LCOV - differential code coverage report
Current view: top level - src/test/regress - regress.c (source / functions) Coverage Total Hit LBC UIC UBC GBC GIC GNC CBC EUB ECB DCB
Current: Differential Code Coverage HEAD vs 15 Lines: 90.5 % 495 448 15 29 3 22 227 1 198 22 234 1
Current Date: 2023-04-08 15:15:32 Functions: 96.1 % 51 49 2 49 2 49
Baseline: 15
Baseline Date: 2023-04-08 15:09:40
Legend: Lines: hit not hit

           TLA  Line data    Source code
       1                 : /*------------------------------------------------------------------------
       2                 :  *
       3                 :  * regress.c
       4                 :  *   Code for various C-language functions defined as part of the
       5                 :  *   regression tests.
       6                 :  *
       7                 :  * This code is released under the terms of the PostgreSQL License.
       8                 :  *
       9                 :  * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
      10                 :  * Portions Copyright (c) 1994, Regents of the University of California
      11                 :  *
      12                 :  * src/test/regress/regress.c
      13                 :  *
      14                 :  *-------------------------------------------------------------------------
      15                 :  */
      16                 : 
      17                 : #include "postgres.h"
      18                 : 
      19                 : #include <math.h>
      20                 : #include <signal.h>
      21                 : 
      22                 : #include "access/detoast.h"
      23                 : #include "access/htup_details.h"
      24                 : #include "access/transam.h"
      25                 : #include "access/xact.h"
      26                 : #include "catalog/namespace.h"
      27                 : #include "catalog/pg_operator.h"
      28                 : #include "catalog/pg_type.h"
      29                 : #include "commands/sequence.h"
      30                 : #include "commands/trigger.h"
      31                 : #include "executor/executor.h"
      32                 : #include "executor/spi.h"
      33                 : #include "funcapi.h"
      34                 : #include "mb/pg_wchar.h"
      35                 : #include "miscadmin.h"
      36                 : #include "nodes/supportnodes.h"
      37                 : #include "optimizer/optimizer.h"
      38                 : #include "optimizer/plancat.h"
      39                 : #include "parser/parse_coerce.h"
      40                 : #include "port/atomics.h"
      41                 : #include "storage/spin.h"
      42                 : #include "utils/array.h"
      43                 : #include "utils/builtins.h"
      44                 : #include "utils/geo_decls.h"
      45                 : #include "utils/lsyscache.h"
      46                 : #include "utils/memutils.h"
      47                 : #include "utils/rel.h"
      48                 : #include "utils/typcache.h"
      49                 : 
      50                 : #define EXPECT_TRUE(expr)   \
      51                 :     do { \
      52                 :         if (!(expr)) \
      53                 :             elog(ERROR, \
      54                 :                  "%s was unexpectedly false in file \"%s\" line %u", \
      55                 :                  #expr, __FILE__, __LINE__); \
      56                 :     } while (0)
      57                 : 
      58                 : #define EXPECT_EQ_U32(result_expr, expected_expr)   \
      59                 :     do { \
      60                 :         uint32      actual_result = (result_expr); \
      61                 :         uint32      expected_result = (expected_expr); \
      62                 :         if (actual_result != expected_result) \
      63                 :             elog(ERROR, \
      64                 :                  "%s yielded %u, expected %s in file \"%s\" line %u", \
      65                 :                  #result_expr, actual_result, #expected_expr, __FILE__, __LINE__); \
      66                 :     } while (0)
      67                 : 
      68                 : #define EXPECT_EQ_U64(result_expr, expected_expr)   \
      69                 :     do { \
      70                 :         uint64      actual_result = (result_expr); \
      71                 :         uint64      expected_result = (expected_expr); \
      72                 :         if (actual_result != expected_result) \
      73                 :             elog(ERROR, \
      74                 :                  "%s yielded " UINT64_FORMAT ", expected %s in file \"%s\" line %u", \
      75                 :                  #result_expr, actual_result, #expected_expr, __FILE__, __LINE__); \
      76                 :     } while (0)
      77                 : 
      78                 : #define LDELIM          '('
      79                 : #define RDELIM          ')'
      80                 : #define DELIM           ','
      81                 : 
      82                 : static void regress_lseg_construct(LSEG *lseg, Point *pt1, Point *pt2);
      83                 : 
      84 GIC          55 : PG_MODULE_MAGIC;
      85 ECB             : 
      86                 : 
      87                 : /* return the point where two paths intersect, or NULL if no intersection. */
      88 GIC           7 : PG_FUNCTION_INFO_V1(interpt_pp);
      89 ECB             : 
      90                 : Datum
      91 GIC        2688 : interpt_pp(PG_FUNCTION_ARGS)
      92 ECB             : {
      93 GIC        2688 :     PATH       *p1 = PG_GETARG_PATH_P(0);
      94 CBC        2688 :     PATH       *p2 = PG_GETARG_PATH_P(1);
      95 ECB             :     int         i,
      96                 :                 j;
      97                 :     LSEG        seg1,
      98                 :                 seg2;
      99                 :     bool        found;          /* We've found the intersection */
     100                 : 
     101 GIC        2688 :     found = false;              /* Haven't found it yet */
     102 ECB             : 
     103 GIC        8823 :     for (i = 0; i < p1->npts - 1 && !found; i++)
     104 ECB             :     {
     105 GIC        6135 :         regress_lseg_construct(&seg1, &p1->p[i], &p1->p[i + 1]);
     106 CBC       18819 :         for (j = 0; j < p2->npts - 1 && !found; j++)
     107 ECB             :         {
     108 GIC       12684 :             regress_lseg_construct(&seg2, &p2->p[j], &p2->p[j + 1]);
     109 CBC       12684 :             if (DatumGetBool(DirectFunctionCall2(lseg_intersect,
     110 ECB             :                                                  LsegPGetDatum(&seg1),
     111                 :                                                  LsegPGetDatum(&seg2))))
     112 GIC        2682 :                 found = true;
     113 ECB             :         }
     114                 :     }
     115                 : 
     116 GIC        2688 :     if (!found)
     117 CBC           6 :         PG_RETURN_NULL();
     118 ECB             : 
     119                 :     /*
     120                 :      * Note: DirectFunctionCall2 will kick out an error if lseg_interpt()
     121                 :      * returns NULL, but that should be impossible since we know the two
     122                 :      * segments intersect.
     123                 :      */
     124 GIC        2682 :     PG_RETURN_DATUM(DirectFunctionCall2(lseg_interpt,
     125 ECB             :                                         LsegPGetDatum(&seg1),
     126                 :                                         LsegPGetDatum(&seg2)));
     127                 : }
     128                 : 
     129                 : 
     130                 : /* like lseg_construct, but assume space already allocated */
     131                 : static void
     132 GIC       18819 : regress_lseg_construct(LSEG *lseg, Point *pt1, Point *pt2)
     133 ECB             : {
     134 GIC       18819 :     lseg->p[0].x = pt1->x;
     135 CBC       18819 :     lseg->p[0].y = pt1->y;
     136           18819 :     lseg->p[1].x = pt2->x;
     137           18819 :     lseg->p[1].y = pt2->y;
     138           18819 : }
     139 ECB             : 
     140 GIC           7 : PG_FUNCTION_INFO_V1(overpaid);
     141 ECB             : 
     142                 : Datum
     143 GIC          18 : overpaid(PG_FUNCTION_ARGS)
     144 ECB             : {
     145 GIC          18 :     HeapTupleHeader tuple = PG_GETARG_HEAPTUPLEHEADER(0);
     146 ECB             :     bool        isnull;
     147                 :     int32       salary;
     148                 : 
     149 GIC          18 :     salary = DatumGetInt32(GetAttributeByName(tuple, "salary", &isnull));
     150 CBC          18 :     if (isnull)
     151 LBC           0 :         PG_RETURN_NULL();
     152 GBC          18 :     PG_RETURN_BOOL(salary > 699);
     153 ECB             : }
     154                 : 
     155                 : /* New type "widget"
     156                 :  * This used to be "circle", but I added circle to builtins,
     157                 :  *  so needed to make sure the names do not collide. - tgl 97/04/21
     158                 :  */
     159                 : 
     160                 : typedef struct
     161                 : {
     162                 :     Point       center;
     163                 :     double      radius;
     164                 : } WIDGET;
     165                 : 
     166 GIC           7 : PG_FUNCTION_INFO_V1(widget_in);
     167 CBC           7 : PG_FUNCTION_INFO_V1(widget_out);
     168 ECB             : 
     169                 : #define NARGS   3
     170                 : 
     171                 : Datum
     172 GIC          30 : widget_in(PG_FUNCTION_ARGS)
     173 ECB             : {
     174 GIC          30 :     char       *str = PG_GETARG_CSTRING(0);
     175 ECB             :     char       *p,
     176                 :                *coord[NARGS];
     177                 :     int         i;
     178                 :     WIDGET     *result;
     179                 : 
     180 GIC         183 :     for (i = 0, p = str; *p && i < NARGS && *p != RDELIM; p++)
     181 ECB             :     {
     182 GIC         153 :         if (*p == DELIM || (*p == LDELIM && i == 0))
     183 CBC          81 :             coord[i++] = p + 1;
     184 ECB             :     }
     185                 : 
     186                 :     /*
     187                 :      * Note: DON'T convert this error to "soft" style (errsave/ereturn).  We
     188                 :      * want this data type to stay permanently in the hard-error world so that
     189                 :      * it can be used for testing that such cases still work reasonably.
