LCOV - differential code coverage report
Current view: top level - src/include/access - htup_details.h (source / functions) Coverage Total Hit UIC GIC CBC EUB ECB
Current: Differential Code Coverage HEAD vs 15 Lines: 94.4 % 18 17 1 11 6 1 11
Current Date: 2023-04-08 15:15:32 Functions: 100.0 % 2 2 2 2
Baseline: 15
Baseline Date: 2023-04-08 15:09:40
Legend: Lines: hit not hit

           TLA  Line data    Source code
       1                 : /*-------------------------------------------------------------------------
       2                 :  *
       3                 :  * htup_details.h
       4                 :  *    POSTGRES heap tuple header definitions.
       5                 :  *
       6                 :  *
       7                 :  * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
       8                 :  * Portions Copyright (c) 1994, Regents of the University of California
       9                 :  *
      10                 :  * src/include/access/htup_details.h
      11                 :  *
      12                 :  *-------------------------------------------------------------------------
      13                 :  */
      14                 : #ifndef HTUP_DETAILS_H
      15                 : #define HTUP_DETAILS_H
      16                 : 
      17                 : #include "access/htup.h"
      18                 : #include "access/transam.h"
      19                 : #include "access/tupdesc.h"
      20                 : #include "access/tupmacs.h"
      21                 : #include "storage/bufpage.h"
      22                 : #include "varatt.h"
      23                 : 
      24                 : /*
      25                 :  * MaxTupleAttributeNumber limits the number of (user) columns in a tuple.
      26                 :  * The key limit on this value is that the size of the fixed overhead for
      27                 :  * a tuple, plus the size of the null-values bitmap (at 1 bit per column),
      28                 :  * plus MAXALIGN alignment, must fit into t_hoff which is uint8.  On most
      29                 :  * machines the upper limit without making t_hoff wider would be a little
      30                 :  * over 1700.  We use round numbers here and for MaxHeapAttributeNumber
      31                 :  * so that alterations in HeapTupleHeaderData layout won't change the
      32                 :  * supported max number of columns.
      33                 :  */
      34                 : #define MaxTupleAttributeNumber 1664    /* 8 * 208 */
      35                 : 
      36                 : /*
      37                 :  * MaxHeapAttributeNumber limits the number of (user) columns in a table.
      38                 :  * This should be somewhat less than MaxTupleAttributeNumber.  It must be
      39                 :  * at least one less, else we will fail to do UPDATEs on a maximal-width
      40                 :  * table (because UPDATE has to form working tuples that include CTID).
      41                 :  * In practice we want some additional daylight so that we can gracefully
      42                 :  * support operations that add hidden "resjunk" columns, for example
      43                 :  * SELECT * FROM wide_table ORDER BY foo, bar, baz.
      44                 :  * In any case, depending on column data types you will likely be running
      45                 :  * into the disk-block-based limit on overall tuple size if you have more
      46                 :  * than a thousand or so columns.  TOAST won't help.
      47                 :  */
      48                 : #define MaxHeapAttributeNumber  1600    /* 8 * 200 */
      49                 : 
      50                 : /*
      51                 :  * Heap tuple header.  To avoid wasting space, the fields should be
      52                 :  * laid out in such a way as to avoid structure padding.
      53                 :  *
      54                 :  * Datums of composite types (row types) share the same general structure
      55                 :  * as on-disk tuples, so that the same routines can be used to build and
      56                 :  * examine them.  However the requirements are slightly different: a Datum
      57                 :  * does not need any transaction visibility information, and it does need
      58                 :  * a length word and some embedded type information.  We can achieve this
      59                 :  * by overlaying the xmin/cmin/xmax/cmax/xvac fields of a heap tuple
      60                 :  * with the fields needed in the Datum case.  Typically, all tuples built
      61                 :  * in-memory will be initialized with the Datum fields; but when a tuple is
      62                 :  * about to be inserted in a table, the transaction fields will be filled,
      63                 :  * overwriting the datum fields.
      64                 :  *
      65                 :  * The overall structure of a heap tuple looks like:
      66                 :  *          fixed fields (HeapTupleHeaderData struct)
      67                 :  *          nulls bitmap (if HEAP_HASNULL is set in t_infomask)
      68                 :  *          alignment padding (as needed to make user data MAXALIGN'd)
      69                 :  *          object ID (if HEAP_HASOID_OLD is set in t_infomask, not created
      70                 :  *          anymore)
      71                 :  *          user data fields
      72                 :  *
      73                 :  * We store five "virtual" fields Xmin, Cmin, Xmax, Cmax, and Xvac in three
      74                 :  * physical fields.  Xmin and Xmax are always really stored, but Cmin, Cmax
      75                 :  * and Xvac share a field.  This works because we know that Cmin and Cmax
      76                 :  * are only interesting for the lifetime of the inserting and deleting
      77                 :  * transaction respectively.  If a tuple is inserted and deleted in the same
      78                 :  * transaction, we store a "combo" command id that can be mapped to the real
      79                 :  * cmin and cmax, but only by use of local state within the originating
      80                 :  * backend.  See combocid.c for more details.  Meanwhile, Xvac is only set by
      81                 :  * old-style VACUUM FULL, which does not have any command sub-structure and so
      82                 :  * does not need either Cmin or Cmax.  (This requires that old-style VACUUM
      83                 :  * FULL never try to move a tuple whose Cmin or Cmax is still interesting,
      84                 :  * ie, an insert-in-progress or delete-in-progress tuple.)
