LCOV - differential code coverage report
Current view: top level - src/common - d2s.c (source / functions) Coverage Total Hit UBC CBC
Current: Differential Code Coverage HEAD vs 15 Lines: 93.9 % 327 307 20 307
Current Date: 2023-04-08 15:15:32 Functions: 92.3 % 13 12 1 12
Baseline: 15
Baseline Date: 2023-04-08 15:09:40
Legend: Lines: hit not hit

           TLA  Line data    Source code
       1                 : /*---------------------------------------------------------------------------
       2                 :  *
       3                 :  * Ryu floating-point output for double precision.
       4                 :  *
       5                 :  * Portions Copyright (c) 2018-2023, PostgreSQL Global Development Group
       6                 :  *
       7                 :  * IDENTIFICATION
       8                 :  *    src/common/d2s.c
       9                 :  *
      10                 :  * This is a modification of code taken from github.com/ulfjack/ryu under the
      11                 :  * terms of the Boost license (not the Apache license). The original copyright
      12                 :  * notice follows:
      13                 :  *
      14                 :  * Copyright 2018 Ulf Adams
      15                 :  *
      16                 :  * The contents of this file may be used under the terms of the Apache
      17                 :  * License, Version 2.0.
      18                 :  *
      19                 :  *     (See accompanying file LICENSE-Apache or copy at
      20                 :  *      http://www.apache.org/licenses/LICENSE-2.0)
      21                 :  *
      22                 :  * Alternatively, the contents of this file may be used under the terms of the
      23                 :  * Boost Software License, Version 1.0.
      24                 :  *
      25                 :  *     (See accompanying file LICENSE-Boost or copy at
      26                 :  *      https://www.boost.org/LICENSE_1_0.txt)
      27                 :  *
      28                 :  * Unless required by applicable law or agreed to in writing, this software is
      29                 :  * distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
      30                 :  * KIND, either express or implied.
      31                 :  *
      32                 :  *---------------------------------------------------------------------------
      33                 :  */
      34                 : 
      35                 : /*
      36                 :  *  Runtime compiler options:
      37                 :  *
      38                 :  *  -DRYU_ONLY_64_BIT_OPS Avoid using uint128 or 64-bit intrinsics. Slower,
      39                 :  *      depending on your compiler.
      40                 :  */
      41                 : 
      42                 : #ifndef FRONTEND
      43                 : #include "postgres.h"
      44                 : #else
      45                 : #include "postgres_fe.h"
      46                 : #endif
      47                 : 
      48                 : #include "common/shortest_dec.h"
      49                 : 
      50                 : /*
      51                 :  * For consistency, we use 128-bit types if and only if the rest of PG also
      52                 :  * does, even though we could use them here without worrying about the
      53                 :  * alignment concerns that apply elsewhere.
      54                 :  */
      55                 : #if !defined(HAVE_INT128) && defined(_MSC_VER) \
      56                 :     && !defined(RYU_ONLY_64_BIT_OPS) && defined(_M_X64)
      57                 : #define HAS_64_BIT_INTRINSICS
      58                 : #endif
      59                 : 
      60                 : #include "ryu_common.h"
      61                 : #include "digit_table.h"
      62                 : #include "d2s_full_table.h"
      63                 : #include "d2s_intrinsics.h"
      64                 : 
      65                 : #define DOUBLE_MANTISSA_BITS 52
      66                 : #define DOUBLE_EXPONENT_BITS 11
      67                 : #define DOUBLE_BIAS 1023
      68                 : 
      69                 : #define DOUBLE_POW5_INV_BITCOUNT 122
      70                 : #define DOUBLE_POW5_BITCOUNT 121
      71                 : 
      72                 : 
      73                 : static inline uint32
      74 CBC         698 : pow5Factor(uint64 value)
      75                 : {
      76             698 :     uint32      count = 0;
      77                 : 
      78                 :     for (;;)
      79            2265 :     {
      80            2963 :         Assert(value != 0);
      81            2963 :         const uint64 q = div5(value);
      82            2963 :         const uint32 r = (uint32) (value - 5 * q);
      83                 : 
      84            2963 :         if (r != 0)
      85             698 :             break;
      86                 : 
      87            2265 :         value = q;
      88            2265 :         ++count;
      89                 :     }
      90             698 :     return count;
      91                 : }
      92                 : 
      93                 : /*  Returns true if value is divisible by 5^p. */
      94                 : static inline bool
      95             698 : multipleOfPowerOf5(const uint64 value, const uint32 p)
      96                 : {
      97                 :     /*
      98                 :      * I tried a case distinction on p, but there was no performance
      99                 :      * difference.
