Collect info about relation's partitioning scheme, if any. Only
523 : * inheritance parents may be partitioned.
524 : */
2027 rhaas 525 CBC 185446 : if (inhparent && relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
2027 rhaas 526 GIC 7404 : set_relation_partition_info(root, rel, relation);
527 :
1539 andres 528 CBC 185446 : table_close(relation, NoLock);
529 :
530 : /*
5798 tgl 531 ECB : * Allow a plugin to editorialize on the info we obtained from the
532 : * catalogs. Actions might include altering the assumed relation size,
533 : * removing an index, or adding a hypothetical index to the indexlist.
534 : */
5798 tgl 535 GIC 185446 : if (get_relation_info_hook)
5798 tgl 536 LBC 0 : (*get_relation_info_hook) (root, relationObjectId, inhparent, rel);
9770 scrappy 537 GIC 185446 : }
9770 scrappy 538 ECB :
2486 tgl 539 : /*
540 : * get_relation_foreign_keys -
541 : * Retrieves foreign key information for a given relation.
542 : *
543 : * ForeignKeyOptInfos for relevant foreign keys are created and added to
544 : * root->fkey_list. We do this now while we have the relcache entry open.
545 : * We could sometimes avoid making useless ForeignKeyOptInfos if we waited
546 : * until all RelOptInfos have been built, but the cost of re-opening the
547 : * relcache entries would probably exceed any savings.
548 : */
549 : static void
2486 tgl 550 GIC 185446 : get_relation_foreign_keys(PlannerInfo *root, RelOptInfo *rel,
2349 tgl 551 ECB : Relation relation, bool inhparent)
2486 552 : {
2486 tgl 553 CBC 185446 : List *rtable = root->parse->rtable;
2486 tgl 554 ECB : List *cachedfkeys;
555 : ListCell *lc;
556 :
557 : /*
558 : * If it's not a baserel, we don't care about its FKs. Also, if the query
559 : * references only a single relation, we can skip the lookup since no FKs
560 : * could satisfy the requirements below.
561 : */
2486 tgl 562 GIC 352554 : if (rel->reloptkind != RELOPT_BASEREL ||
2486 tgl 563 CBC 167108 : list_length(rtable) < 2)
2486 tgl 564 GIC 103304 : return;
565 :
566 : /*
567 : * If it's the parent of an inheritance tree, ignore its FKs. We could
568 : * make useful FK-based deductions if we found that all members of the
569 : * inheritance tree have equivalent FK constraints, but detecting that
2349 tgl 570 ECB : * would require code that hasn't been written.
2349 tgl 571 EUB : */
2349 tgl 572 CBC 82142 : if (inhparent)
2349 tgl 573 GIC 2148 : return;
574 :
575 : /*
576 : * Extract data about relation's FKs from the relcache. Note that this
577 : * list belongs to the relcache and might disappear in a cache flush, so
578 : * we must not do any further catalog access within this function.
579 : */
2486 580 79994 : cachedfkeys = RelationGetFKeyList(relation);
581 :
582 : /*
583 : * Figure out which FKs are of interest for this query, and create
584 : * ForeignKeyOptInfos for them. We want only FKs that reference some
2486 tgl 585 ECB : * other RTE of the current query. In queries containing self-joins,
586 : * there might be more than one other RTE for a referenced table, and we
587 : * should make a ForeignKeyOptInfo for each occurrence.
588 : *
589 : * Ideally, we would ignore RTEs that correspond to non-baserels, but it's
590 : * too hard to identify those here, so we might end up making some useless
591 : * ForeignKeyOptInfos. If so, match_foreign_keys_to_quals() will remove
592 : * them again.
593 : */
2486 tgl 594 GIC 81135 : foreach(lc, cachedfkeys)
595 : {
596 1141 : ForeignKeyCacheInfo *cachedfk = (ForeignKeyCacheInfo *) lfirst(lc);
2486 tgl 597 ECB : Index rti;
598 : ListCell *lc2;
599 :
600 : /* conrelid should always be that of the table we're considering */
2486 tgl 601 GIC 1141 : Assert(cachedfk->conrelid == RelationGetRelid(relation));
602 :
603 : /* Scan to find other RTEs matching confrelid */
604 1141 : rti = 0;
605 5092 : foreach(lc2, rtable)
606 : {
2486 tgl 607 CBC 3951 : RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc2);
2486 tgl 608 ECB : ForeignKeyOptInfo *info;
609 :
2486 tgl 610 GIC 3951 : rti++;
611 : /* Ignore if not the correct table */
612 3951 : if (rte->rtekind != RTE_RELATION ||
613 2474 : rte->relid != cachedfk->confrelid)
614 2962 : continue;
2349 tgl 615 ECB : /* Ignore if it's an inheritance parent; doesn't really match */
2349 tgl 616 GIC 989 : if (rte->inh)
617 90 : continue;
618 : /* Ignore self-referential FKs; we only care about joins */
2486 619 899 : if (rti == rel->relid)
620 57 : continue;
621 :
622 : /* OK, let's make an entry */
623 842 : info = makeNode(ForeignKeyOptInfo);
624 842 : info->con_relid = rel->relid;
625 842 : info->ref_relid = rti;
626 842 : info->nkeys = cachedfk->nkeys;
627 842 : memcpy(info->conkey, cachedfk->conkey, sizeof(info->conkey));
628 842 : memcpy(info->confkey, cachedfk->confkey, sizeof(info->confkey));
2486 tgl 629 CBC 842 : memcpy(info->conpfeqop, cachedfk->conpfeqop, sizeof(info->conpfeqop));
630 : /* zero out fields to be filled by match_foreign_keys_to_quals */
631 842 : info->nmatched_ec = 0;
893 tgl 632 GIC 842 : info->nconst_ec = 0;
2486 633 842 : info->nmatched_rcols = 0;
634 842 : info->nmatched_ri = 0;
635 842 : memset(info->eclass, 0, sizeof(info->eclass));
893 tgl 636 CBC 842 : memset(info->fk_eclass_member, 0, sizeof(info->fk_eclass_member));
2486 tgl 637 GIC 842 : memset(info->rinfos, 0, sizeof(info->rinfos));
638 :
2486 tgl 639 CBC 842 : root->fkey_list = lappend(root->fkey_list, info);
2486 tgl 640 ECB : }
641 : }
642 : }
643 :
644 : /*
2893 andres 645 : * infer_arbiter_indexes -
646 : * Determine the unique indexes used to arbitrate speculative insertion.
647 : *
648 : * Uses user-supplied inference clause expressions and predicate to match a
649 : * unique index from those defined and ready on the heap relation (target).
650 : * An exact match is required on columns/expressions (although they can appear
651 : * in any order). However, the predicate given by the user need only restrict
652 : * insertion to a subset of some part of the table covered by some particular
653 : * unique index (in particular, a partial unique index) in order to be
654 : * inferred.
655 : *
656 : * The implementation does not consider which B-Tree operator class any
657 : * particular available unique index attribute uses, unless one was specified
658 : * in the inference specification. The same is true of collations. In
659 : * particular, there is no system dependency on the default operator class for
660 : * the purposes of inference. If no opclass (or collation) is specified, then
661 : * all matching indexes (that may or may not match the default in terms of
662 : * each attribute opclass/collation) are used for inference.
663 : */
664 : List *
2893 andres 665 GIC 715 : infer_arbiter_indexes(PlannerInfo *root)
2893 andres 666 ECB : {
2893 andres 667 CBC 715 : OnConflictExpr *onconflict = root->parse->onConflict;
2878 bruce 668 ECB :
2893 andres 669 : /* Iteration state */
1466 tgl 670 : RangeTblEntry *rte;
2893 andres 671 : Relation relation;
2893 andres 672 CBC 715 : Oid indexOidFromConstraint = InvalidOid;
673 : List *indexList;
2893 andres 674 ECB : ListCell *l;
675 :
676 : /* Normalized inference attributes and inference expressions: */
2893 andres 677 GIC 715 : Bitmapset *inferAttrs = NULL;
678 715 : List *inferElems = NIL;
679 :
680 : /* Results */
2882 681 715 : List *results = NIL;
682 :
683 : /*
684 : * Quickly return NIL for ON CONFLICT DO NOTHING without an inference
685 : * specification or named constraint. ON CONFLICT DO UPDATE statements
686 : * must always provide one or the other (but parser ought to have caught
687 : * that already).
688 : */
2893 689 715 : if (onconflict->arbiterElems == NIL &&
690 96 : onconflict->constraint == InvalidOid)
691 72 : return NIL;
692 :
693 : /*
694 : * We need not lock the relation since it was already locked, either by
695 : * the rewriter or when expand_inherited_rtentry() added it to the query's
696 : * rangetable.
697 : */
1466 tgl 698 643 : rte = rt_fetch(root->parse->resultRelation, root->parse->rtable);
699 :
1466 tgl 700 CBC 643 : relation = table_open(rte->relid, NoLock);
701 :
2893 andres 702 ECB : /*
703 : * Build normalized/BMS representation of plain indexed attributes, as
704 : * well as a separate list of expression items. This simplifies matching
705 : * the cataloged definition of indexes.
706 : */
2893 andres 707 CBC 1408 : foreach(l, onconflict->arbiterElems)
708 : {
2524 tgl 709 GIC 765 : InferenceElem *elem = (InferenceElem *) lfirst(l);
710 : Var *var;
711 : int attno;
2893 andres 712 ECB :
2893 andres 713 CBC 765 : if (!IsA(elem->expr, Var))
714 : {
715 : /* If not a plain Var, just shove it in inferElems for now */
716 81 : inferElems = lappend(inferElems, elem->expr);
2893 andres 717 GIC 81 : continue;
718 : }
719 :
720 684 : var = (Var *) elem->expr;
721 684 : attno = var->varattno;
722 :
2524 tgl 723 684 : if (attno == 0)
2893 andres 724 LBC 0 : ereport(ERROR,
2524 tgl 725 ECB : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
726 : errmsg("whole row unique index inference specifications are not supported")));
727 :
2524 tgl 728 GIC 684 : inferAttrs = bms_add_member(inferAttrs,
729 : attno - FirstLowInvalidHeapAttributeNumber);
730 : }
731 :
732 : /*
2893 andres 733 ECB : * Lookup named constraint's index. This is not immediately returned
734 : * because some additional sanity checks are required.
735 : */
2893 andres 736 GIC 643 : if (onconflict->constraint != InvalidOid)
737 : {
738 24 : indexOidFromConstraint = get_constraint_index(onconflict->constraint);
739 :
740 24 : if (indexOidFromConstraint == InvalidOid)
2893 andres 741 UIC 0 : ereport(ERROR,
2893 andres 742 ECB : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
743 : errmsg("constraint in ON CONFLICT clause has no associated index")));
744 : }
745 :
746 : /*
747 : * Using that representation, iterate through the list of indexes on the
748 : * target relation to try and find a match
749 : */
2524 tgl 750 GIC 643 : indexList = RelationGetIndexList(relation);
2524 tgl 751 ECB :
2893 andres 752 CBC 1467 : foreach(l, indexList)
753 : {
2893 andres 754 GIC 848 : Oid indexoid = lfirst_oid(l);
2893 andres 755 ECB : Relation idxRel;
756 : Form_pg_index idxForm;
757 : Bitmapset *indexedAttrs;
758 : List *idxExprs;
2893 andres 759 EUB : List *predExprs;
760 : AttrNumber natt;
761 : ListCell *el;
762 :
2893 andres 763 ECB : /*
764 : * Extract info from the relation descriptor for the index. Obtain
765 : * the same lock type that the executor will ultimately use.
766 : *
767 : * Let executor complain about !indimmediate case directly, because
768 : * enforcement needs to occur there anyway when an inference clause is
769 : * omitted.
770 : */
1466 tgl 771 CBC 848 : idxRel = index_open(indexoid, rte->rellockmode);
2893 andres 772 GIC 848 : idxForm = idxRel->rd_index;
2893 andres 773 ECB :
1564 peter_e 774 GIC 848 : if (!idxForm->indisvalid)
2893 andres 775 CBC 3 : goto next;
2893 andres 776 EUB :
777 : /*
778 : * Note that we do not perform a check against indcheckxmin (like e.g.