      85                 :  *
      86                 :  * A word about t_ctid: whenever a new tuple is stored on disk, its t_ctid
      87                 :  * is initialized with its own TID (location).  If the tuple is ever updated,
      88                 :  * its t_ctid is changed to point to the replacement version of the tuple.  Or
      89                 :  * if the tuple is moved from one partition to another, due to an update of
      90                 :  * the partition key, t_ctid is set to a special value to indicate that
      91                 :  * (see ItemPointerSetMovedPartitions).  Thus, a tuple is the latest version
      92                 :  * of its row iff XMAX is invalid or
      93                 :  * t_ctid points to itself (in which case, if XMAX is valid, the tuple is
      94                 :  * either locked or deleted).  One can follow the chain of t_ctid links
      95                 :  * to find the newest version of the row, unless it was moved to a different
      96                 :  * partition.  Beware however that VACUUM might
      97                 :  * erase the pointed-to (newer) tuple before erasing the pointing (older)
      98                 :  * tuple.  Hence, when following a t_ctid link, it is necessary to check
      99                 :  * to see if the referenced slot is empty or contains an unrelated tuple.
     100                 :  * Check that the referenced tuple has XMIN equal to the referencing tuple's
     101                 :  * XMAX to verify that it is actually the descendant version and not an
     102                 :  * unrelated tuple stored into a slot recently freed by VACUUM.  If either
     103                 :  * check fails, one may assume that there is no live descendant version.
     104                 :  *
     105                 :  * t_ctid is sometimes used to store a speculative insertion token, instead
     106                 :  * of a real TID.  A speculative token is set on a tuple that's being
     107                 :  * inserted, until the inserter is sure that it wants to go ahead with the
     108                 :  * insertion.  Hence a token should only be seen on a tuple with an XMAX
     109                 :  * that's still in-progress, or invalid/aborted.  The token is replaced with
     110                 :  * the tuple's real TID when the insertion is confirmed.  One should never
     111                 :  * see a speculative insertion token while following a chain of t_ctid links,
     112                 :  * because they are not used on updates, only insertions.
     113                 :  *
     114                 :  * Following the fixed header fields, the nulls bitmap is stored (beginning
     115                 :  * at t_bits).  The bitmap is *not* stored if t_infomask shows that there
     116                 :  * are no nulls in the tuple.  If an OID field is present (as indicated by
     117                 :  * t_infomask), then it is stored just before the user data, which begins at
     118                 :  * the offset shown by t_hoff.  Note that t_hoff must be a multiple of
     119                 :  * MAXALIGN.
     120                 :  */
     121                 : 
     122                 : typedef struct HeapTupleFields
     123                 : {
     124                 :     TransactionId t_xmin;       /* inserting xact ID */
     125                 :     TransactionId t_xmax;       /* deleting or locking xact ID */
     126                 : 
     127                 :     union
     128                 :     {
     129                 :         CommandId   t_cid;      /* inserting or deleting command ID, or both */
     130                 :         TransactionId t_xvac;   /* old-style VACUUM FULL xact ID */
     131                 :     }           t_field3;
     132                 : } HeapTupleFields;
     133                 : 
     134                 : typedef struct DatumTupleFields
     135                 : {
     136                 :     int32       datum_len_;     /* varlena header (do not touch directly!) */
     137                 : 
     138                 :     int32       datum_typmod;   /* -1, or identifier of a record type */
     139                 : 
     140                 :     Oid         datum_typeid;   /* composite type OID, or RECORDOID */
     141                 : 
     142                 :     /*
     143                 :      * datum_typeid cannot be a domain over composite, only plain composite,
     144                 :      * even if the datum is meant as a value of a domain-over-composite type.
     145                 :      * This is in line with the general principle that CoerceToDomain does not
     146                 :      * change the physical representation of the base type value.
     147                 :      *
     148                 :      * Note: field ordering is chosen with thought that Oid might someday
     149                 :      * widen to 64 bits.
     150                 :      */
     151                 : } DatumTupleFields;
     152                 : 
     153                 : struct HeapTupleHeaderData
     154                 : {
     155                 :     union
     156                 :     {
     157                 :         HeapTupleFields t_heap;
     158                 :         DatumTupleFields t_datum;
     159                 :     }           t_choice;
     160                 : 
     161                 :     ItemPointerData t_ctid;     /* current TID of this or newer tuple (or a
     162                 :                                  * speculative insertion token) */
     163                 : 
     164                 :     /* Fields below here must match MinimalTupleData! */
     165                 : 
     166                 : #define FIELDNO_HEAPTUPLEHEADERDATA_INFOMASK2 2
     167                 :     uint16      t_infomask2;    /* number of attributes + various flags */
     168                 : 
     169                 : #define FIELDNO_HEAPTUPLEHEADERDATA_INFOMASK 3
     170                 :     uint16      t_infomask;     /* various flag bits, see below */
     171                 : 
     172                 : #define FIELDNO_HEAPTUPLEHEADERDATA_HOFF 4
     173                 :     uint8       t_hoff;         /* sizeof header incl. bitmap, padding */
     174                 : 
     175                 :     /* ^ - 23 bytes - ^ */
     176                 : 
     177                 : #define FIELDNO_HEAPTUPLEHEADERDATA_BITS 5
     178                 :     bits8       t_bits[FLEXIBLE_ARRAY_MEMBER];  /* bitmap of NULLs */
     179                 : 
     180                 :     /* MORE DATA FOLLOWS AT END OF STRUCT */
     181                 : };
     182                 : 
     183                 : /* typedef appears in htup.h */
     184                 : 
     185                 : #define SizeofHeapTupleHeader offsetof(HeapTupleHeaderData, t_bits)
     186                 : 
     187                 : /*
     188                 :  * information stored in t_infomask:
     189                 :  */
     190                 : #define HEAP_HASNULL            0x0001  /* has null attribute(s) */
     191                 : #define HEAP_HASVARWIDTH        0x0002  /* has variable-width attribute(s) */
