LCOV - differential code coverage report
Current view: top level - src/backend/lib - bloomfilter.c (source / functions) Coverage Total Hit UBC CBC
Current: Differential Code Coverage HEAD vs 15 Lines: 92.7 % 55 51 4 51
Current Date: 2023-04-08 17:13:01 Functions: 88.9 % 9 8 1 8
Baseline: 15 Line coverage date bins:
Baseline Date: 2023-04-08 15:09:40 (240..) days: 92.7 % 55 51 4 51
Legend: Lines: hit not hit Function coverage date bins:
(240..) days: 88.9 % 9 8 1 8

 Age         Owner                  TLA  Line data    Source code
                                  1                 : /*-------------------------------------------------------------------------
                                  2                 :  *
                                  3                 :  * bloomfilter.c
                                  4                 :  *      Space-efficient set membership testing
                                  5                 :  *
                                  6                 :  * A Bloom filter is a probabilistic data structure that is used to test an
                                  7                 :  * element's membership of a set.  False positives are possible, but false
                                  8                 :  * negatives are not; a test of membership of the set returns either "possibly
                                  9                 :  * in set" or "definitely not in set".  This is typically very space efficient,
                                 10                 :  * which can be a decisive advantage.
                                 11                 :  *
                                 12                 :  * Elements can be added to the set, but not removed.  The more elements that
                                 13                 :  * are added, the larger the probability of false positives.  Caller must hint
                                 14                 :  * an estimated total size of the set when the Bloom filter is initialized.
                                 15                 :  * This is used to balance the use of memory against the final false positive
                                 16                 :  * rate.
                                 17                 :  *
                                 18                 :  * The implementation is well suited to data synchronization problems between
                                 19                 :  * unordered sets, especially where predictable performance is important and
                                 20                 :  * some false positives are acceptable.  It's also well suited to cache
                                 21                 :  * filtering problems where a relatively small and/or low cardinality set is
                                 22                 :  * fingerprinted, especially when many subsequent membership tests end up
                                 23                 :  * indicating that values of interest are not present.  That should save the
                                 24                 :  * caller many authoritative lookups, such as expensive probes of a much larger
                                 25                 :  * on-disk structure.
                                 26                 :  *
                                 27                 :  * Copyright (c) 2018-2023, PostgreSQL Global Development Group
                                 28                 :  *
                                 29                 :  * IDENTIFICATION
                                 30                 :  *    src/backend/lib/bloomfilter.c
                                 31                 :  *
                                 32                 :  *-------------------------------------------------------------------------
                                 33                 :  */
                                 34                 : #include "postgres.h"
                                 35                 : 
                                 36                 : #include <math.h>
                                 37                 : 
                                 38                 : #include "common/hashfn.h"
                                 39                 : #include "lib/bloomfilter.h"
                                 40                 : #include "port/pg_bitutils.h"
                                 41                 : 
                                 42                 : #define MAX_HASH_FUNCS      10
                                 43                 : 
                                 44                 : struct bloom_filter
                                 45                 : {
                                 46                 :     /* K hash functions are used, seeded by caller's seed */
                                 47                 :     int         k_hash_funcs;
                                 48                 :     uint64      seed;
                                 49                 :     /* m is bitset size, in bits.  Must be a power of two <= 2^32.  */
                                 50                 :     uint64      m;
                                 51                 :     unsigned char bitset[FLEXIBLE_ARRAY_MEMBER];
                                 52                 : };
                                 53                 : 
                                 54                 : static int  my_bloom_power(uint64 target_bitset_bits);
                                 55                 : static int  optimal_k(uint64 bitset_bits, int64 total_elems);
                                 56                 : static void k_hashes(bloom_filter *filter, uint32 *hashes, unsigned char *elem,
                                 57                 :                      size_t len);
                                 58                 : static inline uint32 mod_m(uint32 val, uint64 m);
                                 59                 : 
                                 60                 : /*
                                 61                 :  * Create Bloom filter in caller's memory context.  We aim for a false positive
                                 62                 :  * rate of between 1% and 2% when bitset size is not constrained by memory
                                 63                 :  * availability.