     190                 :      */
     191 GIC          30 :     if (i < NARGS)
     192               9 :         ereport(ERROR,
     193                 :                 (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
     194                 :                  errmsg("invalid input syntax for type %s: \"%s\"",
     195                 :                         "widget", str)));
     196                 : 
     197 CBC          21 :     result = (WIDGET *) palloc(sizeof(WIDGET));
     198              21 :     result->center.x = atof(coord[0]);
     199 GIC          21 :     result->center.y = atof(coord[1]);
     200              21 :     result->radius = atof(coord[2]);
     201                 : 
     202              21 :     PG_RETURN_POINTER(result);
     203 ECB             : }
     204                 : 
     205                 : Datum
     206 CBC           6 : widget_out(PG_FUNCTION_ARGS)
     207                 : {
     208               6 :     WIDGET     *widget = (WIDGET *) PG_GETARG_POINTER(0);
     209 GIC           6 :     char       *str = psprintf("(%g,%g,%g)",
     210                 :                                widget->center.x, widget->center.y, widget->radius);
     211                 : 
     212 CBC           6 :     PG_RETURN_CSTRING(str);
     213                 : }
     214 ECB             : 
     215 CBC           7 : PG_FUNCTION_INFO_V1(pt_in_widget);
     216                 : 
     217                 : Datum
     218               6 : pt_in_widget(PG_FUNCTION_ARGS)
     219                 : {
     220 GIC           6 :     Point      *point = PG_GETARG_POINT_P(0);
     221 CBC           6 :     WIDGET     *widget = (WIDGET *) PG_GETARG_POINTER(1);
     222                 :     float8      distance;
     223                 : 
     224               6 :     distance = DatumGetFloat8(DirectFunctionCall2(point_distance,
     225                 :                                                   PointPGetDatum(point),
     226 ECB             :                                                   PointPGetDatum(&widget->center)));
     227                 : 
     228 GIC           6 :     PG_RETURN_BOOL(distance < widget->radius);
     229                 : }
     230 ECB             : 
     231 GIC           7 : PG_FUNCTION_INFO_V1(reverse_name);
     232                 : 
     233                 : Datum
     234 CBC          24 : reverse_name(PG_FUNCTION_ARGS)
     235                 : {
     236 GIC          24 :     char       *string = PG_GETARG_CSTRING(0);
     237 ECB             :     int         i;
     238                 :     int         len;
     239                 :     char       *new_string;
     240                 : 
     241 GIC          24 :     new_string = palloc0(NAMEDATALEN);
     242 CBC         168 :     for (i = 0; i < NAMEDATALEN && string[i]; ++i)
     243                 :         ;
     244 GIC          24 :     if (i == NAMEDATALEN || !string[i])
     245              24 :         --i;
     246              24 :     len = i;
     247 CBC         168 :     for (; i >= 0; --i)
     248             144 :         new_string[len - i] = string[i];
     249 GIC          24 :     PG_RETURN_CSTRING(new_string);
     250 ECB             : }
     251                 : 
     252 CBC           7 : PG_FUNCTION_INFO_V1(trigger_return_old);
     253 ECB             : 
     254                 : Datum
     255 CBC          45 : trigger_return_old(PG_FUNCTION_ARGS)
     256                 : {
     257 GIC          45 :     TriggerData *trigdata = (TriggerData *) fcinfo->context;
     258 ECB             :     HeapTuple   tuple;
     259                 : 
     260 GIC          45 :     if (!CALLED_AS_TRIGGER(fcinfo))
     261 LBC           0 :         elog(ERROR, "trigger_return_old: not fired by trigger manager");
     262                 : 
     263 CBC          45 :     tuple = trigdata->tg_trigtuple;
     264                 : 
     265 GIC          45 :     return PointerGetDatum(tuple);
     266 ECB             : }
     267 EUB             : 
     268                 : #define TTDUMMY_INFINITY    999999
     269 ECB             : 
     270                 : static SPIPlanPtr splan = NULL;
     271                 : static bool ttoff = false;
     272                 : 
     273 GIC           7 : PG_FUNCTION_INFO_V1(ttdummy);
     274                 : 
     275                 : Datum
     276              30 : ttdummy(PG_FUNCTION_ARGS)
     277                 : {
     278              30 :     TriggerData *trigdata = (TriggerData *) fcinfo->context;
     279 ECB             :     Trigger    *trigger;        /* to get trigger name */
     280                 :     char      **args;           /* arguments */
     281                 :     int         attnum[2];      /* fnumbers of start/stop columns */
     282                 :     Datum       oldon,
     283                 :                 oldoff;
     284                 :     Datum       newon,
     285                 :                 newoff;
     286                 :     Datum      *cvals;          /* column values */
     287                 :     char       *cnulls;         /* column nulls */
     288                 :     char       *relname;        /* triggered relation name */
     289                 :     Relation    rel;            /* triggered relation */
     290                 :     HeapTuple   trigtuple;
     291 GIC          30 :     HeapTuple   newtuple = NULL;
     292                 :     HeapTuple   rettuple;
     293                 :     TupleDesc   tupdesc;        /* tuple description */
     294                 :     int         natts;          /* # of attributes */
     295                 :     bool        isnull;         /* to know is some column NULL or not */
     296                 :     int         ret;
     297 ECB             :     int         i;
     298                 : 
     299 GIC          30 :     if (!CALLED_AS_TRIGGER(fcinfo))
     300 UIC           0 :         elog(ERROR, "ttdummy: not fired by trigger manager");
     301 GIC          30 :     if (!TRIGGER_FIRED_FOR_ROW(trigdata->tg_event))
     302 UIC           0 :         elog(ERROR, "ttdummy: must be fired for row");
     303 GIC          30 :     if (!TRIGGER_FIRED_BEFORE(trigdata->tg_event))
     304 UIC           0 :         elog(ERROR, "ttdummy: must be fired before event");
     305 CBC          30 :     if (TRIGGER_FIRED_BY_INSERT(trigdata->tg_event))
     306 UBC           0 :         elog(ERROR, "ttdummy: cannot process INSERT event");
     307 CBC          30 :     if (TRIGGER_FIRED_BY_UPDATE(trigdata->tg_event))
     308 GBC          24 :         newtuple = trigdata->tg_newtuple;
     309 ECB             : 
     310 GBC          30 :     trigtuple = trigdata->tg_trigtuple;
     311 ECB             : 
     312 GBC          30 :     rel = trigdata->tg_relation;
     313 CBC          30 :     relname = SPI_getrelname(rel);
     314 ECB             : 
     315                 :     /* check if TT is OFF for this relation */
     316 CBC          30 :     if (ttoff)                  /* OFF - nothing to do */
     317                 :     {
     318              15 :         pfree(relname);
     319              15 :         return PointerGetDatum((newtuple != NULL) ? newtuple : trigtuple);
     320                 :     }
     321                 : 
     322              15 :     trigger = trigdata->tg_trigger;
     323                 : 
     324              15 :     if (trigger->tgnargs != 2)
     325 LBC           0 :         elog(ERROR, "ttdummy (%s): invalid (!= 2) number of arguments %d",
     326                 :              relname, trigger->tgnargs);
     327                 : 
     328 CBC          15 :     args = trigger->tgargs;
     329 GIC          15 :     tupdesc = rel->rd_att;
     330 CBC          15 :     natts = tupdesc->natts;
     331 EUB             : 
     332 GIC          45 :     for (i = 0; i < 2; i++)
     333                 :     {
     334 CBC          30 :         attnum[i] = SPI_fnumber(tupdesc, args[i]);
     335              30 :         if (attnum[i] <= 0)
     336 LBC           0 :             elog(ERROR, "ttdummy (%s): there is no attribute %s",
     337                 :                  relname, args[i]);
     338 CBC          30 :         if (SPI_gettypeid(tupdesc, attnum[i]) != INT4OID)
     339 UIC           0 :             elog(ERROR, "ttdummy (%s): attribute %s must be of integer type",
     340 ECB             :                  relname, args[i]);
     341                 :     }
     342 EUB             : 