     192                 : #define HEAP_HASEXTERNAL        0x0004  /* has external stored attribute(s) */
     193                 : #define HEAP_HASOID_OLD         0x0008  /* has an object-id field */
     194                 : #define HEAP_XMAX_KEYSHR_LOCK   0x0010  /* xmax is a key-shared locker */
     195                 : #define HEAP_COMBOCID           0x0020  /* t_cid is a combo CID */
     196                 : #define HEAP_XMAX_EXCL_LOCK     0x0040  /* xmax is exclusive locker */
     197                 : #define HEAP_XMAX_LOCK_ONLY     0x0080  /* xmax, if valid, is only a locker */
     198                 : 
     199                 :  /* xmax is a shared locker */
     200                 : #define HEAP_XMAX_SHR_LOCK  (HEAP_XMAX_EXCL_LOCK | HEAP_XMAX_KEYSHR_LOCK)
     201                 : 
     202                 : #define HEAP_LOCK_MASK  (HEAP_XMAX_SHR_LOCK | HEAP_XMAX_EXCL_LOCK | \
     203                 :                          HEAP_XMAX_KEYSHR_LOCK)
     204                 : #define HEAP_XMIN_COMMITTED     0x0100  /* t_xmin committed */
     205                 : #define HEAP_XMIN_INVALID       0x0200  /* t_xmin invalid/aborted */
     206                 : #define HEAP_XMIN_FROZEN        (HEAP_XMIN_COMMITTED|HEAP_XMIN_INVALID)
     207                 : #define HEAP_XMAX_COMMITTED     0x0400  /* t_xmax committed */
     208                 : #define HEAP_XMAX_INVALID       0x0800  /* t_xmax invalid/aborted */
     209                 : #define HEAP_XMAX_IS_MULTI      0x1000  /* t_xmax is a MultiXactId */
     210                 : #define HEAP_UPDATED            0x2000  /* this is UPDATEd version of row */
     211                 : #define HEAP_MOVED_OFF          0x4000  /* moved to another place by pre-9.0
     212                 :                                          * VACUUM FULL; kept for binary
     213                 :                                          * upgrade support */
     214                 : #define HEAP_MOVED_IN           0x8000  /* moved from another place by pre-9.0
     215                 :                                          * VACUUM FULL; kept for binary
     216                 :                                          * upgrade support */
     217                 : #define HEAP_MOVED (HEAP_MOVED_OFF | HEAP_MOVED_IN)
     218                 : 
     219                 : #define HEAP_XACT_MASK          0xFFF0  /* visibility-related bits */
     220                 : 
     221                 : /*
     222                 :  * A tuple is only locked (i.e. not updated by its Xmax) if the
     223                 :  * HEAP_XMAX_LOCK_ONLY bit is set; or, for pg_upgrade's sake, if the Xmax is
     224                 :  * not a multi and the EXCL_LOCK bit is set.
     225                 :  *
     226                 :  * See also HeapTupleHeaderIsOnlyLocked, which also checks for a possible
     227                 :  * aborted updater transaction.
     228                 :  *
     229                 :  * Beware of multiple evaluations of the argument.
     230                 :  */
     231                 : #define HEAP_XMAX_IS_LOCKED_ONLY(infomask) \
     232                 :     (((infomask) & HEAP_XMAX_LOCK_ONLY) || \
     233                 :      (((infomask) & (HEAP_XMAX_IS_MULTI | HEAP_LOCK_MASK)) == HEAP_XMAX_EXCL_LOCK))
     234                 : 
     235                 : /*
     236                 :  * A tuple that has HEAP_XMAX_IS_MULTI and HEAP_XMAX_LOCK_ONLY but neither of
     237                 :  * HEAP_XMAX_EXCL_LOCK and HEAP_XMAX_KEYSHR_LOCK must come from a tuple that was
     238                 :  * share-locked in 9.2 or earlier and then pg_upgrade'd.
     239                 :  *
     240                 :  * In 9.2 and prior, HEAP_XMAX_IS_MULTI was only set when there were multiple
     241                 :  * FOR SHARE lockers of that tuple.  That set HEAP_XMAX_LOCK_ONLY (with a
     242                 :  * different name back then) but neither of HEAP_XMAX_EXCL_LOCK and
     243                 :  * HEAP_XMAX_KEYSHR_LOCK.  That combination is no longer possible in 9.3 and
     244                 :  * up, so if we see that combination we know for certain that the tuple was
     245                 :  * locked in an earlier release; since all such lockers are gone (they cannot
     246                 :  * survive through pg_upgrade), such tuples can safely be considered not
     247                 :  * locked.
     248                 :  *
     249                 :  * We must not resolve such multixacts locally, because the result would be
     250                 :  * bogus, regardless of where they stand with respect to the current valid
     251                 :  * multixact range.
     252                 :  */
     253                 : #define HEAP_LOCKED_UPGRADED(infomask) \
     254                 : ( \
     255                 :      ((infomask) & HEAP_XMAX_IS_MULTI) != 0 && \
     256                 :      ((infomask) & HEAP_XMAX_LOCK_ONLY) != 0 && \
     257                 :      (((infomask) & (HEAP_XMAX_EXCL_LOCK | HEAP_XMAX_KEYSHR_LOCK)) == 0) \
     258                 : )
     259                 : 
     260                 : /*
     261                 :  * Use these to test whether a particular lock is applied to a tuple
     262                 :  */
     263                 : #define HEAP_XMAX_IS_SHR_LOCKED(infomask) \
     264                 :     (((infomask) & HEAP_LOCK_MASK) == HEAP_XMAX_SHR_LOCK)
     265                 : #define HEAP_XMAX_IS_EXCL_LOCKED(infomask) \
     266                 :     (((infomask) & HEAP_LOCK_MASK) == HEAP_XMAX_EXCL_LOCK)
     267                 : #define HEAP_XMAX_IS_KEYSHR_LOCKED(infomask) \
     268                 :     (((infomask) & HEAP_LOCK_MASK) == HEAP_XMAX_KEYSHR_LOCK)
     269                 : 
     270                 : /* turn these all off when Xmax is to change */
     271                 : #define HEAP_XMAX_BITS (HEAP_XMAX_COMMITTED | HEAP_XMAX_INVALID | \
     272                 :                         HEAP_XMAX_IS_MULTI | HEAP_LOCK_MASK | HEAP_XMAX_LOCK_ONLY)
     273                 : 
     274                 : /*
     275                 :  * information stored in t_infomask2:
     276                 :  */
     277                 : #define HEAP_NATTS_MASK         0x07FF  /* 11 bits for number of attributes */
     278                 : /* bits 0x1800 are available */
     279                 : #define HEAP_KEYS_UPDATED       0x2000  /* tuple was updated and key cols
     280                 :                                          * modified, or tuple deleted */
     281                 : #define HEAP_HOT_UPDATED        0x4000  /* tuple was HOT-updated */
     282                 : #define HEAP_ONLY_TUPLE         0x8000  /* this is heap-only tuple */
     283                 : 
     284                 : #define HEAP2_XACT_MASK         0xE000  /* visibility-related bits */
     285                 : 
     286                 : /*
     287                 :  * HEAP_TUPLE_HAS_MATCH is a temporary flag used during hash joins.  It is
     288                 :  * only used in tuples that are in the hash table, and those don't need
     289                 :  * any visibility information, so we can overlay it on a visibility flag
     290                 :  * instead of using up a dedicated bit.