779 : * get_relation_info()) here to eliminate candidates, because
780 : * uniqueness checking only cares about the most recently committed
781 : * tuple versions.
782 : */
783 :
784 : /*
2893 andres 785 ECB : * Look for match on "ON constraint_name" variant, which may not be
786 : * unique constraint. This can only be a constraint name.
787 : */
2893 andres 788 GIC 845 : if (indexOidFromConstraint == idxForm->indexrelid)
2893 andres 789 ECB : {
2893 andres 790 GIC 24 : if (!idxForm->indisunique && onconflict->action == ONCONFLICT_UPDATE)
791 3 : ereport(ERROR,
792 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
793 : errmsg("ON CONFLICT DO UPDATE not supported with exclusion constraints")));
794 :
2882 795 21 : results = lappend_oid(results, idxForm->indexrelid);
2893 796 21 : list_free(indexList);
797 21 : index_close(idxRel, NoLock);
1539 798 21 : table_close(relation, NoLock);
2882 799 21 : return results;
800 : }
2893 801 821 : else if (indexOidFromConstraint != InvalidOid)
802 : {
803 : /* No point in further work for index in named constraint case */
804 9 : goto next;
805 : }
2893 andres 806 ECB :
807 : /*
808 : * Only considering conventional inference at this point (not named
809 : * constraints), so index under consideration can be immediately
810 : * skipped if it's not unique
811 : */
2893 andres 812 GIC 812 : if (!idxForm->indisunique)
813 2 : goto next;
814 :
815 : /* Build BMS representation of plain (non expression) index attrs */
2524 tgl 816 810 : indexedAttrs = NULL;
1828 teodor 817 1890 : for (natt = 0; natt < idxForm->indnkeyatts; natt++)
818 : {
2893 andres 819 1080 : int attno = idxRel->rd_index->indkey.values[natt];
820 :
821 1080 : if (attno != 0)
2524 tgl 822 927 : indexedAttrs = bms_add_member(indexedAttrs,
2118 tgl 823 ECB : attno - FirstLowInvalidHeapAttributeNumber);
824 : }
2893 andres 825 :
826 : /* Non-expression attributes (if any) must match */
2893 andres 827 GIC 810 : if (!bms_equal(indexedAttrs, inferAttrs))
828 180 : goto next;
829 :
2893 andres 830 ECB : /* Expression attributes (if any) must match */
2893 andres 831 CBC 630 : idxExprs = RelationGetIndexExpressions(idxRel);
832 1431 : foreach(el, onconflict->arbiterElems)
2893 andres 833 ECB : {
2878 bruce 834 CBC 825 : InferenceElem *elem = (InferenceElem *) lfirst(el);
835 :
2893 andres 836 ECB : /*
837 : * Ensure that collation/opclass aspects of inference expression
838 : * element match. Even though this loop is primarily concerned
839 : * with matching expressions, it is a convenient point to check
840 : * this for both expressions and ordinary (non-expression)
841 : * attributes appearing as inference elements.
842 : */
2814 andres 843 GIC 825 : if (!infer_collation_opclass_match(elem, idxRel, idxExprs))
2893 844 24 : goto next;
845 :
846 : /*
2893 andres 847 ECB : * Plain Vars don't factor into count of expression elements, and
848 : * the question of whether or not they satisfy the index
849 : * definition has already been considered (they must).
850 : */
2893 andres 851 CBC 807 : if (IsA(elem->expr, Var))
852 726 : continue;
853 :
2893 andres 854 ECB : /*
855 : * Might as well avoid redundant check in the rare cases where
856 : * infer_collation_opclass_match() is required to do real work.
857 : * Otherwise, check that element expression appears in cataloged
858 : * index definition.
859 : */
2893 andres 860 GIC 81 : if (elem->infercollid != InvalidOid ||
2882 861 141 : elem->inferopclass != InvalidOid ||
2893 andres 862 CBC 69 : list_member(idxExprs, elem->expr))
863 75 : continue;
864 :
2893 andres 865 GIC 6 : goto next;
2893 andres 866 ECB : }
867 :
868 : /*
869 : * Now that all inference elements were matched, ensure that the
870 : * expression elements from inference clause are not missing any
871 : * cataloged expressions. This does the right thing when unique
872 : * indexes redundantly repeat the same attribute, or if attributes
873 : * redundantly appear multiple times within an inference clause.
874 : */
2893 andres 875 GIC 606 : if (list_difference(idxExprs, inferElems) != NIL)
876 27 : goto next;
877 :
2893 andres 878 ECB : /*
2524 tgl 879 : * If it's a partial index, its predicate must be implied by the ON
880 : * CONFLICT's WHERE clause.
881 : */
2893 andres 882 GIC 579 : predExprs = RelationGetIndexPredicate(idxRel);
883 :
2125 rhaas 884 579 : if (!predicate_implied_by(predExprs, (List *) onconflict->arbiterWhere, false))
2893 andres 885 18 : goto next;
2893 andres 886 ECB :
2882 andres 887 CBC 561 : results = lappend_oid(results, idxForm->indexrelid);
2893 andres 888 GIC 824 : next:
889 824 : index_close(idxRel, NoLock);
890 : }
891 :
892 619 : list_free(indexList);
1539 893 619 : table_close(relation, NoLock);
894 :
2882 andres 895 CBC 619 : if (results == NIL)
2893 896 85 : ereport(ERROR,
2893 andres 897 ECB : (errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
898 : errmsg("there is no unique or exclusion constraint matching the ON CONFLICT specification")));
899 :
2882 andres 900 CBC 534 : return results;
901 : }
902 :
903 : /*
904 : * infer_collation_opclass_match - ensure infer element opclass/collation match
905 : *
906 : * Given unique index inference element from inference specification, if
907 : * collation was specified, or if opclass was specified, verify that there is
908 : * at least one matching indexed attribute (occasionally, there may be more).
909 : * Skip this in the common case where inference specification does not include
2814 andres 910 ECB : * collation or opclass (instead matching everything, regardless of cataloged
2893 911 : * collation/opclass of indexed attribute).
912 : *
913 : * At least historically, Postgres has not offered collations or opclasses
914 : * with alternative-to-default notions of equality, so these additional
915 : * criteria should only be required infrequently.
916 : *
917 : * Don't give up immediately when an inference element matches some attribute
918 : * cataloged as indexed but not matching additional opclass/collation
919 : * criteria. This is done so that the implementation is as forgiving as
920 : * possible of redundancy within cataloged index attributes (or, less
921 : * usefully, within inference specification elements). If collations actually
922 : * differ between apparently redundantly indexed attributes (redundant within
923 : * or across indexes), then there really is no redundancy as such.
924 : *
925 : * Note that if an inference element specifies an opclass and a collation at
926 : * once, both must match in at least one particular attribute within index
927 : * catalog definition in order for that inference element to be considered
928 : * inferred/satisfied.
929 : */
930 : static bool
2893 andres 931 CBC 825 : infer_collation_opclass_match(InferenceElem *elem, Relation idxRel,
932 : List *idxExprs)
933 : {
934 : AttrNumber natt;
2118 tgl 935 825 : Oid inferopfamily = InvalidOid; /* OID of opclass opfamily */
2814 andres 936 GIC 825 : Oid inferopcinputtype = InvalidOid; /* OID of opclass input type */
2495 rhaas 937 825 : int nplain = 0; /* # plain attrs observed */
938 :
939 : /*
940 : * If inference specification element lacks collation/opclass, then no
941 : * need to check for exact match.
942 : */
2882 andres 943 825 : if (elem->infercollid == InvalidOid && elem->inferopclass == InvalidOid)
2893 944 768 : return true;
945 :
946 : /*
947 : * Lookup opfamily and input type, for matching indexes
948 : */
2882 949 57 : if (elem->inferopclass)
950 : {
951 42 : inferopfamily = get_opclass_family(elem->inferopclass);
952 42 : inferopcinputtype = get_opclass_input_type(elem->inferopclass);
953 : }
954 :
2893 955 123 : for (natt = 1; natt <= idxRel->rd_att->natts; natt++)
956 : {
2878 bruce 957 105 : Oid opfamily = idxRel->rd_opfamily[natt - 1];
958 105 : Oid opcinputtype = idxRel->rd_opcintype[natt - 1];
959 105 : Oid collation = idxRel->rd_indcollation[natt - 1];
2814 andres 960 105 : int attno = idxRel->rd_index->indkey.values[natt - 1];
961 :
962 105 : if (attno != 0)
963 84 : nplain++;
964 :
2882 965 105 : if (elem->inferopclass != InvalidOid &&
2882 andres 966 CBC 33 : (inferopfamily != opfamily || inferopcinputtype != opcinputtype))
967 : {
968 : /* Attribute needed to match opclass, but didn't */
2893 andres 969 GIC 45 : continue;
2893 andres 970 ECB : }
971 :
2893 andres 972 CBC 60 : if (elem->infercollid != InvalidOid &&
2893 andres 973 GIC 42 : elem->infercollid != collation)
974 : {
975 : /* Attribute needed to match collation, but didn't */
976 18 : continue;
977 : }
2893 andres 978 ECB :
2814 979 : /* If one matching index att found, good enough -- return true */
2814 andres 980 GIC 42 : if (IsA(elem->expr, Var))
981 : {
982 27 : if (((Var *) elem->expr)->varattno == attno)
983 27 : return true;
2814 andres 984 ECB : }
2814 andres 985 GIC 15 : else if (attno == 0)
2893 andres 986 ECB : {
2814 andres 987 CBC 15 : Node *nattExpr = list_nth(idxExprs, (natt - 1) - nplain);
988 :
989 : /*
2814 andres 990 ECB : * Note that unlike routines like match_index_to_operand() we
991 : * don't need to care about RelabelType. Neither the index
992 : * definition nor the inference clause should contain them.
993 : */
2814 andres 994 CBC 15 : if (equal(elem->expr, nattExpr))
995 12 : return true;
996 : }
2893 andres 997 ECB : }
998 :
2893 andres 999 GIC 18 : return false;
2893 andres 1000 ECB : }
1001 :
1002 : /*
1003 : * estimate_rel_size - estimate # pages and # tuples in a table or index
6703 tgl 1004 : *
1005 : * We also estimate the fraction of the pages that are marked all-visible in
1006 : * the visibility map, for use in estimation of index-only scans.
4195 1007 : *
6703 1008 : * If attr_widths isn't NULL, it points to the zero-index entry of the
1009 : * relation's attr_widths[] cache; we fill this in if we have need to compute
1010 : * the attribute widths for estimation purposes.
1011 : */
1012 : void
6703 tgl 1013 GIC 176528 : estimate_rel_size(Relation rel, int32 *attr_widths,
1014 : BlockNumber *pages, double *tuples, double *allvisfrac)
6703 tgl 1015 ECB : {
1016 : BlockNumber curpages;
6385 bruce 1017 : BlockNumber relpages;
6703 tgl 1018 : double reltuples;
1019 : BlockNumber relallvisible;
1020 : double density;
1021 :
492 peter 1022 CBC 176528 : if (RELKIND_HAS_TABLE_AM(rel->rd_rel->relkind))
1023 : {
332 tgl 1024 GIC 174586 : table_relation_estimate_size(rel, attr_widths, pages, tuples,
1025 : allvisfrac);
1026 : }
492 peter 1027 1942 : else if (rel->rd_rel->relkind == RELKIND_INDEX)
1028 : {
332 tgl 1029 ECB : /*
1030 : * XXX: It'd probably be good to move this into a callback, individual
1031 : * index types e.g. know if they have a metapage.
1032 : */
1033 :
1034 : /* it has storage, ok to call the smgr */
332 tgl 1035 GIC 462 : curpages = RelationGetNumberOfBlocks(rel);
1036 :
1037 : /* report estimated # pages */
1038 462 : *pages = curpages;
1039 : /* quick exit if rel is clearly empty */
1040 462 : if (curpages == 0)
1041 : {
332 tgl 1042 UIC 0 : *tuples = 0;
1043 0 : *allvisfrac = 0;
1044 0 : return;
1045 : }
1046 :
1047 : /* coerce values in pg_class to more desirable types */
332 tgl 1048 CBC 462 : relpages = (BlockNumber) rel->rd_rel->relpages;
332 tgl 1049 GIC 462 : reltuples = (double) rel->rd_rel->reltuples;
1050 462 : relallvisible = (BlockNumber) rel->rd_rel->relallvisible;
1051 :
1052 : /*
1053 : * Discount the metapage while estimating the number of tuples. This
1054 : * is a kluge because it assumes more than it ought to about index
1055 : * structure. Currently it's OK for btree, hash, and GIN indexes but
1056 : * suspect for GiST indexes.