     343 GIC          15 :     oldon = SPI_getbinval(trigtuple, tupdesc, attnum[0], &isnull);
     344 CBC          15 :     if (isnull)
     345 UBC           0 :         elog(ERROR, "ttdummy (%s): %s must be NOT NULL", relname, args[0]);
     346                 : 
     347 GIC          15 :     oldoff = SPI_getbinval(trigtuple, tupdesc, attnum[1], &isnull);
     348              15 :     if (isnull)
     349 LBC           0 :         elog(ERROR, "ttdummy (%s): %s must be NOT NULL", relname, args[1]);
     350 ECB             : 
     351 GBC          15 :     if (newtuple != NULL)       /* UPDATE */
     352                 :     {
     353 CBC          12 :         newon = SPI_getbinval(newtuple, tupdesc, attnum[0], &isnull);
     354              12 :         if (isnull)
     355 UBC           0 :             elog(ERROR, "ttdummy (%s): %s must be NOT NULL", relname, args[0]);
     356 GIC          12 :         newoff = SPI_getbinval(newtuple, tupdesc, attnum[1], &isnull);
     357 CBC          12 :         if (isnull)
     358 UIC           0 :             elog(ERROR, "ttdummy (%s): %s must be NOT NULL", relname, args[1]);
     359 ECB             : 
     360 CBC          12 :         if (oldon != newon || oldoff != newoff)
     361 GBC           3 :             ereport(ERROR,
     362 ECB             :                     (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     363                 :                      errmsg("ttdummy (%s): you cannot change %s and/or %s columns (use set_ttdummy)",
     364 EUB             :                             relname, args[0], args[1])));
     365                 : 
     366 CBC           9 :         if (newoff != TTDUMMY_INFINITY)
     367 ECB             :         {
     368 GIC           3 :             pfree(relname);     /* allocated in upper executor context */
     369               3 :             return PointerGetDatum(NULL);
     370                 :         }
     371                 :     }
     372 CBC           3 :     else if (oldoff != TTDUMMY_INFINITY)    /* DELETE */
     373                 :     {
     374 LBC           0 :         pfree(relname);
     375               0 :         return PointerGetDatum(NULL);
     376                 :     }
     377                 : 
     378 CBC           9 :     newoff = DirectFunctionCall1(nextval, CStringGetTextDatum("ttdummy_seq"));
     379                 :     /* nextval now returns int64; coerce down to int32 */
     380 GBC           9 :     newoff = Int32GetDatum((int32) DatumGetInt64(newoff));
     381 EUB             : 
     382                 :     /* Connect to SPI manager */
     383 GIC           9 :     if ((ret = SPI_connect()) < 0)
     384 LBC           0 :         elog(ERROR, "ttdummy (%s): SPI_connect returned %d", relname, ret);
     385                 : 
     386 ECB             :     /* Fetch tuple values and nulls */
     387 GIC           9 :     cvals = (Datum *) palloc(natts * sizeof(Datum));
     388               9 :     cnulls = (char *) palloc(natts * sizeof(char));
     389 CBC          45 :     for (i = 0; i < natts; i++)
     390 EUB             :     {
     391 GIC          36 :         cvals[i] = SPI_getbinval((newtuple != NULL) ? newtuple : trigtuple,
     392                 :                                  tupdesc, i + 1, &isnull);
     393 CBC          36 :         cnulls[i] = (isnull) ? 'n' : ' ';
     394 ECB             :     }
     395                 : 
     396                 :     /* change date column(s) */
     397 CBC           9 :     if (newtuple)               /* UPDATE */
     398                 :     {
     399               6 :         cvals[attnum[0] - 1] = newoff;  /* start_date eq current date */
     400 GIC           6 :         cnulls[attnum[0] - 1] = ' ';
     401               6 :         cvals[attnum[1] - 1] = TTDUMMY_INFINITY;    /* stop_date eq INFINITY */
     402               6 :         cnulls[attnum[1] - 1] = ' ';
     403 ECB             :     }
     404                 :     else
     405                 :         /* DELETE */
     406                 :     {
     407 CBC           3 :         cvals[attnum[1] - 1] = newoff;  /* stop_date eq current date */
     408               3 :         cnulls[attnum[1] - 1] = ' ';
     409                 :     }
     410                 : 
     411                 :     /* if there is no plan ... */
     412 GIC           9 :     if (splan == NULL)
     413 ECB             :     {
     414                 :         SPIPlanPtr  pplan;
     415                 :         Oid        *ctypes;
     416                 :         char       *query;
     417                 : 
     418                 :         /* allocate space in preparation */
     419 GIC           3 :         ctypes = (Oid *) palloc(natts * sizeof(Oid));
     420               3 :         query = (char *) palloc(100 + 16 * natts);
     421                 : 
     422                 :         /*
     423                 :          * Construct query: INSERT INTO _relation_ VALUES ($1, ...)
     424                 :          */
     425 CBC           3 :         sprintf(query, "INSERT INTO %s VALUES (", relname);
     426              15 :         for (i = 1; i <= natts; i++)
     427                 :         {
     428 GIC          12 :             sprintf(query + strlen(query), "$%d%s",
     429                 :                     i, (i < natts) ? ", " : ")");
     430              12 :             ctypes[i - 1] = SPI_gettypeid(tupdesc, i);
     431 ECB             :         }
     432                 : 
     433                 :         /* Prepare plan for query */
     434 CBC           3 :         pplan = SPI_prepare(query, natts, ctypes);
     435 GIC           3 :         if (pplan == NULL)
     436 LBC           0 :             elog(ERROR, "ttdummy (%s): SPI_prepare returned %s", relname, SPI_result_code_string(SPI_result));
     437                 : 
     438 GIC           3 :         if (SPI_keepplan(pplan))
     439 UIC           0 :             elog(ERROR, "ttdummy (%s): SPI_keepplan failed", relname);
     440 ECB             : 
     441 CBC           3 :         splan = pplan;
     442 EUB             :     }
     443                 : 
     444 CBC           9 :     ret = SPI_execp(splan, cvals, cnulls, 0);
     445 EUB             : 
     446 GIC           9 :     if (ret < 0)
     447 LBC           0 :         elog(ERROR, "ttdummy (%s): SPI_execp returned %d", relname, ret);
     448                 : 
     449                 :     /* Tuple to return to upper Executor ... */
     450 CBC           9 :     if (newtuple)               /* UPDATE */
     451 GIC           6 :         rettuple = SPI_modifytuple(rel, trigtuple, 1, &(attnum[1]), &newoff, NULL);
     452 ECB             :     else                        /* DELETE */
     453 GBC           3 :         rettuple = trigtuple;
     454                 : 
     455 GIC           9 :     SPI_finish();               /* don't forget say Bye to SPI mgr */
     456 ECB             : 
     457 CBC           9 :     pfree(relname);
     458                 : 
     459               9 :     return PointerGetDatum(rettuple);
     460                 : }
     461 ECB             : 
     462 GIC           7 : PG_FUNCTION_INFO_V1(set_ttdummy);
     463 ECB             : 
     464                 : Datum
     465 CBC           9 : set_ttdummy(PG_FUNCTION_ARGS)
     466                 : {
     467 GIC           9 :     int32       on = PG_GETARG_INT32(0);
     468 ECB             : 
     469 GIC           9 :     if (ttoff)                  /* OFF currently */
     470                 :     {
     471 CBC           3 :         if (on == 0)
     472 UIC           0 :             PG_RETURN_INT32(0);
     473 ECB             : 
     474                 :         /* turn ON */
     475 CBC           3 :         ttoff = false;
     476 GIC           3 :         PG_RETURN_INT32(0);
     477 ECB             :     }
     478 EUB             : 
     479                 :     /* ON currently */
     480 GIC           6 :     if (on != 0)
     481 LBC           0 :         PG_RETURN_INT32(1);
     482 ECB             : 
     483                 :     /* turn OFF */
     484 GIC           6 :     ttoff = true;
     485                 : 
     486 CBC           6 :     PG_RETURN_INT32(1);
     487 EUB             : }
     488                 : 
     489                 : 
     490 ECB             : /*
     491                 :  * Type int44 has no real-world use, but the regression tests use it
     492                 :  * (under the alias "city_budget").  It's a four-element vector of int4's.