     291                 :  */
     292                 : #define HEAP_TUPLE_HAS_MATCH    HEAP_ONLY_TUPLE /* tuple has a join match */
     293                 : 
     294                 : /*
     295                 :  * HeapTupleHeader accessor macros
     296                 :  *
     297                 :  * Note: beware of multiple evaluations of "tup" argument.  But the Set
     298                 :  * macros evaluate their other argument only once.
     299                 :  */
     300                 : 
     301                 : /*
     302                 :  * HeapTupleHeaderGetRawXmin returns the "raw" xmin field, which is the xid
     303                 :  * originally used to insert the tuple.  However, the tuple might actually
     304                 :  * be frozen (via HeapTupleHeaderSetXminFrozen) in which case the tuple's xmin
     305                 :  * is visible to every snapshot.  Prior to PostgreSQL 9.4, we actually changed
     306                 :  * the xmin to FrozenTransactionId, and that value may still be encountered
     307                 :  * on disk.
     308                 :  */
     309                 : #define HeapTupleHeaderGetRawXmin(tup) \
     310                 : ( \
     311                 :     (tup)->t_choice.t_heap.t_xmin \
     312                 : )
     313                 : 
     314                 : #define HeapTupleHeaderGetXmin(tup) \
     315                 : ( \
     316                 :     HeapTupleHeaderXminFrozen(tup) ? \
     317                 :         FrozenTransactionId : HeapTupleHeaderGetRawXmin(tup) \
     318                 : )
     319                 : 
     320                 : #define HeapTupleHeaderSetXmin(tup, xid) \
     321                 : ( \
     322                 :     (tup)->t_choice.t_heap.t_xmin = (xid) \
     323                 : )
     324                 : 
     325                 : #define HeapTupleHeaderXminCommitted(tup) \
     326                 : ( \
     327                 :     ((tup)->t_infomask & HEAP_XMIN_COMMITTED) != 0 \
     328                 : )
     329                 : 
     330                 : #define HeapTupleHeaderXminInvalid(tup) \
     331                 : ( \
     332                 :     ((tup)->t_infomask & (HEAP_XMIN_COMMITTED|HEAP_XMIN_INVALID)) == \
     333                 :         HEAP_XMIN_INVALID \
     334                 : )
     335                 : 
     336                 : #define HeapTupleHeaderXminFrozen(tup) \
     337                 : ( \
     338                 :     ((tup)->t_infomask & (HEAP_XMIN_FROZEN)) == HEAP_XMIN_FROZEN \
     339                 : )
     340                 : 
     341                 : #define HeapTupleHeaderSetXminCommitted(tup) \
     342                 : ( \
     343                 :     AssertMacro(!HeapTupleHeaderXminInvalid(tup)), \
     344                 :     ((tup)->t_infomask |= HEAP_XMIN_COMMITTED) \
     345                 : )
     346                 : 
     347                 : #define HeapTupleHeaderSetXminInvalid(tup) \
     348                 : ( \
     349                 :     AssertMacro(!HeapTupleHeaderXminCommitted(tup)), \
     350                 :     ((tup)->t_infomask |= HEAP_XMIN_INVALID) \
     351                 : )
     352                 : 
     353                 : #define HeapTupleHeaderSetXminFrozen(tup) \
     354                 : ( \
     355                 :     AssertMacro(!HeapTupleHeaderXminInvalid(tup)), \
     356                 :     ((tup)->t_infomask |= HEAP_XMIN_FROZEN) \
     357                 : )
     358                 : 
     359                 : /*
     360                 :  * HeapTupleHeaderGetRawXmax gets you the raw Xmax field.  To find out the Xid
     361                 :  * that updated a tuple, you might need to resolve the MultiXactId if certain
     362                 :  * bits are set.  HeapTupleHeaderGetUpdateXid checks those bits and takes care
     363                 :  * to resolve the MultiXactId if necessary.  This might involve multixact I/O,
     364                 :  * so it should only be used if absolutely necessary.
     365                 :  */
     366                 : #define HeapTupleHeaderGetUpdateXid(tup) \
     367                 : ( \
     368                 :     (!((tup)->t_infomask & HEAP_XMAX_INVALID) && \
     369                 :      ((tup)->t_infomask & HEAP_XMAX_IS_MULTI) && \
     370                 :      !((tup)->t_infomask & HEAP_XMAX_LOCK_ONLY)) ? \
     371                 :         HeapTupleGetUpdateXid(tup) \
     372                 :     : \
     373                 :         HeapTupleHeaderGetRawXmax(tup) \
     374                 : )
     375                 : 
     376                 : #define HeapTupleHeaderGetRawXmax(tup) \
     377                 : ( \
     378                 :     (tup)->t_choice.t_heap.t_xmax \
     379                 : )
     380                 : 
     381                 : #define HeapTupleHeaderSetXmax(tup, xid) \
     382                 : ( \
     383                 :     (tup)->t_choice.t_heap.t_xmax = (xid) \
     384                 : )
     385                 : 
     386                 : /*
     387                 :  * HeapTupleHeaderGetRawCommandId will give you what's in the header whether
     388                 :  * it is useful or not.  Most code should use HeapTupleHeaderGetCmin or
     389                 :  * HeapTupleHeaderGetCmax instead, but note that those Assert that you can
     390                 :  * get a legitimate result, ie you are in the originating transaction!