     100                 :      */
     101             698 :     return pow5Factor(value) >= p;
     102                 : }
     103                 : 
     104                 : /*  Returns true if value is divisible by 2^p. */
     105                 : static inline bool
     106          795340 : multipleOfPowerOf2(const uint64 value, const uint32 p)
     107                 : {
     108                 :     /* return __builtin_ctzll(value) >= p; */
     109          795340 :     return (value & ((UINT64CONST(1) << p) - 1)) == 0;
     110                 : }
     111                 : 
     112                 : /*
     113                 :  * We need a 64x128-bit multiplication and a subsequent 128-bit shift.
     114                 :  *
     115                 :  * Multiplication:
     116                 :  *
     117                 :  *    The 64-bit factor is variable and passed in, the 128-bit factor comes
     118                 :  *    from a lookup table. We know that the 64-bit factor only has 55
     119                 :  *    significant bits (i.e., the 9 topmost bits are zeros). The 128-bit
     120                 :  *    factor only has 124 significant bits (i.e., the 4 topmost bits are
     121                 :  *    zeros).
     122                 :  *
     123                 :  * Shift:
     124                 :  *
     125                 :  *    In principle, the multiplication result requires 55 + 124 = 179 bits to
     126                 :  *    represent. However, we then shift this value to the right by j, which is
     127                 :  *    at least j >= 115, so the result is guaranteed to fit into 179 - 115 =
     128                 :  *    64 bits. This means that we only need the topmost 64 significant bits of
     129                 :  *    the 64x128-bit multiplication.
     130                 :  *
     131                 :  * There are several ways to do this:
     132                 :  *
     133                 :  *  1. Best case: the compiler exposes a 128-bit type.
     134                 :  *     We perform two 64x64-bit multiplications, add the higher 64 bits of the
     135                 :  *     lower result to the higher result, and shift by j - 64 bits.
     136                 :  *
     137                 :  *     We explicitly cast from 64-bit to 128-bit, so the compiler can tell
     138                 :  *     that these are only 64-bit inputs, and can map these to the best
     139                 :  *     possible sequence of assembly instructions. x86-64 machines happen to
     140                 :  *     have matching assembly instructions for 64x64-bit multiplications and
     141                 :  *     128-bit shifts.
     142                 :  *
     143                 :  *  2. Second best case: the compiler exposes intrinsics for the x86-64
     144                 :  *     assembly instructions mentioned in 1.
     145                 :  *
     146                 :  *  3. We only have 64x64 bit instructions that return the lower 64 bits of
     147                 :  *     the result, i.e., we have to use plain C.
     148                 :  *
     149                 :  *     Our inputs are less than the full width, so we have three options:
     150                 :  *     a. Ignore this fact and just implement the intrinsics manually.
     151                 :  *     b. Split both into 31-bit pieces, which guarantees no internal
     152                 :  *        overflow, but requires extra work upfront (unless we change the
     153                 :  *        lookup table).
     154                 :  *     c. Split only the first factor into 31-bit pieces, which also
     155                 :  *        guarantees no internal overflow, but requires extra work since the
     156                 :  *        intermediate results are not perfectly aligned.