     493                 :  */
     494                 : 
     495                 : /*
     496                 :  *      int44in         - converts "num, num, ..." to internal form
     497                 :  *
     498                 :  *      Note: Fills any missing positions with zeroes.
     499                 :  */
     500 GIC           7 : PG_FUNCTION_INFO_V1(int44in);
     501                 : 
     502                 : Datum
     503               6 : int44in(PG_FUNCTION_ARGS)
     504                 : {
     505               6 :     char       *input_string = PG_GETARG_CSTRING(0);
     506 CBC           6 :     int32      *result = (int32 *) palloc(4 * sizeof(int32));
     507                 :     int         i;
     508                 : 
     509               6 :     i = sscanf(input_string,
     510                 :                "%d, %d, %d, %d",
     511 ECB             :                &result[0],
     512                 :                &result[1],
     513                 :                &result[2],
     514                 :                &result[3]);
     515 CBC           9 :     while (i < 4)
     516 GIC           3 :         result[i++] = 0;
     517                 : 
     518               6 :     PG_RETURN_POINTER(result);
     519                 : }
     520                 : 
     521 ECB             : /*
     522                 :  *      int44out        - converts internal form to "num, num, ..."
     523                 :  */
     524 CBC          11 : PG_FUNCTION_INFO_V1(int44out);
     525                 : 
     526                 : Datum
     527 GIC          14 : int44out(PG_FUNCTION_ARGS)
     528                 : {
     529              14 :     int32      *an_array = (int32 *) PG_GETARG_POINTER(0);
     530 CBC          14 :     char       *result = (char *) palloc(16 * 4);
     531                 : 
     532 GIC          14 :     snprintf(result, 16 * 4, "%d,%d,%d,%d",
     533 ECB             :              an_array[0],
     534 GIC          14 :              an_array[1],
     535 CBC          14 :              an_array[2],
     536              14 :              an_array[3]);
     537                 : 
     538              14 :     PG_RETURN_CSTRING(result);
     539                 : }
     540 ECB             : 
     541 CBC           7 : PG_FUNCTION_INFO_V1(test_canonicalize_path);
     542 ECB             : Datum
     543 GIC          66 : test_canonicalize_path(PG_FUNCTION_ARGS)
     544 ECB             : {
     545 GIC          66 :     char       *path = text_to_cstring(PG_GETARG_TEXT_PP(0));
     546                 : 
     547 CBC          66 :     canonicalize_path(path);
     548 GIC          66 :     PG_RETURN_TEXT_P(cstring_to_text(path));
     549 ECB             : }
     550                 : 
     551 CBC           7 : PG_FUNCTION_INFO_V1(make_tuple_indirect);
     552                 : Datum
     553              63 : make_tuple_indirect(PG_FUNCTION_ARGS)
     554 ECB             : {
     555 GIC          63 :     HeapTupleHeader rec = PG_GETARG_HEAPTUPLEHEADER(0);
     556                 :     HeapTupleData tuple;
     557 ECB             :     int         ncolumns;
     558                 :     Datum      *values;
     559                 :     bool       *nulls;
     560                 : 
     561                 :     Oid         tupType;
     562                 :     int32       tupTypmod;
     563                 :     TupleDesc   tupdesc;
     564                 : 
     565                 :     HeapTuple   newtup;
     566                 : 
     567                 :     int         i;
     568                 : 
     569                 :     MemoryContext old_context;
     570                 : 
     571                 :     /* Extract type info from the tuple itself */
     572 GIC          63 :     tupType = HeapTupleHeaderGetTypeId(rec);
     573              63 :     tupTypmod = HeapTupleHeaderGetTypMod(rec);
     574              63 :     tupdesc = lookup_rowtype_tupdesc(tupType, tupTypmod);
     575              63 :     ncolumns = tupdesc->natts;
     576                 : 
     577                 :     /* Build a temporary HeapTuple control structure */
     578 CBC          63 :     tuple.t_len = HeapTupleHeaderGetDatumLength(rec);
     579              63 :     ItemPointerSetInvalid(&(tuple.t_self));
     580              63 :     tuple.t_tableOid = InvalidOid;
     581              63 :     tuple.t_data = rec;
     582                 : 
     583 GIC          63 :     values = (Datum *) palloc(ncolumns * sizeof(Datum));
     584 CBC          63 :     nulls = (bool *) palloc(ncolumns * sizeof(bool));
     585 ECB             : 
     586 CBC          63 :     heap_deform_tuple(&tuple, tupdesc, values, nulls);
     587 ECB             : 
     588 GIC          63 :     old_context = MemoryContextSwitchTo(TopTransactionContext);
     589 ECB             : 
     590 CBC         315 :     for (i = 0; i < ncolumns; i++)
     591                 :     {
     592 ECB             :         struct varlena *attr;
     593                 :         struct varlena *new_attr;
     594                 :         struct varatt_indirect redirect_pointer;
     595                 : 
     596                 :         /* only work on existing, not-null varlenas */
     597 GIC         252 :         if (TupleDescAttr(tupdesc, i)->attisdropped ||
     598             252 :             nulls[i] ||
     599             219 :             TupleDescAttr(tupdesc, i)->attlen != -1)
     600              96 :             continue;
     601                 : 
     602             156 :         attr = (struct varlena *) DatumGetPointer(values[i]);
     603 ECB             : 
     604                 :         /* don't recursively indirect */
     605 CBC         156 :         if (VARATT_IS_EXTERNAL_INDIRECT(attr))
     606 LBC           0 :             continue;
     607                 : 
     608 ECB             :         /* copy datum, so it still lives later */
     609 GIC         156 :         if (VARATT_IS_EXTERNAL_ONDISK(attr))
     610 UIC           0 :             attr = detoast_external_attr(attr);
     611 ECB             :         else
     612 EUB             :         {
     613 GIC         156 :             struct varlena *oldattr = attr;
     614                 : 
     615 CBC         156 :             attr = palloc0(VARSIZE_ANY(oldattr));
     616 GBC         156 :             memcpy(attr, oldattr, VARSIZE_ANY(oldattr));
     617                 :         }
     618                 : 
     619 ECB             :         /* build indirection Datum */
     620 GIC         156 :         new_attr = (struct varlena *) palloc0(INDIRECT_POINTER_SIZE);
     621 CBC         156 :         redirect_pointer.pointer = attr;
     622             156 :         SET_VARTAG_EXTERNAL(new_attr, VARTAG_INDIRECT);
     623 GIC         156 :         memcpy(VARDATA_EXTERNAL(new_attr), &redirect_pointer,
     624                 :                sizeof(redirect_pointer));
     625                 : 
     626 CBC         156 :         values[i] = PointerGetDatum(new_attr);
     627 ECB             :     }
     628                 : 
     629 CBC          63 :     newtup = heap_form_tuple(tupdesc, values, nulls);
     630 GIC          63 :     pfree(values);
     631              63 :     pfree(nulls);
     632 CBC          63 :     ReleaseTupleDesc(tupdesc);
     633                 : 
     634 GIC          63 :     MemoryContextSwitchTo(old_context);
     635 ECB             : 
     636                 :     /*
     637                 :      * We intentionally don't use PG_RETURN_HEAPTUPLEHEADER here, because that
     638                 :      * would cause the indirect toast pointers to be flattened out of the
     639                 :      * tuple immediately, rendering subsequent testing irrelevant.  So just
     640                 :      * return the HeapTupleHeader pointer as-is.  This violates the general
     641                 :      * rule that composite Datums shouldn't contain toast pointers, but so
     642                 :      * long as the regression test scripts don't insert the result of this
     643                 :      * function into a container type (record, array, etc) it should be OK.