332 tgl 1057 ECB : */
332 tgl 1058 GIC 462 : if (relpages > 0)
332 tgl 1059 ECB : {
332 tgl 1060 GIC 453 : curpages--;
1061 453 : relpages--;
332 tgl 1062 ECB : }
1063 :
1064 : /* estimate number of tuples from previous tuple density */
332 tgl 1065 GIC 462 : if (reltuples >= 0 && relpages > 0)
1066 306 : density = reltuples / (double) relpages;
1067 : else
1068 : {
1069 : /*
332 tgl 1070 ECB : * If we have no data because the relation was never vacuumed,
1071 : * estimate tuple width from attribute datatypes. We assume here
1072 : * that the pages are completely full, which is OK for tables
1073 : * (since they've presumably not been VACUUMed yet) but is
1074 : * probably an overestimate for indexes. Fortunately
1075 : * get_relation_info() can clamp the overestimate to the parent
1076 : * table's size.
332 tgl 1077 EUB : *
1078 : * Note: this code intentionally disregards alignment
1079 : * considerations, because (a) that would be gilding the lily
1080 : * considering how crude the estimate is, and (b) it creates
1081 : * platform dependencies in the default plans which are kind of a
1082 : * headache for regression testing.
332 tgl 1083 ECB : *
1084 : * XXX: Should this logic be more index specific?
6703 1085 : */
1086 : int32 tuple_width;
1087 :
332 tgl 1088 GIC 156 : tuple_width = get_rel_data_width(rel, attr_widths);
1089 156 : tuple_width += MAXALIGN(SizeofHeapTupleHeader);
1090 156 : tuple_width += sizeof(ItemIdData);
1091 : /* note: integer division is intentional here */
1092 156 : density = (BLCKSZ - SizeOfPageHeaderData) / tuple_width;
332 tgl 1093 ECB : }
332 tgl 1094 GIC 462 : *tuples = rint(density * (double) curpages);
4195 tgl 1095 ECB :
332 1096 : /*
1097 : * We use relallvisible as-is, rather than scaling it up like we do
1098 : * for the pages and tuples counts, on the theory that any pages added
1099 : * since the last VACUUM are most likely not marked all-visible. But
1100 : * costsize.c wants it converted to a fraction.
1101 : */
332 tgl 1102 GIC 462 : if (relallvisible == 0 || curpages <= 0)
1103 462 : *allvisfrac = 0;
332 tgl 1104 UIC 0 : else if ((double) relallvisible >= curpages)
1105 0 : *allvisfrac = 1;
1106 : else
1107 0 : *allvisfrac = (double) relallvisible / curpages;
1108 : }
1109 : else
1110 : {
1111 : /*
1112 : * Just use whatever's in pg_class. This covers foreign tables,
1113 : * sequences, and also relkinds without storage (shouldn't get here?);
1114 : * see initializations in AddNewRelationTuple(). Note that FDW must
1115 : * cope if reltuples is -1!
1116 : */
332 tgl 1117 GIC 1480 : *pages = rel->rd_rel->relpages;
1118 1480 : *tuples = rel->rd_rel->reltuples;
1119 1480 : *allvisfrac = 0;
1120 : }
1121 : }
1122 :
6469 tgl 1123 ECB :
4567 1124 : /*
1125 : * get_rel_data_width
1126 : *
1127 : * Estimate the average width of (the data part of) the relation's tuples.
1128 : *
4524 1129 : * If attr_widths isn't NULL, it points to the zero-index entry of the
1130 : * relation's attr_widths[] cache; use and update that cache as appropriate.
1131 : *
1132 : * Currently we ignore dropped columns. Ideally those should be included
1133 : * in the result, but we haven't got any way to get info about them; and
1134 : * since they might be mostly NULLs, treating them as zero-width is not
1135 : * necessarily the wrong thing anyway.
1136 : */
1471 andres 1137 : int32
4567 tgl 1138 CBC 63200 : get_rel_data_width(Relation rel, int32 *attr_widths)
4567 tgl 1139 EUB : {
4567 tgl 1140 GBC 63200 : int32 tuple_width = 0;
1141 : int i;
4567 tgl 1142 EUB :
4567 tgl 1143 GIC 276940 : for (i = 1; i <= RelationGetNumberOfAttributes(rel); i++)
1144 : {
2058 andres 1145 213740 : Form_pg_attribute att = TupleDescAttr(rel->rd_att, i - 1);
1146 : int32 item_width;
1147 :
4567 tgl 1148 213740 : if (att->attisdropped)
1149 1196 : continue;
1150 :
1151 : /* use previously cached data, if any */
4524 tgl 1152 CBC 212544 : if (attr_widths != NULL && attr_widths[i] > 0)
4524 tgl 1153 ECB : {
4524 tgl 1154 CBC 2783 : tuple_width += attr_widths[i];
4524 tgl 1155 GIC 2783 : continue;
1156 : }
1157 :
1158 : /* This should match set_rel_width() in costsize.c */
4567 1159 209761 : item_width = get_attavgwidth(RelationGetRelid(rel), i);
1160 209761 : if (item_width <= 0)
1161 : {
1162 208911 : item_width = get_typavgwidth(att->atttypid, att->atttypmod);
1163 208911 : Assert(item_width > 0);
1164 : }
1165 209761 : if (attr_widths != NULL)
1166 178343 : attr_widths[i] = item_width;
1167 209761 : tuple_width += item_width;
1168 : }
1169 :
1170 63200 : return tuple_width;
1171 : }
1172 :
4567 tgl 1173 ECB : /*
1174 : * get_relation_data_width
1175 : *
1176 : * External API for get_rel_data_width: same behavior except we have to
1177 : * open the relcache entry.
1178 : */
1179 : int32
4524 tgl 1180 CBC 1136 : get_relation_data_width(Oid relid, int32 *attr_widths)
1181 : {
1182 : int32 result;
4567 tgl 1183 ECB : Relation relation;
1184 :
1185 : /* As above, assume relation is already locked */
1539 andres 1186 GIC 1136 : relation = table_open(relid, NoLock);
4567 tgl 1187 ECB :
4524 tgl 1188 GIC 1136 : result = get_rel_data_width(relation, attr_widths);
4567 tgl 1189 ECB :
1539 andres 1190 CBC 1136 : table_close(relation, NoLock);
1191 :
4567 tgl 1192 GIC 1136 : return result;
1193 : }
4567 tgl 1194 ECB :
1195 :
1196 : /*
6469 1197 : * get_relation_constraints
1198 : *
1199 : * Retrieve the applicable constraint expressions of the given relation.
1200 : *
1201 : * Returns a List (possibly empty) of constraint expressions. Each one
1202 : * has been canonicalized, and its Vars are changed to have the varno
1203 : * indicated by rel->relid. This allows the expressions to be easily
1204 : * compared to expressions taken from WHERE.
1205 : *
1206 : * If include_noinherit is true, it's okay to include constraints that
1207 : * are marked NO INHERIT.
1208 : *
1209 : * If include_notnull is true, "col IS NOT NULL" expressions are generated
1210 : * and added to the result for each column that's marked attnotnull.
1211 : *
1212 : * If include_partition is true, and the relation is a partition,
1213 : * also include the partitioning constraints.
1214 : *
1215 : * Note: at present this is invoked at most once per relation per planner
1216 : * run, and in many cases it won't be invoked at all, so there seems no
1217 : * point in caching the data in RelOptInfo.
1218 : */
1219 : static List *
5486 tgl 1220 GIC 9232 : get_relation_constraints(PlannerInfo *root,
5486 tgl 1221 ECB : Oid relationObjectId, RelOptInfo *rel,
1222 : bool include_noinherit,
1440 1223 : bool include_notnull,
1224 : bool include_partition)
6469 1225 : {
6469 tgl 1226 GIC 9232 : List *result = NIL;
6469 tgl 1227 CBC 9232 : Index varno = rel->relid;
1228 : Relation relation;
1229 : TupleConstr *constr;
1230 :
1231 : /*
1232 : * We assume the relation has already been safely locked.
1233 : */
1539 andres 1234 GIC 9232 : relation = table_open(relationObjectId, NoLock);
1235 :
6469 tgl 1236 9232 : constr = relation->rd_att->constr;
1237 9232 : if (constr != NULL)
1238 : {
6385 bruce 1239 3477 : int num_check = constr->num_check;
1240 : int i;
1241 :
6469 tgl 1242 3683 : for (i = 0; i < num_check; i++)
1243 : {
1244 : Node *cexpr;
1245 :
1246 : /*
1247 : * If this constraint hasn't been fully validated yet, we must
1248 : * ignore it here. Also ignore if NO INHERIT and we weren't told
1249 : * that that's safe.
1250 : */
4330 alvherre 1251 206 : if (!constr->check[i].ccvalid)
1252 21 : continue;
1440 tgl 1253 185 : if (constr->check[i].ccnoinherit && !include_noinherit)
1440 tgl 1254 UIC 0 : continue;
4330 alvherre 1255 ECB :
6469 tgl 1256 GIC 185 : cexpr = stringToNode(constr->check[i].ccbin);
1257 :
1258 : /*
1259 : * Run each expression through const-simplification and
1260 : * canonicalization. This is not just an optimization, but is
6469 tgl 1261 ECB : * necessary, because we will be comparing it to
1262 : * similarly-processed qual clauses, and may fail to detect valid
1263 : * matches without this. This must match the processing done to
1264 : * qual clauses in preprocess_expression()! (We can skip the
1265 : * stuff involving subqueries, however, since we don't allow any
1266 : * in check constraints.)
1267 : */
5486 tgl 1268 GIC 185 : cexpr = eval_const_expressions(root, cexpr);
6469 tgl 1269 ECB :
1855 tgl 1270 GIC 185 : cexpr = (Node *) canonicalize_qual((Expr *) cexpr, true);
6469 tgl 1271 ECB :
1272 : /* Fix Vars to have the desired varno */
6469 tgl 1273 GIC 185 : if (varno != 1)
6469 tgl 1274 CBC 179 : ChangeVarNodes(cexpr, 1, varno, 0);
1275 :
1276 : /*
6385 bruce 1277 ECB : * Finally, convert to implicit-AND format (that is, a List) and
1278 : * append the resulting item(s) to our output list.
1279 : */
6469 tgl 1280 GIC 185 : result = list_concat(result,
1281 185 : make_ands_implicit((Expr *) cexpr));
1282 : }
1283 :
1284 : /* Add NOT NULL constraints in expression form, if requested */
5566 1285 3477 : if (include_notnull && constr->has_not_null)
5566 tgl 1286 ECB : {
5050 bruce 1287 CBC 3266 : int natts = relation->rd_att->natts;
5566 tgl 1288 ECB :
5566 tgl 1289 GBC 13361 : for (i = 1; i <= natts; i++)
1290 : {
2058 andres 1291 CBC 10095 : Form_pg_attribute att = TupleDescAttr(relation->rd_att, i - 1);
1292 :
5566 tgl 1293 GIC 10095 : if (att->attnotnull && !att->attisdropped)
1294 : {
5050 bruce 1295 3861 : NullTest *ntest = makeNode(NullTest);
1296 :
5566 tgl 1297 3861 : ntest->arg = (Expr *) makeVar(varno,
1298 : i,
1299 : att->atttypid,
1300 : att->atttypmod,
1301 : att->attcollation,
1302 : 0);
5566 tgl 1303 CBC 3861 : ntest->nulltesttype = IS_NOT_NULL;
1304 :
2446 tgl 1305 ECB : /*
1306 : * argisrow=false is correct even for a composite column,
1307 : * because attnotnull does not represent a SQL-spec IS NOT
1308 : * NULL test in such a case, just IS DISTINCT FROM NULL.
1309 : */
2446 tgl 1310 GIC 3861 : ntest->argisrow = false;
2968 1311 3861 : ntest->location = -1;
5566 1312 3861 : result = lappend(result, ntest);
1313 : }
1314 : }
5566 tgl 1315 ECB : }
6469 1316 : }
1317 :
1318 : /*
1319 : * Add partitioning constraints, if requested.