                                 64                 :  *
                                 65                 :  * total_elems is an estimate of the final size of the set.  It should be
                                 66                 :  * approximately correct, but the implementation can cope well with it being
                                 67                 :  * off by perhaps a factor of five or more.  See "Bloom Filters in
                                 68                 :  * Probabilistic Verification" (Dillinger & Manolios, 2004) for details of why
                                 69                 :  * this is the case.
                                 70                 :  *
                                 71                 :  * bloom_work_mem is sized in KB, in line with the general work_mem convention.
                                 72                 :  * This determines the size of the underlying bitset (trivial bookkeeping space
                                 73                 :  * isn't counted).  The bitset is always sized as a power of two number of
                                 74                 :  * bits, and the largest possible bitset is 512MB (2^32 bits).  The
                                 75                 :  * implementation allocates only enough memory to target its standard false
                                 76                 :  * positive rate, using a simple formula with caller's total_elems estimate as
                                 77                 :  * an input.  The bitset might be as small as 1MB, even when bloom_work_mem is
                                 78                 :  * much higher.
                                 79                 :  *
                                 80                 :  * The Bloom filter is seeded using a value provided by the caller.  Using a
                                 81                 :  * distinct seed value on every call makes it unlikely that the same false
                                 82                 :  * positives will reoccur when the same set is fingerprinted a second time.
                                 83                 :  * Callers that don't care about this pass a constant as their seed, typically
                                 84                 :  * 0.  Callers can also use a pseudo-random seed, eg from pg_prng_uint64().
                                 85                 :  */
                                 86                 : bloom_filter *
 1835 andres                     87 CBC          57 : bloom_create(int64 total_elems, int bloom_work_mem, uint64 seed)
                                 88                 : {
                                 89                 :     bloom_filter *filter;
                                 90                 :     int         bloom_power;
                                 91                 :     uint64      bitset_bytes;
                                 92                 :     uint64      bitset_bits;
                                 93                 : 
                                 94                 :     /*
                                 95                 :      * Aim for two bytes per element; this is sufficient to get a false
                                 96                 :      * positive rate below 1%, independent of the size of the bitset or total
                                 97                 :      * number of elements.  Also, if rounding down the size of the bitset to
                                 98                 :      * the next lowest power of two turns out to be a significant drop, the
                                 99                 :      * false positive rate still won't exceed 2% in almost all cases.
                                100                 :      */
                                101              57 :     bitset_bytes = Min(bloom_work_mem * UINT64CONST(1024), total_elems * 2);
                                102              57 :     bitset_bytes = Max(1024 * 1024, bitset_bytes);
                                103                 : 
                                104                 :     /*
                                105                 :      * Size in bits should be the highest power of two <= target.  bitset_bits
                                106                 :      * is uint64 because PG_UINT32_MAX is 2^32 - 1, not 2^32
                                107                 :      */
                                108              57 :     bloom_power = my_bloom_power(bitset_bytes * BITS_PER_BYTE);
                                109              57 :     bitset_bits = UINT64CONST(1) << bloom_power;
                                110              57 :     bitset_bytes = bitset_bits / BITS_PER_BYTE;
                                111                 : 
                                112                 :     /* Allocate bloom filter with unset bitset */
                                113              57 :     filter = palloc0(offsetof(bloom_filter, bitset) +
                                114                 :                      sizeof(unsigned char) * bitset_bytes);
                                115              57 :     filter->k_hash_funcs = optimal_k(bitset_bits, total_elems);
                                116              57 :     filter->seed = seed;
                                117              57 :     filter->m = bitset_bits;
                                118                 : 
                                119              57 :     return filter;
                                120                 : }
                                121                 : 
                                122                 : /*
                                123                 :  * Free Bloom filter
                                124                 :  */
                                125                 : void
                                126              55 : bloom_free(bloom_filter *filter)
                                127                 : {
                                128              55 :     pfree(filter);
                                129              55 : }
                                130                 : 
                                131                 : /*
                                132                 :  * Add element to Bloom filter
                                133                 :  */
                                134                 : void
                                135         1249518 : bloom_add_element(bloom_filter *filter, unsigned char *elem, size_t len)
                                136                 : {
                                137                 :     uint32      hashes[MAX_HASH_FUNCS];
                                138                 :     int         i;
                                139                 : 
                                140         1249518 :     k_hashes(filter, hashes, elem, len);
                                141                 : 
                                142                 :     /* Map a bit-wise address to a byte-wise address + bit offset */
                                143        11228115 :     for (i = 0; i < filter->k_hash_funcs; i++)
                                144                 :     {
                                145         9978597 :         filter->bitset[hashes[i] >> 3] |= 1 << (hashes[i] & 7);
                                146                 :     }
                                147         1249518 : }
                                148                 : 
                                149                 : /*
                                150                 :  * Test if Bloom filter definitely lacks element.