     157                 :  */
     158                 : #if defined(HAVE_INT128)
     159                 : 
     160                 : /*  Best case: use 128-bit type. */
     161                 : static inline uint64
     162         2390298 : mulShift(const uint64 m, const uint64 *const mul, const int32 j)
     163                 : {
     164         2390298 :     const uint128 b0 = ((uint128) m) * mul[0];
     165         2390298 :     const uint128 b2 = ((uint128) m) * mul[1];
     166                 : 
     167         2390298 :     return (uint64) (((b0 >> 64) + b2) >> (j - 64));
     168                 : }
     169                 : 
     170                 : static inline uint64
     171          796766 : mulShiftAll(const uint64 m, const uint64 *const mul, const int32 j,
     172                 :             uint64 *const vp, uint64 *const vm, const uint32 mmShift)
     173                 : {
     174          796766 :     *vp = mulShift(4 * m + 2, mul, j);
     175          796766 :     *vm = mulShift(4 * m - 1 - mmShift, mul, j);
     176          796766 :     return mulShift(4 * m, mul, j);
     177                 : }
     178                 : 
     179                 : #elif defined(HAS_64_BIT_INTRINSICS)
     180                 : 
     181                 : static inline uint64
     182                 : mulShift(const uint64 m, const uint64 *const mul, const int32 j)
     183                 : {
     184                 :     /* m is maximum 55 bits */
     185                 :     uint64      high1;
     186                 : 
     187                 :     /* 128 */
     188                 :     const uint64 low1 = umul128(m, mul[1], &high1);
     189                 : 
     190                 :     /* 64 */
     191                 :     uint64      high0;
     192                 :     uint64      sum;
     193                 : 
     194                 :     /* 64 */
     195                 :     umul128(m, mul[0], &high0);
     196                 :     /* 0 */
     197                 :     sum = high0 + low1;
     198                 : 
     199                 :     if (sum < high0)
     200                 :     {
     201                 :         ++high1;
     202                 :         /* overflow into high1 */
     203                 :     }
     204                 :     return shiftright128(sum, high1, j - 64);
     205                 : }
     206                 : 
     207                 : static inline uint64
     208                 : mulShiftAll(const uint64 m, const uint64 *const mul, const int32 j,
     209                 :             uint64 *const vp, uint64 *const vm, const uint32 mmShift)
     210                 : {
     211                 :     *vp = mulShift(4 * m + 2, mul, j);
     212                 :     *vm = mulShift(4 * m - 1 - mmShift, mul, j);
     213                 :     return mulShift(4 * m, mul, j);
     214                 : }
     215                 : 
     216                 : #else                           /* // !defined(HAVE_INT128) &&
     217                 :                                  * !defined(HAS_64_BIT_INTRINSICS) */
     218                 : 
     219                 : static inline uint64
     220                 : mulShiftAll(uint64 m, const uint64 *const mul, const int32 j,
     221                 :             uint64 *const vp, uint64 *const vm, const uint32 mmShift)
     222                 : {
     223                 :     m <<= 1;                  /* m is maximum 55 bits */
     224                 : 
     225                 :     uint64      tmp;
     226                 :     const uint64 lo = umul128(m, mul[0], &tmp);
     227                 :     uint64      hi;
     228                 :     const uint64 mid = tmp + umul128(m, mul[1], &hi);
     229                 : 
     230                 :     hi += mid < tmp;         /* overflow into hi */
     231                 : 
     232                 :     const uint64 lo2 = lo + mul[0];
     233                 :     const uint64 mid2 = mid + mul[1] + (lo2 < lo);
     234                 :     const uint64 hi2 = hi + (mid2 < mid);
     235                 : 
     236                 :     *vp = shiftright128(mid2, hi2, j - 64 - 1);
     237                 : 
     238                 :     if (mmShift == 1)
     239                 :     {
     240                 :         const uint64 lo3 = lo - mul[0];
     241                 :         const uint64 mid3 = mid - mul[1] - (lo3 > lo);
     242                 :         const uint64 hi3 = hi - (mid3 > mid);
     243                 : 
     244                 :         *vm = shiftright128(mid3, hi3, j - 64 - 1);
     245                 :     }
     246                 :     else
     247                 :     {
     248                 :         const uint64 lo3 = lo + lo;
     249                 :         const uint64 mid3 = mid + mid + (lo3 < lo);
     250                 :         const uint64 hi3 = hi + hi + (mid3 < mid);
     251                 :         const uint64 lo4 = lo3 - mul[0];
     252                 :         const uint64 mid4 = mid3 - mul[1] - (lo4 > lo3);
     253                 :         const uint64 hi4 = hi3 - (mid4 > mid3);
     254                 : 
     255                 :         *vm = shiftright128(mid4, hi4, j - 64);
     256                 :     }
     257                 : 
     258                 :     return shiftright128(mid, hi, j - 64 - 1);
     259                 : }
     260                 : 
     261                 : #endif                          /* // HAS_64_BIT_INTRINSICS */
     262                 : 
     263                 : static inline uint32
     264         1980847 : decimalLength(const uint64 v)
     265                 : {
     266                 :     /* This is slightly faster than a loop. */
     267                 :     /* The average output length is 16.38 digits, so we check high-to-low. */