1829 alvherre 1320 : */
1440 tgl 1321 GIC 9232 : if (include_partition && relation->rd_rel->relispartition)
2314 rhaas 1322 ECB : {
1323 : /* make sure rel->partition_qual is set */
1335 alvherre 1324 CBC 6 : set_baserel_partition_constraint(relation, rel);
1335 alvherre 1325 GIC 6 : result = list_concat(result, rel->partition_qual);
2314 rhaas 1326 ECB : }
1327 :
1539 andres 1328 CBC 9232 : table_close(relation, NoLock);
1329 :
6469 tgl 1330 9232 : return result;
1331 : }
6469 tgl 1332 ECB :
1333 : /*
1334 : * Try loading data for the statistics object.
1335 : *
1336 : * We don't know if the data (specified by statOid and inh value) exist.
1337 : * The result is stored in stainfos list.
448 tomas.vondra 1338 : */
1339 : static void
448 tomas.vondra 1340 GIC 1836 : get_relation_statistics_worker(List **stainfos, RelOptInfo *rel,
1341 : Oid statOid, bool inh,
1342 : Bitmapset *keys, List *exprs)
1343 : {
1344 : Form_pg_statistic_ext_data dataForm;
448 tomas.vondra 1345 ECB : HeapTuple dtup;
1346 :
448 tomas.vondra 1347 CBC 1836 : dtup = SearchSysCache2(STATEXTDATASTXOID,
1348 : ObjectIdGetDatum(statOid), BoolGetDatum(inh));
448 tomas.vondra 1349 GIC 1836 : if (!HeapTupleIsValid(dtup))
1350 918 : return;
1351 :
1352 918 : dataForm = (Form_pg_statistic_ext_data) GETSTRUCT(dtup);
1353 :
1354 : /* add one StatisticExtInfo for each kind built */
1355 918 : if (statext_is_kind_built(dtup, STATS_EXT_NDISTINCT))
448 tomas.vondra 1356 ECB : {
448 tomas.vondra 1357 GIC 336 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1358 :
448 tomas.vondra 1359 CBC 336 : info->statOid = statOid;
1360 336 : info->inherit = dataForm->stxdinherit;
448 tomas.vondra 1361 GIC 336 : info->rel = rel;
1362 336 : info->kind = STATS_EXT_NDISTINCT;
448 tomas.vondra 1363 CBC 336 : info->keys = bms_copy(keys);
448 tomas.vondra 1364 GIC 336 : info->exprs = exprs;
448 tomas.vondra 1365 ECB :
448 tomas.vondra 1366 GIC 336 : *stainfos = lappend(*stainfos, info);
1367 : }
1368 :
1369 918 : if (statext_is_kind_built(dtup, STATS_EXT_DEPENDENCIES))
1370 : {
1371 264 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1372 :
1373 264 : info->statOid = statOid;
1374 264 : info->inherit = dataForm->stxdinherit;
448 tomas.vondra 1375 CBC 264 : info->rel = rel;
448 tomas.vondra 1376 GIC 264 : info->kind = STATS_EXT_DEPENDENCIES;
1377 264 : info->keys = bms_copy(keys);
1378 264 : info->exprs = exprs;
1379 :
1380 264 : *stainfos = lappend(*stainfos, info);
1381 : }
448 tomas.vondra 1382 ECB :
448 tomas.vondra 1383 GIC 918 : if (statext_is_kind_built(dtup, STATS_EXT_MCV))
448 tomas.vondra 1384 ECB : {
448 tomas.vondra 1385 CBC 381 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1386 :
1387 381 : info->statOid = statOid;
448 tomas.vondra 1388 GIC 381 : info->inherit = dataForm->stxdinherit;
1389 381 : info->rel = rel;
448 tomas.vondra 1390 CBC 381 : info->kind = STATS_EXT_MCV;
448 tomas.vondra 1391 GIC 381 : info->keys = bms_copy(keys);
448 tomas.vondra 1392 CBC 381 : info->exprs = exprs;
1393 :
1394 381 : *stainfos = lappend(*stainfos, info);
448 tomas.vondra 1395 ECB : }
1396 :
448 tomas.vondra 1397 CBC 918 : if (statext_is_kind_built(dtup, STATS_EXT_EXPRESSIONS))
448 tomas.vondra 1398 ECB : {
448 tomas.vondra 1399 CBC 402 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1400 :
1401 402 : info->statOid = statOid;
448 tomas.vondra 1402 GIC 402 : info->inherit = dataForm->stxdinherit;
1403 402 : info->rel = rel;
448 tomas.vondra 1404 CBC 402 : info->kind = STATS_EXT_EXPRESSIONS;
448 tomas.vondra 1405 GIC 402 : info->keys = bms_copy(keys);
448 tomas.vondra 1406 CBC 402 : info->exprs = exprs;
1407 :
1408 402 : *stainfos = lappend(*stainfos, info);
448 tomas.vondra 1409 ECB : }
1410 :
448 tomas.vondra 1411 CBC 918 : ReleaseSysCache(dtup);
448 tomas.vondra 1412 ECB : }
1413 :
1414 : /*
2207 alvherre 1415 : * get_relation_statistics
1416 : * Retrieve extended statistics defined on the table.
1417 : *
1418 : * Returns a List (possibly empty) of StatisticExtInfo objects describing
1419 : * the statistics. Note that this doesn't load the actual statistics data,
1420 : * just the identifying metadata. Only stats actually built are considered.
1421 : */
1422 : static List *
2207 alvherre 1423 CBC 185453 : get_relation_statistics(RelOptInfo *rel, Relation relation)
2207 alvherre 1424 ECB : {
744 tomas.vondra 1425 CBC 185453 : Index varno = rel->relid;
2207 alvherre 1426 ECB : List *statoidlist;
2207 alvherre 1427 CBC 185453 : List *stainfos = NIL;
1428 : ListCell *l;
2207 alvherre 1429 ECB :
2207 alvherre 1430 GIC 185453 : statoidlist = RelationGetStatExtList(relation);
1431 :
2207 alvherre 1432 CBC 186371 : foreach(l, statoidlist)
1433 : {
1434 918 : Oid statOid = lfirst_oid(l);
1435 : Form_pg_statistic_ext staForm;
2207 alvherre 1436 ECB : HeapTuple htup;
2207 alvherre 1437 CBC 918 : Bitmapset *keys = NULL;
744 tomas.vondra 1438 918 : List *exprs = NIL;
2207 alvherre 1439 ECB : int i;
1440 :
2207 alvherre 1441 CBC 918 : htup = SearchSysCache1(STATEXTOID, ObjectIdGetDatum(statOid));
1435 tgl 1442 GIC 918 : if (!HeapTupleIsValid(htup))
2156 tgl 1443 LBC 0 : elog(ERROR, "cache lookup failed for statistics object %u", statOid);
2207 alvherre 1444 GIC 918 : staForm = (Form_pg_statistic_ext) GETSTRUCT(htup);
1445 :
2207 alvherre 1446 ECB : /*
1447 : * First, build the array of columns covered. This is ultimately
1448 : * wasted if no stats within the object have actually been built, but
1449 : * it doesn't seem worth troubling over that case.
1450 : */
2183 alvherre 1451 GIC 2585 : for (i = 0; i < staForm->stxkeys.dim1; i++)
1452 1667 : keys = bms_add_member(keys, staForm->stxkeys.values[i]);
1453 :
1454 : /*
1455 : * Preprocess expressions (if any). We read the expressions, run them
1456 : * through eval_const_expressions, and fix the varnos.
1457 : *
448 tomas.vondra 1458 ECB : * XXX We don't know yet if there are any data for this stats object,
1459 : * with either stxdinherit value. But it's reasonable to assume there
1460 : * is at least one of those, possibly both. So it's better to process
1461 : * keys and expressions here.
744 1462 : */
1463 : {
1464 : bool isnull;
1465 : Datum datum;
1466 :
1467 : /* decode expression (if any) */
744 tomas.vondra 1468 GIC 918 : datum = SysCacheGetAttr(STATEXTOID, htup,
744 tomas.vondra 1469 ECB : Anum_pg_statistic_ext_stxexprs, &isnull);
1470 :
744 tomas.vondra 1471 GIC 918 : if (!isnull)
744 tomas.vondra 1472 ECB : {
1473 : char *exprsString;
1474 :
744 tomas.vondra 1475 GIC 404 : exprsString = TextDatumGetCString(datum);
744 tomas.vondra 1476 CBC 404 : exprs = (List *) stringToNode(exprsString);
1477 404 : pfree(exprsString);
744 tomas.vondra 1478 EUB :
744 tomas.vondra 1479 ECB : /*
1480 : * Run the expressions through eval_const_expressions. This is
1481 : * not just an optimization, but is necessary, because the
1482 : * planner will be comparing them to similarly-processed qual
1483 : * clauses, and may fail to detect valid matches without this.
1484 : * We must not use canonicalize_qual, however, since these
1485 : * aren't qual expressions.
1486 : */
744 tomas.vondra 1487 CBC 404 : exprs = (List *) eval_const_expressions(NULL, (Node *) exprs);
1488 :
1489 : /* May as well fix opfuncids too */
744 tomas.vondra 1490 GIC 404 : fix_opfuncids((Node *) exprs);
1491 :
1492 : /*
1493 : * Modify the copies we obtain from the relcache to have the
1494 : * correct varno for the parent relation, so that they match
1495 : * up correctly against qual clauses.
1496 : */
1497 404 : if (varno != 1)
744 tomas.vondra 1498 UIC 0 : ChangeVarNodes((Node *) exprs, 1, varno, 0);
1499 : }
1500 : }
1501 :
1502 : /* extract statistics for possible values of stxdinherit flag */
2195 simon 1503 ECB :
448 tomas.vondra 1504 GIC 918 : get_relation_statistics_worker(&stainfos, rel, statOid, true, keys, exprs);
1505 :
448 tomas.vondra 1506 CBC 918 : get_relation_statistics_worker(&stainfos, rel, statOid, false, keys, exprs);
1507 :
2207 alvherre 1508 GIC 918 : ReleaseSysCache(htup);
1509 918 : bms_free(keys);
2207 alvherre 1510 ECB : }
1511 :
2207 alvherre 1512 CBC 185453 : list_free(statoidlist);
1513 :
2207 alvherre 1514 GIC 185453 : return stainfos;
1515 : }
1516 :
1517 : /*
1518 : * relation_excluded_by_constraints
1519 : *
1520 : * Detect whether the relation need not be scanned because it has either
1521 : * self-inconsistent restrictions, or restrictions inconsistent with the
1440 tgl 1522 ECB : * relation's applicable constraints.
1523 : *
1524 : * Note: this examines only rel->relid, rel->reloptkind, and
5205 1525 : * rel->baserestrictinfo; therefore it can be called before filling in
1526 : * other fields of the RelOptInfo.
1527 : */
1528 : bool
5486 tgl 1529 GIC 195665 : relation_excluded_by_constraints(PlannerInfo *root,
1530 : RelOptInfo *rel, RangeTblEntry *rte)
1531 : {
1440 tgl 1532 ECB : bool include_noinherit;
1440 tgl 1533 EUB : bool include_notnull;
1440 tgl 1534 GIC 195665 : bool include_partition = false;
1535 : List *safe_restrictions;
1536 : List *constraint_pred;
1537 : List *safe_constraints;
1538 : ListCell *lc;
6273 tgl 1539 ECB :
1540 : /* As of now, constraint exclusion works only with simple relations. */
2197 rhaas 1541 CBC 195665 : Assert(IS_SIMPLE_REL(rel));
1542 :
1440 tgl 1543 ECB : /*
1544 : * If there are no base restriction clauses, we have no hope of proving
1545 : * anything below, so fall out quickly.
1546 : */
1440 tgl 1547 CBC 195665 : if (rel->baserestrictinfo == NIL)
1440 tgl 1548 GIC 84267 : return false;
1440 tgl 1549 ECB :
1550 : /*
1551 : * Regardless of the setting of constraint_exclusion, detect
1552 : * constant-FALSE-or-NULL restriction clauses. Because const-folding will
1553 : * reduce "anything AND FALSE" to just "FALSE", any such case should
1554 : * result in exactly one baserestrictinfo entry. This doesn't fire very
1555 : * often, but it seems cheap enough to be worth doing anyway. (Without
1556 : * this, we'd miss some optimizations that 9.5 and earlier found via much
1557 : * more roundabout methods.)