                                151                 :  *
                                152                 :  * Returns true if the element is definitely not in the set of elements
                                153                 :  * observed by bloom_add_element().  Otherwise, returns false, indicating that
                                154                 :  * element is probably present in set.
                                155                 :  */
                                156                 : bool
                                157         1249476 : bloom_lacks_element(bloom_filter *filter, unsigned char *elem, size_t len)
                                158                 : {
                                159                 :     uint32      hashes[MAX_HASH_FUNCS];
                                160                 :     int         i;
                                161                 : 
                                162         1249476 :     k_hashes(filter, hashes, elem, len);
                                163                 : 
                                164                 :     /* Map a bit-wise address to a byte-wise address + bit offset */
                                165         6200587 :     for (i = 0; i < filter->k_hash_funcs; i++)
                                166                 :     {
                                167         5783051 :         if (!(filter->bitset[hashes[i] >> 3] & (1 << (hashes[i] & 7))))
                                168          831940 :             return true;
                                169                 :     }
                                170                 : 
                                171          417536 :     return false;
                                172                 : }
                                173                 : 
                                174                 : /*
                                175                 :  * What proportion of bits are currently set?
                                176                 :  *
                                177                 :  * Returns proportion, expressed as a multiplier of filter size.  That should
                                178                 :  * generally be close to 0.5, even when we have more than enough memory to
                                179                 :  * ensure a false positive rate within target 1% to 2% band, since more hash
                                180                 :  * functions are used as more memory is available per element.
                                181                 :  *
                                182                 :  * This is the only instrumentation that is low overhead enough to appear in
                                183                 :  * debug traces.  When debugging Bloom filter code, it's likely to be far more
                                184                 :  * interesting to directly test the false positive rate.
                                185                 :  */
                                186                 : double
 1835 andres                    187 UBC           0 : bloom_prop_bits_set(bloom_filter *filter)
                                188                 : {
                                189               0 :     int         bitset_bytes = filter->m / BITS_PER_BYTE;
 1514 tgl                       190               0 :     uint64      bits_set = pg_popcount((char *) filter->bitset, bitset_bytes);
                                191                 : 
 1835 andres                    192               0 :     return bits_set / (double) filter->m;
                                193                 : }
                                194                 : 
                                195                 : /*
                                196                 :  * Which element in the sequence of powers of two is less than or equal to
                                197                 :  * target_bitset_bits?
                                198                 :  *
                                199                 :  * Value returned here must be generally safe as the basis for actual bitset
                                200                 :  * size.
                                201                 :  *
                                202                 :  * Bitset is never allowed to exceed 2 ^ 32 bits (512MB).  This is sufficient
                                203                 :  * for the needs of all current callers, and allows us to use 32-bit hash
                                204                 :  * functions.  It also makes it easy to stay under the MaxAllocSize restriction
                                205                 :  * (caller needs to leave room for non-bitset fields that appear before
                                206                 :  * flexible array member, so a 1GB bitset would use an allocation that just
                                207                 :  * exceeds MaxAllocSize).