     644                 :      */
     645 GIC          63 :     PG_RETURN_POINTER(newtup->t_data);
     646                 : }
     647                 : 
     648               2 : PG_FUNCTION_INFO_V1(regress_setenv);
     649                 : 
     650                 : Datum
     651 CBC           1 : regress_setenv(PG_FUNCTION_ARGS)
     652                 : {
     653 GIC           1 :     char       *envvar = text_to_cstring(PG_GETARG_TEXT_PP(0));
     654 CBC           1 :     char       *envval = text_to_cstring(PG_GETARG_TEXT_PP(1));
     655                 : 
     656 GIC           1 :     if (!superuser())
     657 LBC           0 :         elog(ERROR, "must be superuser to change environment variables");
     658                 : 
     659 CBC           1 :     if (setenv(envvar, envval, 1) != 0)
     660 LBC           0 :         elog(ERROR, "could not set environment variable: %m");
     661                 : 
     662 CBC           1 :     PG_RETURN_VOID();
     663 EUB             : }
     664                 : 
     665 ECB             : /* Sleep until no process has a given PID. */
     666 GBC           3 : PG_FUNCTION_INFO_V1(wait_pid);
     667                 : 
     668 ECB             : Datum
     669 GIC           1 : wait_pid(PG_FUNCTION_ARGS)
     670                 : {
     671               1 :     int         pid = PG_GETARG_INT32(0);
     672 ECB             : 
     673 GIC           1 :     if (!superuser())
     674 UIC           0 :         elog(ERROR, "must be superuser to check PID liveness");
     675 ECB             : 
     676 GIC          11 :     while (kill(pid, 0) == 0)
     677 ECB             :     {
     678 GIC          10 :         CHECK_FOR_INTERRUPTS();
     679 CBC          10 :         pg_usleep(50000);
     680 EUB             :     }
     681                 : 
     682 CBC           1 :     if (errno != ESRCH)
     683 UIC           0 :         elog(ERROR, "could not check PID %d liveness: %m", pid);
     684 ECB             : 
     685 CBC           1 :     PG_RETURN_VOID();
     686                 : }
     687                 : 
     688 ECB             : static void
     689 GBC           3 : test_atomic_flag(void)
     690                 : {
     691 ECB             :     pg_atomic_flag flag;
     692                 : 
     693 GIC           3 :     pg_atomic_init_flag(&flag);
     694               3 :     EXPECT_TRUE(pg_atomic_unlocked_test_flag(&flag));
     695 CBC           3 :     EXPECT_TRUE(pg_atomic_test_set_flag(&flag));
     696 GIC           3 :     EXPECT_TRUE(!pg_atomic_unlocked_test_flag(&flag));
     697               3 :     EXPECT_TRUE(!pg_atomic_test_set_flag(&flag));
     698               3 :     pg_atomic_clear_flag(&flag);
     699 CBC           3 :     EXPECT_TRUE(pg_atomic_unlocked_test_flag(&flag));
     700               3 :     EXPECT_TRUE(pg_atomic_test_set_flag(&flag));
     701               3 :     pg_atomic_clear_flag(&flag);
     702               3 : }
     703 ECB             : 
     704                 : static void
     705 CBC           3 : test_atomic_uint32(void)
     706 ECB             : {
     707                 :     pg_atomic_uint32 var;
     708                 :     uint32      expected;
     709                 :     int         i;
     710                 : 
     711 CBC           3 :     pg_atomic_init_u32(&var, 0);
     712 GIC           3 :     EXPECT_EQ_U32(pg_atomic_read_u32(&var), 0);
     713               3 :     pg_atomic_write_u32(&var, 3);
     714               3 :     EXPECT_EQ_U32(pg_atomic_read_u32(&var), 3);
     715               3 :     EXPECT_EQ_U32(pg_atomic_fetch_add_u32(&var, pg_atomic_read_u32(&var) - 2),
     716                 :                   3);
     717 CBC           3 :     EXPECT_EQ_U32(pg_atomic_fetch_sub_u32(&var, 1), 4);
     718               3 :     EXPECT_EQ_U32(pg_atomic_sub_fetch_u32(&var, 3), 0);
     719               3 :     EXPECT_EQ_U32(pg_atomic_add_fetch_u32(&var, 10), 10);
     720               3 :     EXPECT_EQ_U32(pg_atomic_exchange_u32(&var, 5), 10);
     721               3 :     EXPECT_EQ_U32(pg_atomic_exchange_u32(&var, 0), 5);
     722                 : 
     723 ECB             :     /* test around numerical limits */
     724 CBC           3 :     EXPECT_EQ_U32(pg_atomic_fetch_add_u32(&var, INT_MAX), 0);
     725               3 :     EXPECT_EQ_U32(pg_atomic_fetch_add_u32(&var, INT_MAX), INT_MAX);
     726               3 :     pg_atomic_fetch_add_u32(&var, 2);   /* wrap to 0 */
     727               3 :     EXPECT_EQ_U32(pg_atomic_fetch_add_u32(&var, PG_INT16_MAX), 0);
     728 GIC           3 :     EXPECT_EQ_U32(pg_atomic_fetch_add_u32(&var, PG_INT16_MAX + 1),
     729                 :                   PG_INT16_MAX);
     730 CBC           3 :     EXPECT_EQ_U32(pg_atomic_fetch_add_u32(&var, PG_INT16_MIN),
     731 ECB             :                   2 * PG_INT16_MAX + 1);
     732 CBC           3 :     EXPECT_EQ_U32(pg_atomic_fetch_add_u32(&var, PG_INT16_MIN - 1),
     733 ECB             :                   PG_INT16_MAX);
     734 CBC           3 :     pg_atomic_fetch_add_u32(&var, 1);   /* top up to UINT_MAX */
     735 GIC           3 :     EXPECT_EQ_U32(pg_atomic_read_u32(&var), UINT_MAX);
     736 CBC           3 :     EXPECT_EQ_U32(pg_atomic_fetch_sub_u32(&var, INT_MAX), UINT_MAX);
     737 GIC           3 :     EXPECT_EQ_U32(pg_atomic_read_u32(&var), (uint32) INT_MAX + 1);
     738 CBC           3 :     EXPECT_EQ_U32(pg_atomic_sub_fetch_u32(&var, INT_MAX), 1);
     739 GIC           3 :     pg_atomic_sub_fetch_u32(&var, 1);
     740 CBC           3 :     expected = PG_INT16_MAX;
     741               3 :     EXPECT_TRUE(!pg_atomic_compare_exchange_u32(&var, &expected, 1));
     742               3 :     expected = PG_INT16_MAX + 1;
     743               3 :     EXPECT_TRUE(!pg_atomic_compare_exchange_u32(&var, &expected, 1));
     744               3 :     expected = PG_INT16_MIN;
     745               3 :     EXPECT_TRUE(!pg_atomic_compare_exchange_u32(&var, &expected, 1));
     746               3 :     expected = PG_INT16_MIN - 1;
     747               3 :     EXPECT_TRUE(!pg_atomic_compare_exchange_u32(&var, &expected, 1));
     748 ECB             : 
     749                 :     /* fail exchange because of old expected */
     750 CBC           3 :     expected = 10;
     751               3 :     EXPECT_TRUE(!pg_atomic_compare_exchange_u32(&var, &expected, 1));
     752 ECB             : 
     753                 :     /* CAS is allowed to fail due to interrupts, try a couple of times */
     754 GIC           6 :     for (i = 0; i < 1000; i++)
     755                 :     {
     756 CBC           6 :         expected = 0;
     757               6 :         if (!pg_atomic_compare_exchange_u32(&var, &expected, 1))
     758 GIC           3 :             break;
     759                 :     }
     760 CBC           3 :     if (i == 1000)
     761 UIC           0 :         elog(ERROR, "atomic_compare_exchange_u32() never succeeded");
     762 CBC           3 :     EXPECT_EQ_U32(pg_atomic_read_u32(&var), 1);
     763               3 :     pg_atomic_write_u32(&var, 0);
     764 ECB             : 
     765                 :     /* try setting flagbits */
     766 CBC           3 :     EXPECT_TRUE(!(pg_atomic_fetch_or_u32(&var, 1) & 1));
     767 GBC           3 :     EXPECT_TRUE(pg_atomic_fetch_or_u32(&var, 2) & 1);
     768 CBC           3 :     EXPECT_EQ_U32(pg_atomic_read_u32(&var), 3);
     769 ECB             :     /* try clearing flagbits */
     770 GIC           3 :     EXPECT_EQ_U32(pg_atomic_fetch_and_u32(&var, ~2) & 3, 3);
     771               3 :     EXPECT_EQ_U32(pg_atomic_fetch_and_u32(&var, ~1), 1);
     772 ECB             :     /* no bits set anymore */
     773 CBC           3 :     EXPECT_EQ_U32(pg_atomic_fetch_and_u32(&var, ~0), 0);
     774               3 : }
     775                 : 
     776 ECB             : static void
     777 CBC           3 : test_atomic_uint64(void)
     778                 : {
     779 ECB             :     pg_atomic_uint64 var;
     780                 :     uint64      expected;
     781                 :     int         i;
     782                 : 
     783 CBC           3 :     pg_atomic_init_u64(&var, 0);
     784 GIC           3 :     EXPECT_EQ_U64(pg_atomic_read_u64(&var), 0);
     785               3 :     pg_atomic_write_u64(&var, 3);
     786               3 :     EXPECT_EQ_U64(pg_atomic_read_u64(&var), 3);
     787               3 :     EXPECT_EQ_U64(pg_atomic_fetch_add_u64(&var, pg_atomic_read_u64(&var) - 2),
     788                 :                   3);
     789 CBC           3 :     EXPECT_EQ_U64(pg_atomic_fetch_sub_u64(&var, 1), 4);
     790               3 :     EXPECT_EQ_U64(pg_atomic_sub_fetch_u64(&var, 3), 0);
     791               3 :     EXPECT_EQ_U64(pg_atomic_add_fetch_u64(&var, 10), 10);