1558 : */
2589 tgl 1559 GIC 111398 : if (list_length(rel->baserestrictinfo) == 1)
1560 : {
1561 77826 : RestrictInfo *rinfo = (RestrictInfo *) linitial(rel->baserestrictinfo);
1562 77826 : Expr *clause = rinfo->clause;
1563 :
2589 tgl 1564 CBC 77826 : if (clause && IsA(clause, Const) &&
2589 tgl 1565 GIC 141 : (((Const *) clause)->constisnull ||
1566 141 : !DatumGetBool(((Const *) clause)->constvalue)))
1567 141 : return true;
1568 : }
2589 tgl 1569 ECB :
1570 : /*
1571 : * Skip further tests, depending on constraint_exclusion.
1572 : */
1812 alvherre 1573 GIC 111257 : switch (constraint_exclusion)
1574 : {
1575 27 : case CONSTRAINT_EXCLUSION_OFF:
1440 tgl 1576 ECB : /* In 'off' mode, never make any further tests */
1812 alvherre 1577 GIC 27 : return false;
1578 :
1579 111170 : case CONSTRAINT_EXCLUSION_PARTITION:
1580 :
1581 : /*
1812 alvherre 1582 ECB : * When constraint_exclusion is set to 'partition' we only handle
739 tgl 1583 : * appendrel members. Partition pruning has already been applied,
1584 : * so there is no need to consider the rel's partition constraints
1585 : * here.
1586 : */
739 tgl 1587 GIC 111170 : if (rel->reloptkind == RELOPT_OTHER_MEMBER_REL)
1440 1588 9345 : break; /* appendrel member, so process it */
1589 101825 : return false;
1590 :
1812 alvherre 1591 60 : case CONSTRAINT_EXCLUSION_ON:
1592 :
1593 : /*
1440 tgl 1594 ECB : * In 'on' mode, always apply constraint exclusion. If we are
1595 : * considering a baserel that is a partition (i.e., it was
1596 : * directly named rather than expanded from a parent table), then
1597 : * its partition constraints haven't been considered yet, so
1598 : * include them in the processing here.
1599 : */
739 tgl 1600 CBC 60 : if (rel->reloptkind == RELOPT_BASEREL)
1440 1601 45 : include_partition = true;
1809 1602 60 : break; /* always try to exclude */
1603 : }
1604 :
1605 : /*
1606 : * Check for self-contradictory restriction clauses. We dare not make
1607 : * deductions with non-immutable functions, but any immutable clauses that
6091 tgl 1608 ECB : * are self-contradictory allow us to conclude the scan is unnecessary.
1609 : *
1610 : * Note: strip off RestrictInfo because predicate_refuted_by() isn't
1611 : * expecting to see any in its predicate argument.
1612 : */
6091 tgl 1613 GIC 9405 : safe_restrictions = NIL;
6091 tgl 1614 CBC 21776 : foreach(lc, rel->baserestrictinfo)
1615 : {
6091 tgl 1616 GIC 12371 : RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1617 :
1618 12371 : if (!contain_mutable_functions((Node *) rinfo->clause))
1619 11868 : safe_restrictions = lappend(safe_restrictions, rinfo->clause);
1620 : }
1621 :
1857 tgl 1622 ECB : /*
1623 : * We can use weak refutation here, since we're comparing restriction
1624 : * clauses with restriction clauses.
1625 : */
1857 tgl 1626 CBC 9405 : if (predicate_refuted_by(safe_restrictions, safe_restrictions, true))
6091 tgl 1627 GIC 36 : return true;
1628 :
1629 : /*
1630 : * Only plain relations have constraints, so stop here for other rtekinds.
1631 : */
1440 1632 9369 : if (rte->rtekind != RTE_RELATION)
6273 1633 137 : return false;
1634 :
5566 tgl 1635 ECB : /*
1440 1636 : * If we are scanning just this table, we can use NO INHERIT constraints,
1637 : * but not if we're scanning its children too. (Note that partitioned
1638 : * tables should never have NO INHERIT constraints; but it's not necessary
1639 : * for us to assume that here.)
1640 : */
1440 tgl 1641 GIC 9232 : include_noinherit = !rte->inh;
1642 :
1643 : /*
1644 : * Currently, attnotnull constraints must be treated as NO INHERIT unless
1645 : * this is a partitioned table. In future we might track their
1646 : * inheritance status more accurately, allowing this to be refined.
1647 : *
1648 : * XXX do we need/want to change this?
1649 : */
1440 tgl 1650 CBC 9232 : include_notnull = (!rte->inh || rte->relkind == RELKIND_PARTITIONED_TABLE);
1440 tgl 1651 ECB :
1652 : /*
1653 : * Fetch the appropriate set of constraint expressions.
1654 : */
1440 tgl 1655 CBC 9232 : constraint_pred = get_relation_constraints(root, rte->relid, rel,
1440 tgl 1656 ECB : include_noinherit,
1657 : include_notnull,
1658 : include_partition);
1659 :
1660 : /*
1661 : * We do not currently enforce that CHECK constraints contain only
1662 : * immutable functions, so it's necessary to check here. We daren't draw
6031 bruce 1663 : * conclusions from plan-time evaluation of non-immutable functions. Since
1664 : * they're ANDed, we can just ignore any mutable constraints in the list,
1665 : * and reason about the rest.
1666 : */
6091 tgl 1667 GIC 9232 : safe_constraints = NIL;
1668 13334 : foreach(lc, constraint_pred)
6091 tgl 1669 ECB : {
6031 bruce 1670 CBC 4102 : Node *pred = (Node *) lfirst(lc);
1671 :
6091 tgl 1672 GIC 4102 : if (!contain_mutable_functions(pred))
1673 4102 : safe_constraints = lappend(safe_constraints, pred);
1674 : }
1675 :
1676 : /*
1677 : * The constraints are effectively ANDed together, so we can just try to
6273 tgl 1678 ECB : * refute the entire collection at once. This may allow us to make proofs
1679 : * that would fail if we took them individually.
1680 : *
1681 : * Note: we use rel->baserestrictinfo, not safe_restrictions as might seem
1682 : * an obvious optimization. Some of the clauses might be OR clauses that
1683 : * have volatile and nonvolatile subclauses, and it's OK to make
1684 : * deductions with the nonvolatile parts.
1685 : *
1686 : * We need strong refutation because we have to prove that the constraints
1857 1687 : * would yield false, not just NULL.
1688 : */
2125 rhaas 1689 GIC 9232 : if (predicate_refuted_by(safe_constraints, rel->baserestrictinfo, false))
6273 tgl 1690 33 : return true;
1691 :
6273 tgl 1692 CBC 9199 : return false;
1693 : }
1694 :
1695 :
1696 : /*
1697 : * build_physical_tlist
1698 : *
1699 : * Build a targetlist consisting of exactly the relation's user attributes,
1700 : * in order. The executor can special-case such tlists to avoid a projection
1701 : * step at runtime, so we use such tlists preferentially for scan nodes.
1702 : *
1703 : * Exception: if there are any dropped or missing columns, we punt and return
1838 andrew 1704 ECB : * NIL. Ideally we would like to handle these cases too. However this
7224 tgl 1705 : * creates problems for ExecTypeFromTL, which may be asked to build a tupdesc
1706 : * for a tlist that includes vars of no-longer-existent types. In theory we
1707 : * could dig out the required info from the pg_attribute entries of the
1708 : * relation, but that data is not readily available to ExecTypeFromTL.
1709 : * For now, we don't apply the physical-tlist optimization when there are
1710 : * dropped cols.
1711 : *
1712 : * We also support building a "physical" tlist for subqueries, functions,
1713 : * values lists, table expressions, and CTEs, since the same optimization can
1714 : * occur in SubqueryScan, FunctionScan, ValuesScan, CteScan, TableFunc,
1715 : * NamedTuplestoreScan, and WorkTableScan nodes.
1716 : */
1717 : List *
6517 tgl 1718 GIC 64829 : build_physical_tlist(PlannerInfo *root, RelOptInfo *rel)
1719 : {
6531 1720 64829 : List *tlist = NIL;
7224 1721 64829 : Index varno = rel->relid;
5832 1722 64829 : RangeTblEntry *rte = planner_rt_fetch(varno, root);
1723 : Relation relation;
1724 : Query *subquery;
1725 : Var *var;
6531 tgl 1726 ECB : ListCell *l;
7224 1727 : int attrno,
1728 : numattrs;
6523 1729 : List *colvars;
1730 :
6531 tgl 1731 GIC 64829 : switch (rte->rtekind)
1732 : {
1733 56093 : case RTE_RELATION:
1734 : /* Assume we already have adequate lock */
1539 andres 1735 56093 : relation = table_open(rte->relid, NoLock);
1736 :
6531 tgl 1737 56093 : numattrs = RelationGetNumberOfAttributes(relation);
1738 1042048 : for (attrno = 1; attrno <= numattrs; attrno++)
1739 : {
2058 andres 1740 986031 : Form_pg_attribute att_tup = TupleDescAttr(relation->rd_att,
1741 : attrno - 1);
1742 :
1838 andrew 1743 986031 : if (att_tup->attisdropped || att_tup->atthasmissing)
1744 : {
1745 : /* found a dropped or missing col, so punt */
6531 tgl 1746 76 : tlist = NIL;
1747 76 : break;
1748 : }
1749 :
1750 985955 : var = makeVar(varno,
1751 : attrno,
1752 : att_tup->atttypid,
1753 : att_tup->atttypmod,
1754 : att_tup->attcollation,
6531 tgl 1755 ECB : 0);
1756 :
6531 tgl 1757 CBC 985955 : tlist = lappend(tlist,
1758 985955 : makeTargetEntry((Expr *) var,
6531 tgl 1759 ECB : attrno,
1760 : NULL,
1761 : false));
1762 : }
1763 :
1539 andres 1764 GIC 56093 : table_close(relation, NoLock);
7224 tgl 1765 56093 : break;
1766 :
6531 1767 893 : case RTE_SUBQUERY:
6531 tgl 1768 CBC 893 : subquery = rte->subquery;
6531 tgl 1769 GIC 3164 : foreach(l, subquery->targetList)
6531 tgl 1770 ECB : {
6531 tgl 1771 GIC 2271 : TargetEntry *tle = (TargetEntry *) lfirst(l);
6531 tgl 1772 ECB :
1773 : /*
6523 1774 : * A resjunk column of the subquery can be reflected as
1775 : * resjunk in the physical tlist; we need not punt.
1776 : */
4608 peter_e 1777 CBC 2271 : var = makeVarFromTargetEntry(varno, tle);
1778 :
6531 tgl 1779 GIC 2271 : tlist = lappend(tlist,
6531 tgl 1780 CBC 2271 : makeTargetEntry((Expr *) var,
6531 tgl 1781 GIC 2271 : tle->resno,
1782 : NULL,
6531 tgl 1783 CBC 2271 : tle->resjunk));
6531 tgl 1784 ECB : }
6531 tgl 1785 GIC 893 : break;
1786 :
6523 tgl 1787 CBC 7843 : case RTE_FUNCTION:
1788 : case RTE_TABLEFUNC:
1789 : case RTE_VALUES:
1790 : case RTE_CTE:
1791 : case RTE_NAMEDTUPLESTORE:
1792 : case RTE_RESULT:
1793 : /* Not all of these can have dropped cols, but share code anyway */
5333 1794 7843 : expandRTE(rte, varno, 0, -1, true /* include dropped */ ,
6523 tgl 1795 ECB : NULL, &colvars);
6523 tgl 1796 GIC 38304 : foreach(l, colvars)
1797 : {
1798 30461 : var = (Var *) lfirst(l);
1799 :
1800 : /*
6523 tgl 1801 ECB : * A non-Var in expandRTE's output means a dropped column;
1802 : * must punt.