                                208                 :  */
                                209                 : static int
 1835 andres                    210 CBC          57 : my_bloom_power(uint64 target_bitset_bits)
                                211                 : {
                                212              57 :     int         bloom_power = -1;
                                213                 : 
                                214            1425 :     while (target_bitset_bits > 0 && bloom_power < 32)
                                215                 :     {
                                216            1368 :         bloom_power++;
                                217            1368 :         target_bitset_bits >>= 1;
                                218                 :     }
                                219                 : 
                                220              57 :     return bloom_power;
                                221                 : }
                                222                 : 
                                223                 : /*
                                224                 :  * Determine optimal number of hash functions based on size of filter in bits,
                                225                 :  * and projected total number of elements.  The optimal number is the number
                                226                 :  * that minimizes the false positive rate.
                                227                 :  */
                                228                 : static int
                                229              57 : optimal_k(uint64 bitset_bits, int64 total_elems)
                                230                 : {
                                231              57 :     int         k = rint(log(2.0) * bitset_bits / total_elems);
                                232                 : 
                                233              57 :     return Max(1, Min(k, MAX_HASH_FUNCS));
                                234                 : }
                                235                 : 
                                236                 : /*
                                237                 :  * Generate k hash values for element.
                                238                 :  *
                                239                 :  * Caller passes array, which is filled-in with k values determined by hashing
                                240                 :  * caller's element.
                                241                 :  *
                                242                 :  * Only 2 real independent hash functions are actually used to support an
                                243                 :  * interface of up to MAX_HASH_FUNCS hash functions; enhanced double hashing is
                                244                 :  * used to make this work.  The main reason we prefer enhanced double hashing
                                245                 :  * to classic double hashing is that the latter has an issue with collisions
                                246                 :  * when using power of two sized bitsets.  See Dillinger & Manolios for full
                                247                 :  * details.
                                248                 :  */
                                249                 : static void
                                250         2498994 : k_hashes(bloom_filter *filter, uint32 *hashes, unsigned char *elem, size_t len)
                                251                 : {
                                252                 :     uint64      hash;
                                253                 :     uint32      x,
                                254                 :                 y;
                                255                 :     uint64      m;
                                256                 :     int         i;
                                257                 : 
                                258                 :     /* Use 64-bit hashing to get two independent 32-bit hashes */
                                259         2498994 :     hash = DatumGetUInt64(hash_any_extended(elem, len, filter->seed));
                                260         2498994 :     x = (uint32) hash;
                                261         2498994 :     y = (uint32) (hash >> 32);
                                262         2498994 :     m = filter->m;
                                263                 : 
                                264         2498994 :     x = mod_m(x, m);
                                265         2498994 :     y = mod_m(y, m);
                                266                 : 
                                267                 :     /* Accumulate hashes */
                                268         2498994 :     hashes[0] = x;
                                269        19956774 :     for (i = 1; i < filter->k_hash_funcs; i++)
                                270                 :     {
                                271        17457780 :         x = mod_m(x + y, m);
                                272        17457780 :         y = mod_m(y + i, m);
                                273                 : 
                                274        17457780 :         hashes[i] = x;
                                275                 :     }
                                276         2498994 : }
                                277                 : 
                                278                 : /*
                                279                 :  * Calculate "val MOD m" inexpensively.
                                280                 :  *
                                281                 :  * Assumes that m (which is bitset size) is a power of two.
                                282                 :  *
                                283                 :  * Using a power of two number of bits for bitset size allows us to use bitwise
                                284                 :  * AND operations to calculate the modulo of a hash value.  It's also a simple
                                285                 :  * way of avoiding the modulo bias effect.
                                286                 :  */
                                287                 : static inline uint32
                                288        39913548 : mod_m(uint32 val, uint64 m)
                                289                 : {
                                290        39913548 :     Assert(m <= PG_UINT32_MAX + UINT64CONST(1));
                                291        39913548 :     Assert(((m - 1) & m) == 0);
                                292                 : 
                                293        39913548 :     return val & (m - 1);
                                294                 : }
        

Generated by: LCOV version v1.16-55-g56c0a2a