     268                 :     /* Function precondition: v is not an 18, 19, or 20-digit number. */
     269                 :     /* (17 digits are sufficient for round-tripping.) */
     270         1980847 :     Assert(v < 100000000000000000L);
     271         1980847 :     if (v >= 10000000000000000L)
     272                 :     {
     273          141097 :         return 17;
     274                 :     }
     275         1839750 :     if (v >= 1000000000000000L)
     276                 :     {
     277          332181 :         return 16;
     278                 :     }
     279         1507569 :     if (v >= 100000000000000L)
     280                 :     {
     281           30843 :         return 15;
     282                 :     }
     283         1476726 :     if (v >= 10000000000000L)
     284                 :     {
     285            5458 :         return 14;
     286                 :     }
     287         1471268 :     if (v >= 1000000000000L)
     288                 :     {
     289             176 :         return 13;
     290                 :     }
     291         1471092 :     if (v >= 100000000000L)
     292                 :     {
     293              65 :         return 12;
     294                 :     }
     295         1471027 :     if (v >= 10000000000L)
     296                 :     {
     297              69 :         return 11;
     298                 :     }
     299         1470958 :     if (v >= 1000000000L)
     300                 :     {
     301           21754 :         return 10;
     302                 :     }
     303         1449204 :     if (v >= 100000000L)
     304                 :     {
     305           23283 :         return 9;
     306                 :     }
     307         1425921 :     if (v >= 10000000L)
     308                 :     {
     309            2678 :         return 8;
     310                 :     }
     311         1423243 :     if (v >= 1000000L)
     312                 :     {
     313           56850 :         return 7;
     314                 :     }
     315         1366393 :     if (v >= 100000L)
     316                 :     {
     317            6225 :         return 6;
     318                 :     }
     319         1360168 :     if (v >= 10000L)
     320                 :     {
     321          183596 :         return 5;
     322                 :     }
     323         1176572 :     if (v >= 1000L)
     324                 :     {
     325          362322 :         return 4;
     326                 :     }
     327          814250 :     if (v >= 100L)
     328                 :     {
     329          673199 :         return 3;
     330                 :     }
     331          141051 :     if (v >= 10L)
     332                 :     {
     333          122054 :         return 2;
     334                 :     }
     335           18997 :     return 1;
     336                 : }
     337                 : 
     338                 : /*  A floating decimal representing m * 10^e. */
     339                 : typedef struct floating_decimal_64
     340                 : {
     341                 :     uint64      mantissa;
     342                 :     int32       exponent;
     343                 : } floating_decimal_64;
     344                 : 
     345                 : static inline floating_decimal_64
     346          796766 : d2d(const uint64 ieeeMantissa, const uint32 ieeeExponent)
     347                 : {
     348                 :     int32       e2;
     349                 :     uint64      m2;
     350                 : 
     351          796766 :     if (ieeeExponent == 0)
     352                 :     {
     353                 :         /* We subtract 2 so that the bounds computation has 2 additional bits. */
     354              63 :         e2 = 1 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2;
     355              63 :         m2 = ieeeMantissa;
     356                 :     }
     357                 :     else
     358                 :     {
     359          796703 :         e2 = ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2;
     360          796703 :         m2 = (UINT64CONST(1) << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
     361                 :     }
     362                 : 
     363                 : #if STRICTLY_SHORTEST
     364                 :     const bool  even = (m2 & 1) == 0;
     365                 :     const bool  acceptBounds = even;
     366                 : #else
     367          796766 :     const bool  acceptBounds = false;
     368                 : #endif
     369                 : 
     370                 :     /* Step 2: Determine the interval of legal decimal representations. */
     371          796766 :     const uint64 mv = 4 * m2;
     372                 : 
     373                 :     /* Implicit bool -> int conversion. True is 1, false is 0. */
     374          796766 :     const uint32 mmShift = ieeeMantissa != 0 || ieeeExponent <= 1;
     375                 : 
     376                 :     /* We would compute mp and mm like this: */
     377                 :     /* uint64 mp = 4 * m2 + 2; */
     378                 :     /* uint64 mm = mv - 1 - mmShift; */
     379                 : 
     380                 :     /* Step 3: Convert to a decimal power base using 128-bit arithmetic. */
     381                 :     uint64      vr,
     382                 :                 vp,
     383                 :                 vm;
     384                 :     int32       e10;
     385          796766 :     bool        vmIsTrailingZeros = false;
     386          796766 :     bool        vrIsTrailingZeros = false;
     387                 : 
     388          796766 :     if (e2 >= 0)
     389                 :     {
     390                 :         /*
     391                 :          * I tried special-casing q == 0, but there was no effect on
     392                 :          * performance.