     391                 :  */
     392                 : #define HeapTupleHeaderGetRawCommandId(tup) \
     393                 : ( \
     394                 :     (tup)->t_choice.t_heap.t_field3.t_cid \
     395                 : )
     396                 : 
     397                 : /* SetCmin is reasonably simple since we never need a combo CID */
     398                 : #define HeapTupleHeaderSetCmin(tup, cid) \
     399                 : do { \
     400                 :     Assert(!((tup)->t_infomask & HEAP_MOVED)); \
     401                 :     (tup)->t_choice.t_heap.t_field3.t_cid = (cid); \
     402                 :     (tup)->t_infomask &= ~HEAP_COMBOCID; \
     403                 : } while (0)
     404                 : 
     405                 : /* SetCmax must be used after HeapTupleHeaderAdjustCmax; see combocid.c */
     406                 : #define HeapTupleHeaderSetCmax(tup, cid, iscombo) \
     407                 : do { \
     408                 :     Assert(!((tup)->t_infomask & HEAP_MOVED)); \
     409                 :     (tup)->t_choice.t_heap.t_field3.t_cid = (cid); \
     410                 :     if (iscombo) \
     411                 :         (tup)->t_infomask |= HEAP_COMBOCID; \
     412                 :     else \
     413                 :         (tup)->t_infomask &= ~HEAP_COMBOCID; \
     414                 : } while (0)
     415                 : 
     416                 : #define HeapTupleHeaderGetXvac(tup) \
     417                 : ( \
     418                 :     ((tup)->t_infomask & HEAP_MOVED) ? \
     419                 :         (tup)->t_choice.t_heap.t_field3.t_xvac \
     420                 :     : \
     421                 :         InvalidTransactionId \
     422                 : )
     423                 : 
     424                 : #define HeapTupleHeaderSetXvac(tup, xid) \
     425                 : do { \
     426                 :     Assert((tup)->t_infomask & HEAP_MOVED); \
     427                 :     (tup)->t_choice.t_heap.t_field3.t_xvac = (xid); \
     428                 : } while (0)
     429                 : 
     430                 : StaticAssertDecl(MaxOffsetNumber < SpecTokenOffsetNumber,
     431                 :                  "invalid speculative token constant");
     432                 : 
     433                 : #define HeapTupleHeaderIsSpeculative(tup) \
     434                 : ( \
     435                 :     (ItemPointerGetOffsetNumberNoCheck(&(tup)->t_ctid) == SpecTokenOffsetNumber) \
     436                 : )
     437                 : 
     438                 : #define HeapTupleHeaderGetSpeculativeToken(tup) \
     439                 : ( \
     440                 :     AssertMacro(HeapTupleHeaderIsSpeculative(tup)), \
     441                 :     ItemPointerGetBlockNumber(&(tup)->t_ctid) \
     442                 : )
     443                 : 
     444                 : #define HeapTupleHeaderSetSpeculativeToken(tup, token)  \
     445                 : ( \
     446                 :     ItemPointerSet(&(tup)->t_ctid, token, SpecTokenOffsetNumber) \
     447                 : )
     448                 : 
     449                 : #define HeapTupleHeaderIndicatesMovedPartitions(tup) \
     450                 :     ItemPointerIndicatesMovedPartitions(&(tup)->t_ctid)
     451                 : 
     452                 : #define HeapTupleHeaderSetMovedPartitions(tup) \
     453                 :     ItemPointerSetMovedPartitions(&(tup)->t_ctid)
     454                 : 
     455                 : #define HeapTupleHeaderGetDatumLength(tup) \
     456                 :     VARSIZE(tup)
     457                 : 
     458                 : #define HeapTupleHeaderSetDatumLength(tup, len) \
     459                 :     SET_VARSIZE(tup, len)
     460                 : 
     461                 : #define HeapTupleHeaderGetTypeId(tup) \
     462                 : ( \
     463                 :     (tup)->t_choice.t_datum.datum_typeid \
     464                 : )
     465                 : 
     466                 : #define HeapTupleHeaderSetTypeId(tup, typeid) \
     467                 : ( \
     468                 :     (tup)->t_choice.t_datum.datum_typeid = (typeid) \
     469                 : )
     470                 : 
     471                 : #define HeapTupleHeaderGetTypMod(tup) \
     472                 : ( \
     473                 :     (tup)->t_choice.t_datum.datum_typmod \
     474                 : )
     475                 : 
     476                 : #define HeapTupleHeaderSetTypMod(tup, typmod) \
     477                 : ( \
     478                 :     (tup)->t_choice.t_datum.datum_typmod = (typmod) \
     479                 : )
     480                 : 
     481                 : /*
     482                 :  * Note that we stop considering a tuple HOT-updated as soon as it is known
     483                 :  * aborted or the would-be updating transaction is known aborted.  For best
     484                 :  * efficiency, check tuple visibility before using this macro, so that the
     485                 :  * INVALID bits will be as up to date as possible.