     792               3 :     EXPECT_EQ_U64(pg_atomic_exchange_u64(&var, 5), 10);
     793               3 :     EXPECT_EQ_U64(pg_atomic_exchange_u64(&var, 0), 5);
     794                 : 
     795 ECB             :     /* fail exchange because of old expected */
     796 CBC           3 :     expected = 10;
     797               3 :     EXPECT_TRUE(!pg_atomic_compare_exchange_u64(&var, &expected, 1));
     798 ECB             : 
     799                 :     /* CAS is allowed to fail due to interrupts, try a couple of times */
     800 GIC           6 :     for (i = 0; i < 100; i++)
     801                 :     {
     802 CBC           6 :         expected = 0;
     803               6 :         if (!pg_atomic_compare_exchange_u64(&var, &expected, 1))
     804 GIC           3 :             break;
     805                 :     }
     806 CBC           3 :     if (i == 100)
     807 UIC           0 :         elog(ERROR, "atomic_compare_exchange_u64() never succeeded");
     808 CBC           3 :     EXPECT_EQ_U64(pg_atomic_read_u64(&var), 1);
     809 ECB             : 
     810 CBC           3 :     pg_atomic_write_u64(&var, 0);
     811                 : 
     812 ECB             :     /* try setting flagbits */
     813 GBC           3 :     EXPECT_TRUE(!(pg_atomic_fetch_or_u64(&var, 1) & 1));
     814 CBC           3 :     EXPECT_TRUE(pg_atomic_fetch_or_u64(&var, 2) & 1);
     815 GIC           3 :     EXPECT_EQ_U64(pg_atomic_read_u64(&var), 3);
     816 ECB             :     /* try clearing flagbits */
     817 GIC           3 :     EXPECT_EQ_U64((pg_atomic_fetch_and_u64(&var, ~2) & 3), 3);
     818               3 :     EXPECT_EQ_U64(pg_atomic_fetch_and_u64(&var, ~1), 1);
     819 ECB             :     /* no bits set anymore */
     820 CBC           3 :     EXPECT_EQ_U64(pg_atomic_fetch_and_u64(&var, ~0), 0);
     821               3 : }
     822                 : 
     823 ECB             : /*
     824                 :  * Perform, fairly minimal, testing of the spinlock implementation.
     825                 :  *
     826                 :  * It's likely worth expanding these to actually test concurrency etc, but
     827                 :  * having some regularly run tests is better than none.
     828                 :  */
     829                 : static void
     830 GIC           3 : test_spinlock(void)
     831                 : {
     832                 :     /*
     833                 :      * Basic tests for spinlocks, as well as the underlying operations.
     834                 :      *
     835                 :      * We embed the spinlock in a struct with other members to test that the
     836 ECB             :      * spinlock operations don't perform too wide writes.
     837                 :      */
     838                 :     {
     839                 :         struct test_lock_struct
     840                 :         {
     841                 :             char        data_before[4];
     842                 :             slock_t     lock;
     843                 :             char        data_after[4];
     844                 :         }           struct_w_lock;
     845                 : 
     846 GIC           3 :         memcpy(struct_w_lock.data_before, "abcd", 4);
     847               3 :         memcpy(struct_w_lock.data_after, "ef12", 4);
     848                 : 
     849                 :         /* test basic operations via the SpinLock* API */
     850               3 :         SpinLockInit(&struct_w_lock.lock);
     851               3 :         SpinLockAcquire(&struct_w_lock.lock);
     852 CBC           3 :         SpinLockRelease(&struct_w_lock.lock);
     853 ECB             : 
     854                 :         /* test basic operations via underlying S_* API */
     855 GIC           3 :         S_INIT_LOCK(&struct_w_lock.lock);
     856 CBC           3 :         S_LOCK(&struct_w_lock.lock);
     857               3 :         S_UNLOCK(&struct_w_lock.lock);
     858 ECB             : 
     859                 :         /* and that "contended" acquisition works */
     860 GIC           3 :         s_lock(&struct_w_lock.lock, "testfile", 17, "testfunc");
     861 CBC           3 :         S_UNLOCK(&struct_w_lock.lock);
     862 ECB             : 
     863                 :         /*
     864                 :          * Check, using TAS directly, that a single spin cycle doesn't block
     865                 :          * when acquiring an already acquired lock.
     866                 :          */
     867                 : #ifdef TAS
     868 GIC           3 :         S_LOCK(&struct_w_lock.lock);
     869                 : 
     870               3 :         if (!TAS(&struct_w_lock.lock))
     871 UIC           0 :             elog(ERROR, "acquired already held spinlock");
     872                 : 
     873                 : #ifdef TAS_SPIN
     874 CBC           3 :         if (!TAS_SPIN(&struct_w_lock.lock))
     875 UIC           0 :             elog(ERROR, "acquired already held spinlock");
     876 ECB             : #endif                          /* defined(TAS_SPIN) */
     877 EUB             : 
     878 GIC           3 :         S_UNLOCK(&struct_w_lock.lock);
     879                 : #endif                          /* defined(TAS) */
     880 ECB             : 
     881 EUB             :         /*
     882                 :          * Verify that after all of this the non-lock contents are still
     883                 :          * correct.
     884 ECB             :          */
     885 GIC           3 :         if (memcmp(struct_w_lock.data_before, "abcd", 4) != 0)
     886 UIC           0 :             elog(ERROR, "padding before spinlock modified");
     887 GIC           3 :         if (memcmp(struct_w_lock.data_after, "ef12", 4) != 0)
     888 UIC           0 :             elog(ERROR, "padding after spinlock modified");
     889                 :     }
     890                 : 
     891 ECB             :     /*
     892 EUB             :      * Ensure that allocating more than INT32_MAX emulated spinlocks works.
     893 ECB             :      * That's interesting because the spinlock emulation uses a 32bit integer
     894 EUB             :      * to map spinlocks onto semaphores. There've been bugs...
     895                 :      */
     896                 : #ifndef HAVE_SPINLOCKS
     897                 :     {
     898                 :         /*
     899                 :          * Initialize enough spinlocks to advance counter close to wraparound.
     900                 :          * It's too expensive to perform acquire/release for each, as those
     901                 :          * may be syscalls when the spinlock emulation is used (and even just
     902                 :          * atomic TAS would be expensive).
     903                 :          */
     904                 :         for (uint32 i = 0; i < INT32_MAX - 100000; i++)
     905                 :         {
     906                 :             slock_t     lock;
     907                 : 
     908                 :             SpinLockInit(&lock);
     909                 :         }
     910                 : 
     911                 :         for (uint32 i = 0; i < 200000; i++)
     912                 :         {
     913                 :             slock_t     lock;
     914                 : 
     915                 :             SpinLockInit(&lock);
     916                 : 
     917                 :             SpinLockAcquire(&lock);
     918                 :             SpinLockRelease(&lock);
     919                 :             SpinLockAcquire(&lock);
     920                 :             SpinLockRelease(&lock);
     921                 :         }
     922                 :     }
     923                 : #endif
     924 GIC           3 : }
     925                 : 
     926                 : /*
     927                 :  * Verify that performing atomic ops inside a spinlock isn't a
     928                 :  * problem. Realistically that's only going to be a problem when both
     929                 :  * --disable-spinlocks and --disable-atomics are used, but it's cheap enough
     930 ECB             :  * to just always test.
     931                 :  *
     932                 :  * The test works by initializing enough atomics that we'd conflict if there
     933                 :  * were an overlap between a spinlock and an atomic by holding a spinlock
     934                 :  * while manipulating more than NUM_SPINLOCK_SEMAPHORES atomics.
     935                 :  *
     936                 :  * NUM_TEST_ATOMICS doesn't really need to be more than
     937                 :  * NUM_SPINLOCK_SEMAPHORES, but it seems better to test a bit more
     938                 :  * extensively.