1803 : */
6523 tgl 1804 CBC 30461 : if (!IsA(var, Var))
6523 tgl 1805 ECB : {
6523 tgl 1806 LBC 0 : tlist = NIL;
6523 tgl 1807 UIC 0 : break;
6523 tgl 1808 ECB : }
1809 :
6523 tgl 1810 GIC 30461 : tlist = lappend(tlist,
1811 30461 : makeTargetEntry((Expr *) var,
1812 30461 : var->varattno,
1813 : NULL,
6523 tgl 1814 ECB : false));
1815 : }
6523 tgl 1816 CBC 7843 : break;
6523 tgl 1817 ECB :
6531 tgl 1818 LBC 0 : default:
1819 : /* caller error */
1820 0 : elog(ERROR, "unsupported RTE kind %d in build_physical_tlist",
1821 : (int) rte->rtekind);
6531 tgl 1822 ECB : break;
1823 : }
7224 1824 :
6886 tgl 1825 GIC 64829 : return tlist;
1826 : }
1827 :
1828 : /*
1829 : * build_index_tlist
1830 : *
4198 tgl 1831 ECB : * Build a targetlist representing the columns of the specified index.
1832 : * Each column is represented by a Var for the corresponding base-relation
1833 : * column, or an expression in base-relation Vars, as appropriate.
1834 : *
1835 : * There are never any dropped columns in indexes, so unlike
1836 : * build_physical_tlist, we need no failure case.
1837 : */
1838 : static List *
4198 tgl 1839 GIC 274776 : build_index_tlist(PlannerInfo *root, IndexOptInfo *index,
1840 : Relation heapRelation)
4198 tgl 1841 ECB : {
4198 tgl 1842 GIC 274776 : List *tlist = NIL;
4198 tgl 1843 GBC 274776 : Index varno = index->rel->relid;
4198 tgl 1844 EUB : ListCell *indexpr_item;
1845 : int i;
1846 :
4198 tgl 1847 CBC 274776 : indexpr_item = list_head(index->indexprs);
1848 812384 : for (i = 0; i < index->ncolumns; i++)
4198 tgl 1849 ECB : {
4198 tgl 1850 GIC 537608 : int indexkey = index->indexkeys[i];
1851 : Expr *indexvar;
1852 :
4198 tgl 1853 CBC 537608 : if (indexkey != 0)
1854 : {
4198 tgl 1855 EUB : /* simple column */
1856 : const FormData_pg_attribute *att_tup;
1857 :
4198 tgl 1858 GIC 536366 : if (indexkey < 0)
1601 andres 1859 UIC 0 : att_tup = SystemAttributeDefinition(indexkey);
1860 : else
2058 andres 1861 GIC 536366 : att_tup = TupleDescAttr(heapRelation->rd_att, indexkey - 1);
4198 tgl 1862 ECB :
4198 tgl 1863 GIC 536366 : indexvar = (Expr *) makeVar(varno,
1864 : indexkey,
1865 536366 : att_tup->atttypid,
1866 536366 : att_tup->atttypmod,
1867 536366 : att_tup->attcollation,
1868 : 0);
1869 : }
1870 : else
1871 : {
1872 : /* expression column */
1873 1242 : if (indexpr_item == NULL)
4198 tgl 1874 UIC 0 : elog(ERROR, "wrong number of index expressions");
4198 tgl 1875 GIC 1242 : indexvar = (Expr *) lfirst(indexpr_item);
1364 tgl 1876 CBC 1242 : indexpr_item = lnext(index->indexprs, indexpr_item);
1877 : }
1878 :
4198 1879 537608 : tlist = lappend(tlist,
1880 537608 : makeTargetEntry(indexvar,
4198 tgl 1881 GIC 537608 : i + 1,
1882 : NULL,
1883 : false));
4198 tgl 1884 ECB : }
4198 tgl 1885 CBC 274776 : if (indexpr_item != NULL)
4198 tgl 1886 UIC 0 : elog(ERROR, "wrong number of index expressions");
4198 tgl 1887 ECB :
4198 tgl 1888 GIC 274776 : return tlist;
1889 : }
4198 tgl 1890 ECB :
1891 : /*
1892 : * restriction_selectivity
1893 : *
1894 : * Returns the selectivity of a specified restriction operator clause.
9770 scrappy 1895 : * This code executes registered procedures stored in the
9770 scrappy 1896 EUB : * operator relation, by calling the function manager.
1897 : *
7376 tgl 1898 ECB : * See clause_selectivity() for the meaning of the additional parameters.
1899 : */
8491 1900 : Selectivity
6517 tgl 1901 GIC 251600 : restriction_selectivity(PlannerInfo *root,
5015 peter_e 1902 ECB : Oid operatorid,
7994 tgl 1903 : List *args,
3927 1904 : Oid inputcollid,
1905 : int varRelid)
1906 : {
5015 peter_e 1907 GIC 251600 : RegProcedure oprrest = get_oprrest(operatorid);
1908 : float8 result;
1909 :
7994 tgl 1910 ECB : /*
7836 bruce 1911 EUB : * if the oprrest procedure is missing for whatever reason, use a
7836 bruce 1912 ECB : * selectivity of 0.5
7994 tgl 1913 : */
7994 tgl 1914 GIC 251600 : if (!oprrest)
1915 80 : return (Selectivity) 0.5;
7994 tgl 1916 ECB :
3927 tgl 1917 CBC 251520 : result = DatumGetFloat8(OidFunctionCall4Coll(oprrest,
3927 tgl 1918 ECB : inputcollid,
1919 : PointerGetDatum(root),
1920 : ObjectIdGetDatum(operatorid),
1921 : PointerGetDatum(args),
1922 : Int32GetDatum(varRelid)));
8349 tgl 1923 EUB :
8349 tgl 1924 GIC 251508 : if (result < 0.0 || result > 1.0)
7198 tgl 1925 LBC 0 : elog(ERROR, "invalid restriction selectivity: %f", result);
1926 :
8349 tgl 1927 GIC 251508 : return (Selectivity) result;
1928 : }
1929 :
1930 : /*
1931 : * join_selectivity
1932 : *
1933 : * Returns the selectivity of a specified join operator clause.
1934 : * This code executes registered procedures stored in the
1935 : * operator relation, by calling the function manager.
1936 : *
1937 : * See clause_selectivity() for the meaning of the additional parameters.
9770 scrappy 1938 ECB : */
1939 : Selectivity
6517 tgl 1940 GIC 83948 : join_selectivity(PlannerInfo *root,
1941 : Oid operatorid,
1942 : List *args,
1943 : Oid inputcollid,
5349 tgl 1944 ECB : JoinType jointype,
1945 : SpecialJoinInfo *sjinfo)
1946 : {
5015 peter_e 1947 GIC 83948 : RegProcedure oprjoin = get_oprjoin(operatorid);
1948 : float8 result;
1949 :
1950 : /*
7836 bruce 1951 ECB : * if the oprjoin procedure is missing for whatever reason, use a
1952 : * selectivity of 0.5
1953 : */
7994 tgl 1954 CBC 83948 : if (!oprjoin)
7994 tgl 1955 GIC 73 : return (Selectivity) 0.5;
1956 :
3927 1957 83875 : result = DatumGetFloat8(OidFunctionCall5Coll(oprjoin,
1958 : inputcollid,
1959 : PointerGetDatum(root),
1960 : ObjectIdGetDatum(operatorid),
3927 tgl 1961 ECB : PointerGetDatum(args),
3927 tgl 1962 EUB : Int16GetDatum(jointype),
1963 : PointerGetDatum(sjinfo)));
8349 tgl 1964 ECB :
8349 tgl 1965 GIC 83875 : if (result < 0.0 || result > 1.0)
7198 tgl 1966 UIC 0 : elog(ERROR, "invalid join selectivity: %f", result);
1967 :
8349 tgl 1968 GIC 83875 : return (Selectivity) result;
1969 : }
1970 :
1971 : /*
1972 : * function_selectivity
1973 : *
1974 : * Returns the selectivity of a specified boolean function clause.
1975 : * This code executes registered procedures stored in the
1976 : * pg_proc relation, by calling the function manager.
1520 tgl 1977 ECB : *
1978 : * See clause_selectivity() for the meaning of the additional parameters.
1979 : */
1980 : Selectivity
1520 tgl 1981 GIC 4672 : function_selectivity(PlannerInfo *root,
1982 : Oid funcid,
1983 : List *args,
1520 tgl 1984 ECB : Oid inputcollid,
1985 : bool is_join,
1986 : int varRelid,
1987 : JoinType jointype,
1988 : SpecialJoinInfo *sjinfo)
1989 : {
1520 tgl 1990 GIC 4672 : RegProcedure prosupport = get_func_support(funcid);
1520 tgl 1991 ECB : SupportRequestSelectivity req;
1992 : SupportRequestSelectivity *sresult;
1993 :
1994 : /*
1995 : * If no support function is provided, use our historical default
1996 : * estimate, 0.3333333. This seems a pretty unprincipled choice, but
1997 : * Postgres has been using that estimate for function calls since 1992.
1998 : * The hoariness of this behavior suggests that we should not be in too
1999 : * much hurry to use another value.
2000 : */
1520 tgl 2001 GIC 4672 : if (!prosupport)
1520 tgl 2002 CBC 4657 : return (Selectivity) 0.3333333;
1520 tgl 2003 EUB :
1520 tgl 2004 GIC 15 : req.type = T_SupportRequestSelectivity;
1520 tgl 2005 CBC 15 : req.root = root;
1520 tgl 2006 GIC 15 : req.funcid = funcid;
2007 15 : req.args = args;
2008 15 : req.inputcollid = inputcollid;
2009 15 : req.is_join = is_join;
2010 15 : req.varRelid = varRelid;
2011 15 : req.jointype = jointype;
2012 15 : req.sjinfo = sjinfo;
2013 15 : req.selectivity = -1; /* to catch failure to set the value */
2014 :
2015 : sresult = (SupportRequestSelectivity *)
2016 15 : DatumGetPointer(OidFunctionCall1(prosupport,
2017 : PointerGetDatum(&req)));
1520 tgl 2018 ECB :
2019 : /* If support function fails, use default */
1520 tgl 2020 GIC 15 : if (sresult != &req)
1520 tgl 2021 UIC 0 : return (Selectivity) 0.3333333;
2022 :
1520 tgl 2023 GIC 15 : if (req.selectivity < 0.0 || req.selectivity > 1.0)
1520 tgl 2024 UIC 0 : elog(ERROR, "invalid function selectivity: %f", req.selectivity);
2025 :
1520 tgl 2026 GIC 15 : return (Selectivity) req.selectivity;
1520 tgl 2027 ECB : }
2028 :
2029 : /*
2030 : * add_function_cost
2031 : *
2032 : * Get an estimate of the execution cost of a function, and *add* it to
2033 : * the contents of *cost. The estimate may include both one-time and
2034 : * per-tuple components, since QualCost does.
2035 : *
2036 : * The funcid must always be supplied. If it is being called as the
2037 : * implementation of a specific parsetree node (FuncExpr, OpExpr,
2038 : * WindowFunc, etc), pass that as "node", else pass NULL.
2039 : *
2040 : * In some usages root might be NULL, too.