     486                 :  */
     487                 : #define HeapTupleHeaderIsHotUpdated(tup) \
     488                 : ( \
     489                 :     ((tup)->t_infomask2 & HEAP_HOT_UPDATED) != 0 && \
     490                 :     ((tup)->t_infomask & HEAP_XMAX_INVALID) == 0 && \
     491                 :     !HeapTupleHeaderXminInvalid(tup) \
     492                 : )
     493                 : 
     494                 : #define HeapTupleHeaderSetHotUpdated(tup) \
     495                 : ( \
     496                 :     (tup)->t_infomask2 |= HEAP_HOT_UPDATED \
     497                 : )
     498                 : 
     499                 : #define HeapTupleHeaderClearHotUpdated(tup) \
     500                 : ( \
     501                 :     (tup)->t_infomask2 &= ~HEAP_HOT_UPDATED \
     502                 : )
     503                 : 
     504                 : #define HeapTupleHeaderIsHeapOnly(tup) \
     505                 : ( \
     506                 :   ((tup)->t_infomask2 & HEAP_ONLY_TUPLE) != 0 \
     507                 : )
     508                 : 
     509                 : #define HeapTupleHeaderSetHeapOnly(tup) \
     510                 : ( \
     511                 :   (tup)->t_infomask2 |= HEAP_ONLY_TUPLE \
     512                 : )
     513                 : 
     514                 : #define HeapTupleHeaderClearHeapOnly(tup) \
     515                 : ( \
     516                 :   (tup)->t_infomask2 &= ~HEAP_ONLY_TUPLE \
     517                 : )
     518                 : 
     519                 : #define HeapTupleHeaderHasMatch(tup) \
     520                 : ( \
     521                 :   ((tup)->t_infomask2 & HEAP_TUPLE_HAS_MATCH) != 0 \
     522                 : )
     523                 : 
     524                 : #define HeapTupleHeaderSetMatch(tup) \
     525                 : ( \
     526                 :   (tup)->t_infomask2 |= HEAP_TUPLE_HAS_MATCH \
     527                 : )
     528                 : 
     529                 : #define HeapTupleHeaderClearMatch(tup) \
     530                 : ( \
     531                 :   (tup)->t_infomask2 &= ~HEAP_TUPLE_HAS_MATCH \
     532                 : )
     533                 : 
     534                 : #define HeapTupleHeaderGetNatts(tup) \
     535                 :     ((tup)->t_infomask2 & HEAP_NATTS_MASK)
     536                 : 
     537                 : #define HeapTupleHeaderSetNatts(tup, natts) \
     538                 : ( \
     539                 :     (tup)->t_infomask2 = ((tup)->t_infomask2 & ~HEAP_NATTS_MASK) | (natts) \
     540                 : )
     541                 : 
     542                 : #define HeapTupleHeaderHasExternal(tup) \
     543                 :         (((tup)->t_infomask & HEAP_HASEXTERNAL) != 0)
     544                 : 
     545                 : 
     546                 : /*
     547                 :  * BITMAPLEN(NATTS) -
     548                 :  *      Computes size of null bitmap given number of data columns.
     549                 :  */
     550                 : #define BITMAPLEN(NATTS)    (((int)(NATTS) + 7) / 8)
     551                 : 
     552                 : /*
     553                 :  * MaxHeapTupleSize is the maximum allowed size of a heap tuple, including
     554                 :  * header and MAXALIGN alignment padding.  Basically it's BLCKSZ minus the
     555                 :  * other stuff that has to be on a disk page.  Since heap pages use no
     556                 :  * "special space", there's no deduction for that.
     557                 :  *
     558                 :  * NOTE: we allow for the ItemId that must point to the tuple, ensuring that
     559                 :  * an otherwise-empty page can indeed hold a tuple of this size.  Because
     560                 :  * ItemIds and tuples have different alignment requirements, don't assume that
     561                 :  * you can, say, fit 2 tuples of size MaxHeapTupleSize/2 on the same page.
     562                 :  */
     563                 : #define MaxHeapTupleSize  (BLCKSZ - MAXALIGN(SizeOfPageHeaderData + sizeof(ItemIdData)))
     564                 : #define MinHeapTupleSize  MAXALIGN(SizeofHeapTupleHeader)
     565                 : 
     566                 : /*
     567                 :  * MaxHeapTuplesPerPage is an upper bound on the number of tuples that can
     568                 :  * fit on one heap page.  (Note that indexes could have more, because they
     569                 :  * use a smaller tuple header.)  We arrive at the divisor because each tuple
     570                 :  * must be maxaligned, and it must have an associated line pointer.
     571                 :  *
     572                 :  * Note: with HOT, there could theoretically be more line pointers (not actual
     573                 :  * tuples) than this on a heap page.  However we constrain the number of line
     574                 :  * pointers to this anyway, to avoid excessive line-pointer bloat and not
     575                 :  * require increases in the size of work arrays.
     576                 :  */
     577                 : #define MaxHeapTuplesPerPage    \
     578                 :     ((int) ((BLCKSZ - SizeOfPageHeaderData) / \
     579                 :             (MAXALIGN(SizeofHeapTupleHeader) + sizeof(ItemIdData))))
     580                 : 
     581                 : /*
     582                 :  * MaxAttrSize is a somewhat arbitrary upper limit on the declared size of
     583                 :  * data fields of char(n) and similar types.  It need not have anything
     584                 :  * directly to do with the *actual* upper limit of varlena values, which
     585                 :  * is currently 1Gb (see TOAST structures in postgres.h).  I've set it
     586                 :  * at 10Mb which seems like a reasonable number --- tgl 8/6/00.
     587                 :  */
     588                 : #define MaxAttrSize     (10 * 1024 * 1024)
     589                 : 
     590                 : 
     591                 : /*
     592                 :  * MinimalTuple is an alternative representation that is used for transient
     593                 :  * tuples inside the executor, in places where transaction status information
     594                 :  * is not required, the tuple rowtype is known, and shaving off a few bytes
     595                 :  * is worthwhile because we need to store many tuples.  The representation
     596                 :  * is chosen so that tuple access routines can work with either full or
     597                 :  * minimal tuples via a HeapTupleData pointer structure.  The access routines
     598                 :  * see no difference, except that they must not access the transaction status
     599                 :  * or t_ctid fields because those aren't there.
     600                 :  *
     601                 :  * For the most part, MinimalTuples should be accessed via TupleTableSlot
     602                 :  * routines.  These routines will prevent access to the "system columns"
     603                 :  * and thereby prevent accidental use of the nonexistent fields.
     604                 :  *
     605                 :  * MinimalTupleData contains a length word, some padding, and fields matching
     606                 :  * HeapTupleHeaderData beginning with t_infomask2. The padding is chosen so
     607                 :  * that offsetof(t_infomask2) is the same modulo MAXIMUM_ALIGNOF in both
     608                 :  * structs.   This makes data alignment rules equivalent in both cases.