     393                 :          *
     394                 :          * This expr is slightly faster than max(0, log10Pow2(e2) - 1).
     395                 :          */
     396             992 :         const uint32 q = log10Pow2(e2) - (e2 > 3);
     397             992 :         const int32 k = DOUBLE_POW5_INV_BITCOUNT + pow5bits(q) - 1;
     398             992 :         const int32 i = -e2 + q + k;
     399                 : 
     400             992 :         e10 = q;
     401                 : 
     402             992 :         vr = mulShiftAll(m2, DOUBLE_POW5_INV_SPLIT[q], i, &vp, &vm, mmShift);
     403                 : 
     404             992 :         if (q <= 21)
     405                 :         {
     406                 :             /*
     407                 :              * This should use q <= 22, but I think 21 is also safe. Smaller
     408                 :              * values may still be safe, but it's more difficult to reason
     409                 :              * about them.
     410                 :              *
     411                 :              * Only one of mp, mv, and mm can be a multiple of 5, if any.
     412                 :              */
     413             698 :             const uint32 mvMod5 = (uint32) (mv - 5 * div5(mv));
     414                 : 
     415             698 :             if (mvMod5 == 0)
     416                 :             {
     417             105 :                 vrIsTrailingZeros = multipleOfPowerOf5(mv, q);
     418                 :             }
     419             593 :             else if (acceptBounds)
     420                 :             {
     421                 :                 /*----
     422                 :                  * Same as min(e2 + (~mm & 1), pow5Factor(mm)) >= q
     423                 :                  * <=> e2 + (~mm & 1) >= q && pow5Factor(mm) >= q
     424                 :                  * <=> true && pow5Factor(mm) >= q, since e2 >= q.
     425                 :                  *----
     426                 :                  */
     427 UBC           0 :                 vmIsTrailingZeros = multipleOfPowerOf5(mv - 1 - mmShift, q);
     428                 :             }
     429                 :             else
     430                 :             {
     431                 :                 /* Same as min(e2 + 1, pow5Factor(mp)) >= q. */
     432 CBC         593 :                 vp -= multipleOfPowerOf5(mv + 2, q);
     433                 :             }
     434                 :         }
     435                 :     }
     436                 :     else
     437                 :     {
     438                 :         /*
     439                 :          * This expression is slightly faster than max(0, log10Pow5(-e2) - 1).
     440                 :          */
     441          795774 :         const uint32 q = log10Pow5(-e2) - (-e2 > 1);
     442          795774 :         const int32 i = -e2 - q;
     443          795774 :         const int32 k = pow5bits(i) - DOUBLE_POW5_BITCOUNT;
     444          795774 :         const int32 j = q - k;
     445                 : 
     446          795774 :         e10 = q + e2;
     447                 : 
     448          795774 :         vr = mulShiftAll(m2, DOUBLE_POW5_SPLIT[i], j, &vp, &vm, mmShift);
     449                 : 
     450          795774 :         if (q <= 1)
     451                 :         {
     452                 :             /*
     453                 :              * {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q
     454                 :              * trailing 0 bits.