2041 : */
2042 : void
1520 tgl 2043 CBC 431919 : add_function_cost(PlannerInfo *root, Oid funcid, Node *node,
1520 tgl 2044 ECB : QualCost *cost)
2045 : {
2046 : HeapTuple proctup;
2047 : Form_pg_proc procform;
2048 :
1520 tgl 2049 CBC 431919 : proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2050 431919 : if (!HeapTupleIsValid(proctup))
1520 tgl 2051 UIC 0 : elog(ERROR, "cache lookup failed for function %u", funcid);
1520 tgl 2052 GIC 431919 : procform = (Form_pg_proc) GETSTRUCT(proctup);
1520 tgl 2053 ECB :
1520 tgl 2054 GIC 431919 : if (OidIsValid(procform->prosupport))
2055 : {
2056 : SupportRequestCost req;
1520 tgl 2057 ECB : SupportRequestCost *sresult;
1520 tgl 2058 EUB :
1520 tgl 2059 GIC 14109 : req.type = T_SupportRequestCost;
1520 tgl 2060 CBC 14109 : req.root = root;
1520 tgl 2061 GBC 14109 : req.funcid = funcid;
1520 tgl 2062 GIC 14109 : req.node = node;
1520 tgl 2063 ECB :
2064 : /* Initialize cost fields so that support function doesn't have to */
1520 tgl 2065 GIC 14109 : req.startup = 0;
2066 14109 : req.per_tuple = 0;
2067 :
2068 : sresult = (SupportRequestCost *)
2069 14109 : DatumGetPointer(OidFunctionCall1(procform->prosupport,
2070 : PointerGetDatum(&req)));
2071 :
2072 14109 : if (sresult == &req)
2073 : {
2074 : /* Success, so accumulate support function's estimate into *cost */
2075 9 : cost->startup += req.startup;
2076 9 : cost->per_tuple += req.per_tuple;
2077 9 : ReleaseSysCache(proctup);
2078 9 : return;
2079 : }
1520 tgl 2080 ECB : }
2081 :
2082 : /* No support function, or it failed, so rely on procost */
1520 tgl 2083 GIC 431910 : cost->per_tuple += procform->procost * cpu_operator_cost;
2084 :
2085 431910 : ReleaseSysCache(proctup);
1520 tgl 2086 ECB : }
2087 :
1520 tgl 2088 EUB : /*
1520 tgl 2089 ECB : * get_function_rows
2090 : *
2091 : * Get an estimate of the number of rows returned by a set-returning function.
2092 : *
2093 : * The funcid must always be supplied. In current usage, the calling node
2094 : * will always be supplied, and will be either a FuncExpr or OpExpr.
2095 : * But it's a good idea to not fail if it's NULL.
2096 : *
2097 : * In some usages root might be NULL, too.
2098 : *
2099 : * Note: this returns the unfiltered result of the support function, if any.
2100 : * It's usually a good idea to apply clamp_row_est() to the result, but we
2101 : * leave it to the caller to do so.
2102 : */
2103 : double
1520 tgl 2104 GIC 19385 : get_function_rows(PlannerInfo *root, Oid funcid, Node *node)
2105 : {
1520 tgl 2106 ECB : HeapTuple proctup;
2107 : Form_pg_proc procform;
2108 : double result;
2109 :
1520 tgl 2110 GIC 19385 : proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2111 19385 : if (!HeapTupleIsValid(proctup))
1520 tgl 2112 LBC 0 : elog(ERROR, "cache lookup failed for function %u", funcid);
1520 tgl 2113 CBC 19385 : procform = (Form_pg_proc) GETSTRUCT(proctup);
1520 tgl 2114 ECB :
1520 tgl 2115 CBC 19385 : Assert(procform->proretset); /* else caller error */
2116 :
1520 tgl 2117 GIC 19385 : if (OidIsValid(procform->prosupport))
2118 : {
2119 : SupportRequestRows req;
1520 tgl 2120 ECB : SupportRequestRows *sresult;
2121 :
1520 tgl 2122 CBC 7664 : req.type = T_SupportRequestRows;
1520 tgl 2123 GIC 7664 : req.root = root;
2124 7664 : req.funcid = funcid;
2125 7664 : req.node = node;
2126 :
2127 7664 : req.rows = 0; /* just for sanity */
2128 :
2129 : sresult = (SupportRequestRows *)
2130 7664 : DatumGetPointer(OidFunctionCall1(procform->prosupport,
2131 : PointerGetDatum(&req)));
2132 :
2133 7664 : if (sresult == &req)
2134 : {
2135 : /* Success */
2136 6127 : ReleaseSysCache(proctup);
2137 6127 : return req.rows;
2138 : }
2139 : }
2140 :
1520 tgl 2141 ECB : /* No support function, or it failed, so rely on prorows */
1520 tgl 2142 GIC 13258 : result = procform->prorows;
2143 :
2144 13258 : ReleaseSysCache(proctup);
2145 :
2146 13258 : return result;
1520 tgl 2147 ECB : }
2148 :
7994 tgl 2149 EUB : /*
7994 tgl 2150 ECB : * has_unique_index
2151 : *
2152 : * Detect whether there is a unique index on the specified attribute
2153 : * of the specified relation, thus allowing us to conclude that all
2154 : * the (non-null) values of the attribute are distinct.
2155 : *
2156 : * This function does not check the index's indimmediate property, which
2157 : * means that uniqueness may transiently fail to hold intra-transaction.
2158 : * That's appropriate when we are making statistical estimates, but beware
4186 2159 : * of using this for any correctness proofs.
7994 2160 : */
2161 : bool
7994 tgl 2162 CBC 719041 : has_unique_index(RelOptInfo *rel, AttrNumber attno)
2163 : {
6892 neilc 2164 ECB : ListCell *ilist;
2165 :
7994 tgl 2166 GIC 1783266 : foreach(ilist, rel->indexlist)
7994 tgl 2167 ECB : {
7994 tgl 2168 GIC 1312414 : IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist);
2169 :
7994 tgl 2170 ECB : /*
2171 : * Note: ignore partial indexes, since they don't allow us to conclude
2172 : * that all attr values are distinct, *unless* they are marked predOK
5050 bruce 2173 : * which means we know the index's predicate is satisfied by the
2174 : * query. We don't take any interest in expressional indexes either.
2175 : * Also, a multicolumn unique index doesn't allow us to conclude that
2176 : * just the specified attr is unique.
2177 : */
7994 tgl 2178 GIC 1312414 : if (index->unique &&
1828 teodor 2179 CBC 923773 : index->nkeycolumns == 1 &&
7994 tgl 2180 GIC 514951 : index->indexkeys[0] == attno &&
5166 tgl 2181 CBC 248207 : (index->indpred == NIL || index->predOK))
7994 tgl 2182 GIC 248189 : return true;
7994 tgl 2183 ECB : }
7994 tgl 2184 GIC 470852 : return false;
2185 : }
2186 :
2187 :
2188 : /*
2189 : * has_row_triggers
2190 : *
2191 : * Detect whether the specified relation has any row-level triggers for event.
2192 : */
2193 : bool
2578 rhaas 2194 242 : has_row_triggers(PlannerInfo *root, Index rti, CmdType event)
2195 : {
2196 242 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
2197 : Relation relation;
2198 : TriggerDesc *trigDesc;
2578 rhaas 2199 CBC 242 : bool result = false;
2200 :
2201 : /* Assume we already have adequate lock */
1539 andres 2202 GIC 242 : relation = table_open(rte->relid, NoLock);
2578 rhaas 2203 ECB :
2578 rhaas 2204 GIC 242 : trigDesc = relation->trigdesc;
2578 rhaas 2205 CBC 242 : switch (event)
2206 : {
2578 rhaas 2207 GIC 82 : case CMD_INSERT:
2208 82 : if (trigDesc &&
2209 13 : (trigDesc->trig_insert_after_row ||
2210 7 : trigDesc->trig_insert_before_row))
2211 13 : result = true;
2212 82 : break;
2213 85 : case CMD_UPDATE:
2214 85 : if (trigDesc &&
2578 rhaas 2215 CBC 24 : (trigDesc->trig_update_after_row ||
2216 14 : trigDesc->trig_update_before_row))
2217 18 : result = true;
2218 85 : break;
2219 75 : case CMD_DELETE:
2578 rhaas 2220 GIC 75 : if (trigDesc &&
2578 rhaas 2221 CBC 15 : (trigDesc->trig_delete_after_row ||
2578 rhaas 2222 GIC 9 : trigDesc->trig_delete_before_row))
2223 8 : result = true;
2224 75 : break;
2225 : /* There is no separate event for MERGE, only INSERT/UPDATE/DELETE */
377 alvherre 2226 UIC 0 : case CMD_MERGE:
2227 0 : result = false;
2228 0 : break;
2578 rhaas 2229 0 : default:
2230 0 : elog(ERROR, "unrecognized CmdType: %d", (int) event);
2578 rhaas 2231 ECB : break;
2232 : }
2233 :
1539 andres 2234 GIC 242 : table_close(relation, NoLock);
2578 rhaas 2235 242 : return result;
2578 rhaas 2236 ECB : }
2237 :
2238 : /*
94 tgl 2239 : * has_stored_generated_columns
2240 : *
2241 : * Does table identified by RTI have any STORED GENERATED columns?
2242 : */
2243 : bool
1471 peter 2244 CBC 203 : has_stored_generated_columns(PlannerInfo *root, Index rti)
1471 peter 2245 ECB : {
1471 peter 2246 CBC 203 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
1471 andres 2247 ECB : Relation relation;
peter 2248 : TupleDesc tupdesc;
1471 andres 2249 CBC 203 : bool result = false;
1471 peter 2250 ECB :
2251 : /* Assume we already have adequate lock */
1268 michael 2252 CBC 203 : relation = table_open(rte->relid, NoLock);
1471 peter 2253 ECB :
1471 peter 2254 CBC 203 : tupdesc = RelationGetDescr(relation);
2255 203 : result = tupdesc->constr && tupdesc->constr->has_generated_stored;
1471 peter 2256 ECB :
1268 michael 2257 CBC 203 : table_close(relation, NoLock);
1471 peter 2258 ECB :
1471 peter 2259 CBC 203 : return result;
1471 peter 2260 ECB : }
2261 :
2262 : /*
94 tgl 2263 EUB : * get_dependent_generated_columns
2264 : *
2265 : * Get the column numbers of any STORED GENERATED columns of the relation
2266 : * that depend on any column listed in target_cols. Both the input and
2267 : * result bitmapsets contain column numbers offset by
2268 : * FirstLowInvalidHeapAttributeNumber.
2269 : */
2270 : Bitmapset *
94 tgl 2271 CBC 35 : get_dependent_generated_columns(PlannerInfo *root, Index rti,
94 tgl 2272 ECB : Bitmapset *target_cols)
2273 : {
94 tgl 2274 GIC 35 : Bitmapset *dependentCols = NULL;
2275 35 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
2276 : Relation relation;
2277 : TupleDesc tupdesc;
2278 : TupleConstr *constr;
2279 :
2280 : /* Assume we already have adequate lock */
94 tgl 2281 CBC 35 : relation = table_open(rte->relid, NoLock);
2282 :
2283 35 : tupdesc = RelationGetDescr(relation);
94 tgl 2284 GIC 35 : constr = tupdesc->constr;
2285 :
94 tgl 2286 CBC 35 : if (constr && constr->has_generated_stored)
2287 : {
94 tgl 2288 GIC 4 : for (int i = 0; i < constr->num_defval; i++)
94 tgl 2289 ECB : {
94 tgl 2290 GIC 2 : AttrDefault *defval = &constr->defval[i];
94 tgl 2291 ECB : Node *expr;
94 tgl 2292 CBC 2 : Bitmapset *attrs_used = NULL;
2293 :
94 tgl 2294 ECB : /* skip if not generated column */
94 tgl 2295 GIC 2 : if (!TupleDescAttr(tupdesc, defval->adnum - 1)->attgenerated)
94 tgl 2296 LBC 0 : continue;
2297 :
2298 : /* identify columns this generated column depends on */
94 tgl 2299 GIC 2 : expr = stringToNode(defval->adbin);
2300 2 : pull_varattnos(expr, 1, &attrs_used);
2301 :
2302 2 : if (bms_overlap(target_cols, attrs_used))
2303 2 : dependentCols = bms_add_member(dependentCols,
2304 2 : defval->adnum - FirstLowInvalidHeapAttributeNumber);
2305 : }
2306 : }
2307 :
94 tgl 2308 CBC 35 : table_close(relation, NoLock);
2309 :
94 tgl 2310 GIC 35 : return dependentCols;
94 tgl 2311 ECB : }
2312 :
2313 : /*
2314 : * set_relation_partition_info
2315 : *
2316 : * Set partitioning scheme and related information for a partitioned table.
2317 : */
2027 rhaas 2318 : static void
2027 rhaas 2319 GIC 7404 : set_relation_partition_info(PlannerInfo *root, RelOptInfo *rel,
2027 rhaas 2320 ECB : Relation relation)
2321 : {
2322 : PartitionDesc partdesc;
2323 :
2324 : /*
745 alvherre 2325 : * Create the PartitionDirectory infrastructure if we didn't already.