     939                 :  */
     940                 : static void
     941 GIC           3 : test_atomic_spin_nest(void)
     942                 : {
     943                 :     slock_t     lock;
     944                 : #define NUM_TEST_ATOMICS (NUM_SPINLOCK_SEMAPHORES + NUM_ATOMICS_SEMAPHORES + 27)
     945                 :     pg_atomic_uint32 atomics32[NUM_TEST_ATOMICS];
     946                 :     pg_atomic_uint64 atomics64[NUM_TEST_ATOMICS];
     947 ECB             : 
     948 GIC           3 :     SpinLockInit(&lock);
     949                 : 
     950             660 :     for (int i = 0; i < NUM_TEST_ATOMICS; i++)
     951                 :     {
     952             657 :         pg_atomic_init_u32(&atomics32[i], 0);
     953             657 :         pg_atomic_init_u64(&atomics64[i], 0);
     954 ECB             :     }
     955                 : 
     956                 :     /* just so it's not all zeroes */
     957 GIC         660 :     for (int i = 0; i < NUM_TEST_ATOMICS; i++)
     958 ECB             :     {
     959 CBC         657 :         EXPECT_EQ_U32(pg_atomic_fetch_add_u32(&atomics32[i], i), 0);
     960 GIC         657 :         EXPECT_EQ_U64(pg_atomic_fetch_add_u64(&atomics64[i], i), 0);
     961                 :     }
     962                 : 
     963 ECB             :     /* test whether we can do atomic op with lock held */
     964 GIC           3 :     SpinLockAcquire(&lock);
     965 CBC         660 :     for (int i = 0; i < NUM_TEST_ATOMICS; i++)
     966 ECB             :     {
     967 GIC         657 :         EXPECT_EQ_U32(pg_atomic_fetch_sub_u32(&atomics32[i], i), i);
     968             657 :         EXPECT_EQ_U32(pg_atomic_read_u32(&atomics32[i]), 0);
     969             657 :         EXPECT_EQ_U64(pg_atomic_fetch_sub_u64(&atomics64[i], i), i);
     970 CBC         657 :         EXPECT_EQ_U64(pg_atomic_read_u64(&atomics64[i]), 0);
     971 ECB             :     }
     972 GIC           3 :     SpinLockRelease(&lock);
     973 CBC           3 : }
     974 ECB             : #undef NUM_TEST_ATOMICS
     975                 : 
     976 CBC           7 : PG_FUNCTION_INFO_V1(test_atomic_ops);
     977                 : Datum
     978               3 : test_atomic_ops(PG_FUNCTION_ARGS)
     979 ECB             : {
     980 GIC           3 :     test_atomic_flag();
     981                 : 
     982 CBC           3 :     test_atomic_uint32();
     983                 : 
     984               3 :     test_atomic_uint64();
     985                 : 
     986 ECB             :     /*
     987                 :      * Arguably this shouldn't be tested as part of this function, but it's
     988                 :      * closely enough related that that seems ok for now.
     989                 :      */
     990 CBC           3 :     test_spinlock();
     991                 : 
     992 GIC           3 :     test_atomic_spin_nest();
     993                 : 
     994               3 :     PG_RETURN_BOOL(true);
     995                 : }
     996 ECB             : 
     997 GIC           4 : PG_FUNCTION_INFO_V1(test_fdw_handler);
     998 ECB             : Datum
     999 UIC           0 : test_fdw_handler(PG_FUNCTION_ARGS)
    1000 ECB             : {
    1001 UIC           0 :     elog(ERROR, "test_fdw_handler is not implemented");
    1002                 :     PG_RETURN_NULL();
    1003 ECB             : }
    1004                 : 
    1005 GBC           7 : PG_FUNCTION_INFO_V1(test_support_func);
    1006                 : Datum
    1007              30 : test_support_func(PG_FUNCTION_ARGS)
    1008                 : {
    1009 GIC          30 :     Node       *rawreq = (Node *) PG_GETARG_POINTER(0);
    1010              30 :     Node       *ret = NULL;
    1011 ECB             : 
    1012 GIC          30 :     if (IsA(rawreq, SupportRequestSelectivity))
    1013 ECB             :     {
    1014                 :         /*
    1015                 :          * Assume that the target is int4eq; that's safe as long as we don't
    1016                 :          * attach this to any other boolean-returning function.
    1017                 :          */
    1018 CBC           3 :         SupportRequestSelectivity *req = (SupportRequestSelectivity *) rawreq;
    1019                 :         Selectivity s1;
    1020                 : 
    1021 GIC           3 :         if (req->is_join)
    1022 UIC           0 :             s1 = join_selectivity(req->root, Int4EqualOperator,
    1023                 :                                   req->args,
    1024 ECB             :                                   req->inputcollid,
    1025                 :                                   req->jointype,
    1026 UIC           0 :                                   req->sjinfo);
    1027 ECB             :         else
    1028 GBC           3 :             s1 = restriction_selectivity(req->root, Int4EqualOperator,
    1029                 :                                          req->args,
    1030                 :                                          req->inputcollid,
    1031                 :                                          req->varRelid);
    1032 EUB             : 
    1033 GIC           3 :         req->selectivity = s1;
    1034 CBC           3 :         ret = (Node *) req;
    1035                 :     }
    1036                 : 
    1037 GIC          30 :     if (IsA(rawreq, SupportRequestCost))
    1038                 :     {
    1039 ECB             :         /* Provide some generic estimate */
    1040 CBC           9 :         SupportRequestCost *req = (SupportRequestCost *) rawreq;
    1041                 : 
    1042 GIC           9 :         req->startup = 0;
    1043 CBC           9 :         req->per_tuple = 2 * cpu_operator_cost;
    1044 GIC           9 :         ret = (Node *) req;
    1045                 :     }
    1046 ECB             : 
    1047 GIC          30 :     if (IsA(rawreq, SupportRequestRows))
    1048 ECB             :     {
    1049                 :         /*
    1050                 :          * Assume that the target is generate_series_int4; that's safe as long
    1051                 :          * as we don't attach this to any other set-returning function.
    1052                 :          */
    1053 CBC           6 :         SupportRequestRows *req = (SupportRequestRows *) rawreq;
    1054                 : 
    1055 GIC           6 :         if (req->node && IsA(req->node, FuncExpr))    /* be paranoid */
    1056                 :         {
    1057               6 :             List       *args = ((FuncExpr *) req->node)->args;
    1058               6 :             Node       *arg1 = linitial(args);
    1059 CBC           6 :             Node       *arg2 = lsecond(args);
    1060                 : 
    1061               6 :             if (IsA(arg1, Const) &&
    1062 GIC           6 :                 !((Const *) arg1)->constisnull &&
    1063 CBC           6 :                 IsA(arg2, Const) &&
    1064               6 :                 !((Const *) arg2)->constisnull)
    1065 ECB             :             {
    1066 GIC           6 :                 int32       val1 = DatumGetInt32(((Const *) arg1)->constvalue);
    1067 CBC           6 :                 int32       val2 = DatumGetInt32(((Const *) arg2)->constvalue);
    1068 ECB             : 
    1069 CBC           6 :                 req->rows = val2 - val1 + 1;
    1070               6 :                 ret = (Node *) req;
    1071                 :             }
    1072 ECB             :         }
    1073                 :     }
    1074                 : 
    1075 CBC          30 :     PG_RETURN_POINTER(ret);
    1076 ECB             : }
    1077                 : 