     609                 :  *
     610                 :  * When a minimal tuple is accessed via a HeapTupleData pointer, t_data is
     611                 :  * set to point MINIMAL_TUPLE_OFFSET bytes before the actual start of the
     612                 :  * minimal tuple --- that is, where a full tuple matching the minimal tuple's
     613                 :  * data would start.  This trick is what makes the structs seem equivalent.
     614                 :  *
     615                 :  * Note that t_hoff is computed the same as in a full tuple, hence it includes
     616                 :  * the MINIMAL_TUPLE_OFFSET distance.  t_len does not include that, however.
     617                 :  *
     618                 :  * MINIMAL_TUPLE_DATA_OFFSET is the offset to the first useful (non-pad) data
     619                 :  * other than the length word.  tuplesort.c and tuplestore.c use this to avoid
     620                 :  * writing the padding to disk.
     621                 :  */
     622                 : #define MINIMAL_TUPLE_OFFSET \
     623                 :     ((offsetof(HeapTupleHeaderData, t_infomask2) - sizeof(uint32)) / MAXIMUM_ALIGNOF * MAXIMUM_ALIGNOF)
     624                 : #define MINIMAL_TUPLE_PADDING \
     625                 :     ((offsetof(HeapTupleHeaderData, t_infomask2) - sizeof(uint32)) % MAXIMUM_ALIGNOF)
     626                 : #define MINIMAL_TUPLE_DATA_OFFSET \
     627                 :     offsetof(MinimalTupleData, t_infomask2)
     628                 : 
     629                 : struct MinimalTupleData
     630                 : {
     631                 :     uint32      t_len;          /* actual length of minimal tuple */
     632                 : 
     633                 :     char        mt_padding[MINIMAL_TUPLE_PADDING];
     634                 : 
     635                 :     /* Fields below here must match HeapTupleHeaderData! */
     636                 : 
     637                 :     uint16      t_infomask2;    /* number of attributes + various flags */
     638                 : 
     639                 :     uint16      t_infomask;     /* various flag bits, see below */
     640                 : 
     641                 :     uint8       t_hoff;         /* sizeof header incl. bitmap, padding */
     642                 : 
     643                 :     /* ^ - 23 bytes - ^ */
     644                 : 
     645                 :     bits8       t_bits[FLEXIBLE_ARRAY_MEMBER];  /* bitmap of NULLs */
     646                 : 
     647                 :     /* MORE DATA FOLLOWS AT END OF STRUCT */
     648                 : };
     649                 : 
     650                 : /* typedef appears in htup.h */
     651                 : 
     652                 : #define SizeofMinimalTupleHeader offsetof(MinimalTupleData, t_bits)
     653                 : 
     654                 : 
     655                 : /*
     656                 :  * GETSTRUCT - given a HeapTuple pointer, return address of the user data
     657                 :  */
     658                 : #define GETSTRUCT(TUP) ((char *) ((TUP)->t_data) + (TUP)->t_data->t_hoff)
     659                 : 
     660                 : /*
     661                 :  * Accessor macros to be used with HeapTuple pointers.
     662                 :  */
     663                 : 
     664                 : #define HeapTupleHasNulls(tuple) \
     665                 :         (((tuple)->t_data->t_infomask & HEAP_HASNULL) != 0)
     666                 : 
     667                 : #define HeapTupleNoNulls(tuple) \
     668                 :         (!((tuple)->t_data->t_infomask & HEAP_HASNULL))
     669                 : 
     670                 : #define HeapTupleHasVarWidth(tuple) \
     671                 :         (((tuple)->t_data->t_infomask & HEAP_HASVARWIDTH) != 0)
     672                 : 
     673                 : #define HeapTupleAllFixed(tuple) \
     674                 :         (!((tuple)->t_data->t_infomask & HEAP_HASVARWIDTH))
     675                 : 
     676                 : #define HeapTupleHasExternal(tuple) \
     677                 :         (((tuple)->t_data->t_infomask & HEAP_HASEXTERNAL) != 0)
     678                 : 
     679                 : #define HeapTupleIsHotUpdated(tuple) \
     680                 :         HeapTupleHeaderIsHotUpdated((tuple)->t_data)
     681                 : 
     682                 : #define HeapTupleSetHotUpdated(tuple) \
     683                 :         HeapTupleHeaderSetHotUpdated((tuple)->t_data)
     684                 : 
     685                 : #define HeapTupleClearHotUpdated(tuple) \
     686                 :         HeapTupleHeaderClearHotUpdated((tuple)->t_data)
     687                 : 
     688                 : #define HeapTupleIsHeapOnly(tuple) \
     689                 :         HeapTupleHeaderIsHeapOnly((tuple)->t_data)
     690                 : 
     691                 : #define HeapTupleSetHeapOnly(tuple) \
     692                 :         HeapTupleHeaderSetHeapOnly((tuple)->t_data)
     693                 : 
     694                 : #define HeapTupleClearHeapOnly(tuple) \
     695                 :         HeapTupleHeaderClearHeapOnly((tuple)->t_data)
     696                 : 
     697                 : /* prototypes for functions in common/heaptuple.c */
     698                 : extern Size heap_compute_data_size(TupleDesc tupleDesc,
     699                 :                                    Datum *values, bool *isnull);
     700                 : extern void heap_fill_tuple(TupleDesc tupleDesc,
     701                 :                             Datum *values, bool *isnull,
     702                 :                             char *data, Size data_size,
     703                 :                             uint16 *infomask, bits8 *bit);
     704                 : extern bool heap_attisnull(HeapTuple tup, int attnum, TupleDesc tupleDesc);
     705                 : extern Datum nocachegetattr(HeapTuple tup, int attnum,
     706                 :                             TupleDesc tupleDesc);
     707                 : extern Datum heap_getsysattr(HeapTuple tup, int attnum, TupleDesc tupleDesc,
     708                 :                              bool *isnull);
     709                 : extern Datum getmissingattr(TupleDesc tupleDesc,
     710                 :                             int attnum, bool *isnull);
     711                 : extern HeapTuple heap_copytuple(HeapTuple tuple);
     712                 : extern void heap_copytuple_with_tuple(HeapTuple src, HeapTuple dest);