2326 : */
1471 tgl 2327 CBC 7404 : if (root->glob->partition_directory == NULL)
2328 : {
2329 4994 : root->glob->partition_directory =
717 alvherre 2330 GIC 4994 : CreatePartitionDirectory(CurrentMemoryContext, true);
2331 : }
2027 rhaas 2332 ECB :
1494 rhaas 2333 GBC 7404 : partdesc = PartitionDirectoryLookup(root->glob->partition_directory,
2334 : relation);
2027 rhaas 2335 GIC 7404 : rel->part_scheme = find_partition_scheme(root, relation);
2027 rhaas 2336 CBC 7404 : Assert(partdesc != NULL && rel->part_scheme != NULL);
1479 tgl 2337 7404 : rel->boundinfo = partdesc->boundinfo;
2027 rhaas 2338 GIC 7404 : rel->nparts = partdesc->nparts;
2011 rhaas 2339 CBC 7404 : set_baserel_partition_key_exprs(relation, rel);
1335 alvherre 2340 7404 : set_baserel_partition_constraint(relation, rel);
2027 rhaas 2341 7404 : }
2342 :
2343 : /*
2344 : * find_partition_scheme
2027 rhaas 2345 ECB : *
2346 : * Find or create a PartitionScheme for this Relation.
2347 : */
2348 : static PartitionScheme
2027 rhaas 2349 GIC 7404 : find_partition_scheme(PlannerInfo *root, Relation relation)
2350 : {
2351 7404 : PartitionKey partkey = RelationGetPartitionKey(relation);
2352 : ListCell *lc;
2353 : int partnatts,
2354 : i;
2355 : PartitionScheme part_scheme;
2027 rhaas 2356 ECB :
2357 : /* A partitioned table should have a partition key. */
2027 rhaas 2358 GIC 7404 : Assert(partkey != NULL);
2359 :
2360 7404 : partnatts = partkey->partnatts;
2361 :
2362 : /* Search for a matching partition scheme and return if found one. */
2363 8292 : foreach(lc, root->part_schemes)
2027 rhaas 2364 ECB : {
2027 rhaas 2365 GIC 2694 : part_scheme = lfirst(lc);
2027 rhaas 2366 ECB :
2367 : /* Match partitioning strategy and number of keys. */
2027 rhaas 2368 GIC 2694 : if (partkey->strategy != part_scheme->strategy ||
2369 2235 : partnatts != part_scheme->partnatts)
2027 rhaas 2370 CBC 663 : continue;
2371 :
1829 alvherre 2372 ECB : /* Match partition key type properties. */
2027 rhaas 2373 CBC 2031 : if (memcmp(partkey->partopfamily, part_scheme->partopfamily,
2374 1806 : sizeof(Oid) * partnatts) != 0 ||
2375 1806 : memcmp(partkey->partopcintype, part_scheme->partopcintype,
2376 1806 : sizeof(Oid) * partnatts) != 0 ||
1866 2377 1806 : memcmp(partkey->partcollation, part_scheme->partcollation,
2027 rhaas 2378 ECB : sizeof(Oid) * partnatts) != 0)
2027 rhaas 2379 GIC 225 : continue;
2380 :
2381 : /*
2382 : * Length and byval information should match when partopcintype
2383 : * matches.
2384 : */
2385 1806 : Assert(memcmp(partkey->parttyplen, part_scheme->parttyplen,
2027 rhaas 2386 ECB : sizeof(int16) * partnatts) == 0);
2027 rhaas 2387 GIC 1806 : Assert(memcmp(partkey->parttypbyval, part_scheme->parttypbyval,
2027 rhaas 2388 ECB : sizeof(bool) * partnatts) == 0);
2389 :
2390 : /*
2391 : * If partopfamily and partopcintype matched, must have the same
2392 : * partition comparison functions. Note that we cannot reliably
2393 : * Assert the equality of function structs themselves for they might
2394 : * be different across PartitionKey's, so just Assert for the function
1829 alvherre 2395 : * OIDs.
2396 : */
2397 : #ifdef USE_ASSERT_CHECKING
1829 alvherre 2398 GIC 3627 : for (i = 0; i < partkey->partnatts; i++)
2399 1821 : Assert(partkey->partsupfunc[i].fn_oid ==
1829 alvherre 2400 ECB : part_scheme->partsupfunc[i].fn_oid);
2401 : #endif
2402 :
2403 : /* Found matching partition scheme. */
2027 rhaas 2404 GIC 1806 : return part_scheme;
2027 rhaas 2405 ECB : }
2406 :
2407 : /*
2408 : * Did not find matching partition scheme. Create one copying relevant
2409 : * information from the relcache. We need to copy the contents of the
1957 2410 : * array since the relcache entry may not survive after we have closed the
2011 2411 : * relation.
2027 2412 : */
2027 rhaas 2413 CBC 5598 : part_scheme = (PartitionScheme) palloc0(sizeof(PartitionSchemeData));
2414 5598 : part_scheme->strategy = partkey->strategy;
2027 rhaas 2415 GIC 5598 : part_scheme->partnatts = partkey->partnatts;
2011 rhaas 2416 ECB :
2011 rhaas 2417 GIC 5598 : part_scheme->partopfamily = (Oid *) palloc(sizeof(Oid) * partnatts);
2418 5598 : memcpy(part_scheme->partopfamily, partkey->partopfamily,
2419 : sizeof(Oid) * partnatts);
2420 :
2421 5598 : part_scheme->partopcintype = (Oid *) palloc(sizeof(Oid) * partnatts);
2011 rhaas 2422 CBC 5598 : memcpy(part_scheme->partopcintype, partkey->partopcintype,
2423 : sizeof(Oid) * partnatts);
2011 rhaas 2424 ECB :
1866 rhaas 2425 GIC 5598 : part_scheme->partcollation = (Oid *) palloc(sizeof(Oid) * partnatts);
2426 5598 : memcpy(part_scheme->partcollation, partkey->partcollation,
2427 : sizeof(Oid) * partnatts);
2428 :
2011 2429 5598 : part_scheme->parttyplen = (int16 *) palloc(sizeof(int16) * partnatts);
2430 5598 : memcpy(part_scheme->parttyplen, partkey->parttyplen,
2431 : sizeof(int16) * partnatts);
2432 :
2433 5598 : part_scheme->parttypbyval = (bool *) palloc(sizeof(bool) * partnatts);
2434 5598 : memcpy(part_scheme->parttypbyval, partkey->parttypbyval,
2011 rhaas 2435 ECB : sizeof(bool) * partnatts);
2027 2436 :
1829 alvherre 2437 GIC 5598 : part_scheme->partsupfunc = (FmgrInfo *)
2438 5598 : palloc(sizeof(FmgrInfo) * partnatts);
2439 11799 : for (i = 0; i < partnatts; i++)
2440 6201 : fmgr_info_copy(&part_scheme->partsupfunc[i], &partkey->partsupfunc[i],
1829 alvherre 2441 ECB : CurrentMemoryContext);
2442 :
2443 : /* Add the partitioning scheme to PlannerInfo. */
2027 rhaas 2444 GIC 5598 : root->part_schemes = lappend(root->part_schemes, part_scheme);
2445 :
2446 5598 : return part_scheme;
2447 : }
2448 :
2449 : /*
2011 rhaas 2450 ECB : * set_baserel_partition_key_exprs
2027 2451 : *
1101 tgl 2452 : * Builds partition key expressions for the given base relation and fills
2453 : * rel->partexprs.
2027 rhaas 2454 : */
2011 2455 : static void
2011 rhaas 2456 GIC 7404 : set_baserel_partition_key_exprs(Relation relation,
2457 : RelOptInfo *rel)
2027 rhaas 2458 ECB : {
2027 rhaas 2459 CBC 7404 : PartitionKey partkey = RelationGetPartitionKey(relation);
2460 : int partnatts;
2461 : int cnt;
2027 rhaas 2462 ECB : List **partexprs;
2463 : ListCell *lc;
2011 rhaas 2464 GIC 7404 : Index varno = rel->relid;
2465 :
2011 rhaas 2466 CBC 7404 : Assert(IS_SIMPLE_REL(rel) && rel->relid > 0);
2027 rhaas 2467 ECB :
2468 : /* A partitioned table should have a partition key. */
2027 rhaas 2469 GIC 7404 : Assert(partkey != NULL);
2027 rhaas 2470 ECB :
2027 rhaas 2471 CBC 7404 : partnatts = partkey->partnatts;
2027 rhaas 2472 GIC 7404 : partexprs = (List **) palloc(sizeof(List *) * partnatts);
2473 7404 : lc = list_head(partkey->partexprs);
2027 rhaas 2474 ECB :
2027 rhaas 2475 CBC 15426 : for (cnt = 0; cnt < partnatts; cnt++)
2027 rhaas 2476 ECB : {
2477 : Expr *partexpr;
2027 rhaas 2478 GIC 8022 : AttrNumber attno = partkey->partattrs[cnt];
2479 :
2480 8022 : if (attno != InvalidAttrNumber)
2027 rhaas 2481 ECB : {
2482 : /* Single column partition key is stored as a Var node. */
2027 rhaas 2483 CBC 7620 : Assert(attno > 0);
2484 :
2027 rhaas 2485 GIC 7620 : partexpr = (Expr *) makeVar(varno, attno,
2486 7620 : partkey->parttypid[cnt],
2487 7620 : partkey->parttypmod[cnt],
2488 7620 : partkey->parttypcoll[cnt], 0);
2489 : }
2490 : else
2491 : {
2492 402 : if (lc == NULL)
2027 rhaas 2493 LBC 0 : elog(ERROR, "wrong number of partition key expressions");
2494 :
2495 : /* Re-stamp the expression with given varno. */
2027 rhaas 2496 CBC 402 : partexpr = (Expr *) copyObject(lfirst(lc));
2027 rhaas 2497 GIC 402 : ChangeVarNodes((Node *) partexpr, 1, varno, 0);
1364 tgl 2498 402 : lc = lnext(partkey->partexprs, lc);
2499 : }
2500 :
1101 tgl 2501 ECB : /* Base relations have a single expression per key. */
2027 rhaas 2502 GIC 8022 : partexprs[cnt] = list_make1(partexpr);
2027 rhaas 2503 ECB : }
2504 :
2011 rhaas 2505 GIC 7404 : rel->partexprs = partexprs;
2011 rhaas 2506 ECB :
2507 : /*
1101 tgl 2508 : * A base relation does not have nullable partition key expressions, since
2509 : * no outer join is involved. We still allocate an array of empty
2510 : * expression lists to keep partition key expression handling code simple.
2511 : * See build_joinrel_partition_info() and match_expr_to_partition_keys().
2011 rhaas 2512 : */
2011 rhaas 2513 GIC 7404 : rel->nullable_partexprs = (List **) palloc0(sizeof(List *) * partnatts);
2027 2514 7404 : }
1335 alvherre 2515 ECB :
2516 : /*
2517 : * set_baserel_partition_constraint
2518 : *
2519 : * Builds the partition constraint for the given base relation and sets it
2520 : * in the given RelOptInfo. All Var nodes are restamped with the relid of the
2521 : * given relation.
2522 : */
2523 : static void
1335 alvherre 2524 CBC 7410 : set_baserel_partition_constraint(Relation relation, RelOptInfo *rel)
1335 alvherre 2525 ECB : {
2526 : List *partconstr;
2527 :
1335 alvherre 2528 GIC 7410 : if (rel->partition_qual) /* already done */
1335 alvherre 2529 LBC 0 : return;
1335 alvherre 2530 EUB :
2531 : /*
2532 : * Run the partition quals through const-simplification similar to check
1335 alvherre 2533 ECB : * constraints. We skip canonicalize_qual, though, because partition
2534 : * quals should be in canonical form already; also, since the qual is in
2535 : * implicit-AND format, we'd have to explicitly convert it to explicit-AND
2536 : * format and back again.
2537 : */
1335 alvherre 2538 GIC 7410 : partconstr = RelationGetPartitionQual(relation);
1335 alvherre 2539 CBC 7410 : if (partconstr)
2540 : {
1335 alvherre 2541 GIC 1559 : partconstr = (List *) expression_planner((Expr *) partconstr);
1335 alvherre 2542 CBC 1559 : if (rel->relid != 1)
1335 alvherre 2543 GIC 1518 : ChangeVarNodes((Node *) partconstr, 1, rel->relid, 0);
2544 1559 : rel->partition_qual = partconstr;
2545 : }
2546 : }
|