    1078 GIC           4 : PG_FUNCTION_INFO_V1(test_opclass_options_func);
    1079                 : Datum
    1080 UIC           0 : test_opclass_options_func(PG_FUNCTION_ARGS)
    1081 ECB             : {
    1082 UIC           0 :     PG_RETURN_NULL();
    1083                 : }
    1084 ECB             : 
    1085                 : /*
    1086 EUB             :  * Call an encoding conversion or verification function.
    1087                 :  *
    1088                 :  * Arguments:
    1089                 :  *  string    bytea -- string to convert
    1090                 :  *  src_enc   name  -- source encoding
    1091                 :  *  dest_enc  name  -- destination encoding
    1092                 :  *  noError   bool  -- if set, don't ereport() on invalid or untranslatable
    1093                 :  *                     input
    1094                 :  *
    1095                 :  * Result is a tuple with two attributes:
    1096                 :  *  int4    -- number of input bytes successfully converted
    1097                 :  *  bytea   -- converted string
    1098                 :  */
    1099 GIC           7 : PG_FUNCTION_INFO_V1(test_enc_conversion);
    1100                 : Datum
    1101            4899 : test_enc_conversion(PG_FUNCTION_ARGS)
    1102                 : {
    1103            4899 :     bytea      *string = PG_GETARG_BYTEA_PP(0);
    1104            4899 :     char       *src_encoding_name = NameStr(*PG_GETARG_NAME(1));
    1105 CBC        4899 :     int         src_encoding = pg_char_to_encoding(src_encoding_name);
    1106 GIC        4899 :     char       *dest_encoding_name = NameStr(*PG_GETARG_NAME(2));
    1107 CBC        4899 :     int         dest_encoding = pg_char_to_encoding(dest_encoding_name);
    1108 GIC        4899 :     bool        noError = PG_GETARG_BOOL(3);
    1109 ECB             :     TupleDesc   tupdesc;
    1110                 :     char       *src;
    1111                 :     char       *dst;
    1112                 :     bytea      *retval;
    1113                 :     Size        srclen;
    1114                 :     Size        dstsize;
    1115                 :     Oid         proc;
    1116                 :     int         convertedbytes;
    1117                 :     int         dstlen;
    1118                 :     Datum       values[2];
    1119 GNC        4899 :     bool        nulls[2] = {0};
    1120                 :     HeapTuple   tuple;
    1121                 : 
    1122 GIC        4899 :     if (src_encoding < 0)
    1123 UIC           0 :         ereport(ERROR,
    1124                 :                 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
    1125 ECB             :                  errmsg("invalid source encoding name \"%s\"",
    1126                 :                         src_encoding_name)));
    1127 GIC        4899 :     if (dest_encoding < 0)
    1128 LBC           0 :         ereport(ERROR,
    1129 EUB             :                 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
    1130                 :                  errmsg("invalid destination encoding name \"%s\"",
    1131                 :                         dest_encoding_name)));
    1132                 : 
    1133 ECB             :     /* Build a tuple descriptor for our result type */
    1134 GBC        4899 :     if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE)
    1135 UIC           0 :         elog(ERROR, "return type must be a row type");
    1136 GIC        4899 :     tupdesc = BlessTupleDesc(tupdesc);
    1137                 : 
    1138            4899 :     srclen = VARSIZE_ANY_EXHDR(string);
    1139            4899 :     src = VARDATA_ANY(string);
    1140 ECB             : 
    1141 GBC        4899 :     if (src_encoding == dest_encoding)
    1142 ECB             :     {
    1143                 :         /* just check that the source string is valid */
    1144                 :         int         oklen;
    1145                 : 
    1146 GIC        2046 :         oklen = pg_encoding_verifymbstr(src_encoding, src, srclen);
    1147 ECB             : 
    1148 GIC        2046 :         if (oklen == srclen)
    1149                 :         {
    1150             516 :             convertedbytes = oklen;
    1151             516 :             retval = string;
    1152 ECB             :         }
    1153 GIC        1530 :         else if (!noError)
    1154 ECB             :         {
    1155 GIC         765 :             report_invalid_encoding(src_encoding, src + oklen, srclen - oklen);
    1156 ECB             :         }
    1157                 :         else
    1158                 :         {
    1159                 :             /*
    1160                 :              * build bytea data type structure.
    1161                 :              */
    1162 GIC         765 :             Assert(oklen < srclen);
    1163             765 :             convertedbytes = oklen;
    1164             765 :             retval = (bytea *) palloc(oklen + VARHDRSZ);
    1165             765 :             SET_VARSIZE(retval, oklen + VARHDRSZ);
    1166             765 :             memcpy(VARDATA(retval), src, oklen);
    1167                 :         }
    1168 ECB             :     }
    1169                 :     else
    1170                 :     {
    1171 CBC        2853 :         proc = FindDefaultConversionProc(src_encoding, dest_encoding);
    1172            2853 :         if (!OidIsValid(proc))
    1173 UIC           0 :             ereport(ERROR,
    1174                 :                     (errcode(ERRCODE_UNDEFINED_FUNCTION),
    1175                 :                      errmsg("default conversion function for encoding \"%s\" to \"%s\" does not exist",
    1176                 :                             pg_encoding_to_char(src_encoding),
    1177 ECB             :                             pg_encoding_to_char(dest_encoding))));
    1178                 : 
    1179 GBC        2853 :         if (srclen >= (MaxAllocSize / (Size) MAX_CONVERSION_GROWTH))
    1180 UIC           0 :             ereport(ERROR,
    1181                 :                     (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
    1182                 :                      errmsg("out of memory"),
    1183                 :                      errdetail("String of %d bytes is too long for encoding conversion.",
    1184                 :                                (int) srclen)));
    1185 ECB             : 
    1186 GBC        2853 :         dstsize = (Size) srclen * MAX_CONVERSION_GROWTH + 1;
    1187 GIC        2853 :         dst = MemoryContextAlloc(CurrentMemoryContext, dstsize);
    1188                 : 
    1189                 :         /* perform conversion */
    1190            2853 :         convertedbytes = pg_do_encoding_conversion_buf(proc,
    1191                 :                                                        src_encoding,
    1192 ECB             :                                                        dest_encoding,
    1193                 :                                                        (unsigned char *) src, srclen,
    1194                 :                                                        (unsigned char *) dst, dstsize,
    1195                 :                                                        noError);
    1196 CBC        1683 :         dstlen = strlen(dst);
    1197                 : 
    1198                 :         /*
    1199                 :          * build bytea data type structure.
    1200                 :          */
    1201 GIC        1683 :         retval = (bytea *) palloc(dstlen + VARHDRSZ);
    1202 CBC        1683 :         SET_VARSIZE(retval, dstlen + VARHDRSZ);
    1203 GIC        1683 :         memcpy(VARDATA(retval), dst, dstlen);
    1204                 : 
    1205            1683 :         pfree(dst);
    1206                 :     }
    1207 ECB             : 
    1208 CBC        2964 :     values[0] = Int32GetDatum(convertedbytes);
    1209 GIC        2964 :     values[1] = PointerGetDatum(retval);
    1210 CBC        2964 :     tuple = heap_form_tuple(tupdesc, values, nulls);
    1211                 : 
    1212 GIC        2964 :     PG_RETURN_DATUM(HeapTupleGetDatum(tuple));
    1213 ECB             : }
    1214                 : 
    1215                 : /* Provide SQL access to IsBinaryCoercible() */
    1216 GIC           7 : PG_FUNCTION_INFO_V1(binary_coercible);
    1217 ECB             : Datum
    1218 GIC       18660 : binary_coercible(PG_FUNCTION_ARGS)
    1219                 : {
    1220           18660 :     Oid         srctype = PG_GETARG_OID(0);
    1221 CBC       18660 :     Oid         targettype = PG_GETARG_OID(1);
    1222                 : 
    1223           18660 :     PG_RETURN_BOOL(IsBinaryCoercible(srctype, targettype));
    1224                 : }
    1225 ECB             : 
    1226                 : /*
    1227                 :  * Return the length of the portion of a tuple consisting of the given array
    1228                 :  * of data types.  The input data types must be fixed-length data types.
    1229                 :  */
    1230 GIC           7 : PG_FUNCTION_INFO_V1(get_columns_length);
    1231                 : Datum
    1232              18 : get_columns_length(PG_FUNCTION_ARGS)
    1233                 : {
    1234              18 :     ArrayType  *ta = PG_GETARG_ARRAYTYPE_P(0);
    1235 ECB             :     Oid        *type_oids;
    1236                 :     int         ntypes;
    1237 CBC          18 :     int         column_offset = 0;
    1238                 : 
    1239              18 :     if (ARR_HASNULL(ta) && array_contains_nulls(ta))
    1240 UIC           0 :         elog(ERROR, "argument must not contain nulls");
    1241                 : 
    1242 CBC          18 :     if (ARR_NDIM(ta) > 1)
    1243 UIC           0 :         elog(ERROR, "argument must be empty or one-dimensional array");
    1244 ECB             : 
    1245 GBC          18 :     type_oids = (Oid *) ARR_DATA_PTR(ta);
    1246 GIC          18 :     ntypes = ArrayGetNItems(ARR_NDIM(ta), ARR_DIMS(ta));
    1247 CBC          84 :     for (int i = 0; i < ntypes; i++)
    1248 EUB             :     {
    1249 GIC          66 :         Oid         typeoid = type_oids[i];
    1250 ECB             :         int16       typlen;
    1251                 :         bool        typbyval;
    1252                 :         char        typalign;
    1253                 : 
    1254 CBC          66 :         get_typlenbyvalalign(typeoid, &typlen, &typbyval, &typalign);
    1255                 : 
    1256                 :         /* the data type must be fixed-length */
    1257 GIC          66 :         if (typlen < 0)
    1258 UIC           0 :             elog(ERROR, "type %u is not fixed-length data type", typeoid);
    1259 ECB             : 
    1260 GIC          66 :         column_offset = att_align_nominal(column_offset + typlen, typalign);
    1261                 :     }
    1262 ECB             : 
    1263 GBC          18 :     PG_RETURN_INT32(column_offset);
    1264                 : }
        

Generated by: LCOV version v1.16-55-g56c0a2a