     713                 : extern Datum heap_copy_tuple_as_datum(HeapTuple tuple, TupleDesc tupleDesc);
     714                 : extern HeapTuple heap_form_tuple(TupleDesc tupleDescriptor,
     715                 :                                  Datum *values, bool *isnull);
     716                 : extern HeapTuple heap_modify_tuple(HeapTuple tuple,
     717                 :                                    TupleDesc tupleDesc,
     718                 :                                    Datum *replValues,
     719                 :                                    bool *replIsnull,
     720                 :                                    bool *doReplace);
     721                 : extern HeapTuple heap_modify_tuple_by_cols(HeapTuple tuple,
     722                 :                                            TupleDesc tupleDesc,
     723                 :                                            int nCols,
     724                 :                                            int *replCols,
     725                 :                                            Datum *replValues,
     726                 :                                            bool *replIsnull);
     727                 : extern void heap_deform_tuple(HeapTuple tuple, TupleDesc tupleDesc,
     728                 :                               Datum *values, bool *isnull);
     729                 : extern void heap_freetuple(HeapTuple htup);
     730                 : extern MinimalTuple heap_form_minimal_tuple(TupleDesc tupleDescriptor,
     731                 :                                             Datum *values, bool *isnull);
     732                 : extern void heap_free_minimal_tuple(MinimalTuple mtup);
     733                 : extern MinimalTuple heap_copy_minimal_tuple(MinimalTuple mtup);
     734                 : extern HeapTuple heap_tuple_from_minimal_tuple(MinimalTuple mtup);
     735                 : extern MinimalTuple minimal_tuple_from_heap_tuple(HeapTuple htup);
     736                 : extern size_t varsize_any(void *p);
     737                 : extern HeapTuple heap_expand_tuple(HeapTuple sourceTuple, TupleDesc tupleDesc);
     738                 : extern MinimalTuple minimal_expand_tuple(HeapTuple sourceTuple, TupleDesc tupleDesc);
     739                 : 
     740                 : #ifndef FRONTEND
     741                 : /*
     742                 :  *  fastgetattr
     743                 :  *      Fetch a user attribute's value as a Datum (might be either a
     744                 :  *      value, or a pointer into the data area of the tuple).
     745                 :  *
     746                 :  *      This must not be used when a system attribute might be requested.
     747                 :  *      Furthermore, the passed attnum MUST be valid.  Use heap_getattr()
     748                 :  *      instead, if in doubt.
     749                 :  *
     750                 :  *      This gets called many times, so we macro the cacheable and NULL
     751                 :  *      lookups, and call nocachegetattr() for the rest.
     752                 :  */
     753                 : static inline Datum
     754 GIC   323349305 : fastgetattr(HeapTuple tup, int attnum, TupleDesc tupleDesc, bool *isnull)
     755                 : {
     756       323349305 :     Assert(attnum > 0);
     757                 : 
     758 CBC   323349305 :     *isnull = false;
     759 GIC   323349305 :     if (HeapTupleNoNulls(tup))
     760 ECB             :     {
     761                 :         Form_pg_attribute att;
     762                 : 
     763 CBC    70908228 :         att = TupleDescAttr(tupleDesc, attnum - 1);
     764 GIC    70908228 :         if (att->attcacheoff >= 0)
     765        54233012 :             return fetchatt(att, (char *) tup->t_data + tup->t_data->t_hoff +
     766                 :                             att->attcacheoff);
     767 ECB             :         else
     768 CBC    16675216 :             return nocachegetattr(tup, attnum, tupleDesc);
     769 ECB             :     }
     770                 :     else
     771                 :     {
     772 CBC   252441077 :         if (att_isnull(attnum - 1, tup->t_data->t_bits))
     773                 :         {
     774 GIC    27407451 :             *isnull = true;
     775        27407451 :             return (Datum) NULL;
     776 ECB             :         }
     777                 :         else
     778 CBC   225033626 :             return nocachegetattr(tup, attnum, tupleDesc);
     779 ECB             :     }
     780                 : }
     781                 : 
     782                 : /*
     783                 :  *  heap_getattr
     784                 :  *      Extract an attribute of a heap tuple and return it as a Datum.
     785                 :  *      This works for either system or user attributes.  The given attnum
     786                 :  *      is properly range-checked.
     787                 :  *
     788                 :  *      If the field in question has a NULL value, we return a zero Datum
     789                 :  *      and set *isnull == true.  Otherwise, we set *isnull == false.
     790                 :  *
     791                 :  *      <tup> is the pointer to the heap tuple.  <attnum> is the attribute
     792                 :  *      number of the column (field) caller wants.  <tupleDesc> is a
     793                 :  *      pointer to the structure describing the row and all its fields.
     794                 :  *
     795                 :  */
     796                 : static inline Datum
     797 GIC   309374357 : heap_getattr(HeapTuple tup, int attnum, TupleDesc tupleDesc, bool *isnull)
     798                 : {
     799       309374357 :     if (attnum > 0)
     800                 :     {
     801 CBC   309374357 :         if (attnum > (int) HeapTupleHeaderGetNatts(tup->t_data))
     802 GIC         166 :             return getmissingattr(tupleDesc, attnum, isnull);
     803 ECB             :         else
     804 GIC   309374191 :             return fastgetattr(tup, attnum, tupleDesc, isnull);
     805 ECB             :     }
     806                 :     else
     807 UIC           0 :         return heap_getsysattr(tup, attnum, tupleDesc, isnull);
     808 ECB             : }
     809                 : #endif                          /* FRONTEND */
     810                 : 
     811 EUB             : #endif                          /* HTUP_DETAILS_H */
        

Generated by: LCOV version v1.16-55-g56c0a2a