     455                 :              */
     456                 :             /* mv = 4 * m2, so it always has at least two trailing 0 bits. */
     457              60 :             vrIsTrailingZeros = true;
     458              60 :             if (acceptBounds)
     459                 :             {
     460                 :                 /*
     461                 :                  * mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff
     462                 :                  * mmShift == 1.
     463                 :                  */
     464 UBC           0 :                 vmIsTrailingZeros = mmShift == 1;
     465                 :             }
     466                 :             else
     467                 :             {
     468                 :                 /*
     469                 :                  * mp = mv + 2, so it always has at least one trailing 0 bit.
     470                 :                  */
     471 CBC          60 :                 --vp;
     472                 :             }
     473                 :         }
     474          795714 :         else if (q < 63)
     475                 :         {
     476                 :             /* TODO(ulfjack):Use a tighter bound here. */
     477                 :             /*
     478                 :              * We need to compute min(ntz(mv), pow5Factor(mv) - e2) >= q - 1
     479                 :              */
     480                 :             /* <=> ntz(mv) >= q - 1 && pow5Factor(mv) - e2 >= q - 1 */
     481                 :             /* <=> ntz(mv) >= q - 1 (e2 is negative and -e2 >= q) */
     482                 :             /* <=> (mv & ((1 << (q - 1)) - 1)) == 0 */
     483                 : 
     484                 :             /*
     485                 :              * We also need to make sure that the left shift does not
     486                 :              * overflow.
     487                 :              */
     488          795340 :             vrIsTrailingZeros = multipleOfPowerOf2(mv, q - 1);
     489                 :         }
     490                 :     }
     491                 : 
     492                 :     /*
     493                 :      * Step 4: Find the shortest decimal representation in the interval of
     494                 :      * legal representations.
     495                 :      */
     496          796766 :     uint32      removed = 0;
     497          796766 :     uint8       lastRemovedDigit = 0;
     498                 :     uint64      output;
     499                 : 
     500                 :     /* On average, we remove ~2 digits. */
     501          796766 :     if (vmIsTrailingZeros || vrIsTrailingZeros)
     502                 :     {
     503                 :         /* General case, which happens rarely (~0.7%). */
     504                 :         for (;;)
     505         2275371 :         {
     506         2434995 :             const uint64 vpDiv10 = div10(vp);
     507         2434995 :             const uint64 vmDiv10 = div10(vm);
     508                 : 
     509         2434995 :             if (vpDiv10 <= vmDiv10)
     510          159624 :                 break;
     511                 : 
     512         2275371 :             const uint32 vmMod10 = (uint32) (vm - 10 * vmDiv10);
     513         2275371 :             const uint64 vrDiv10 = div10(vr);
     514         2275371 :             const uint32 vrMod10 = (uint32) (vr - 10 * vrDiv10);
     515                 : 
     516         2275371 :             vmIsTrailingZeros &= vmMod10 == 0;
     517         2275371 :             vrIsTrailingZeros &= lastRemovedDigit == 0;
     518         2275371 :             lastRemovedDigit = (uint8) vrMod10;
     519         2275371 :             vr = vrDiv10;
     520         2275371 :             vp = vpDiv10;
     521         2275371 :             vm = vmDiv10;
     522         2275371 :             ++removed;
     523                 :         }
     524                 : 
     525          159624 :         if (vmIsTrailingZeros)
     526                 :         {
     527                 :             for (;;)
     528 UBC           0 :             {
     529               0 :                 const uint64 vmDiv10 = div10(vm);
     530               0 :                 const uint32 vmMod10 = (uint32) (vm - 10 * vmDiv10);
     531                 : 
     532               0 :                 if (vmMod10 != 0)
     533               0 :                     break;
     534                 : 
     535               0 :                 const uint64 vpDiv10 = div10(vp);
     536               0 :                 const uint64 vrDiv10 = div10(vr);
     537               0 :                 const uint32 vrMod10 = (uint32) (vr - 10 * vrDiv10);
     538                 : 
     539               0 :                 vrIsTrailingZeros &= lastRemovedDigit == 0;
     540               0 :                 lastRemovedDigit = (uint8) vrMod10;
     541               0 :                 vr = vrDiv10;
     542               0 :                 vp = vpDiv10;
     543               0 :                 vm = vmDiv10;
     544               0 :                 ++removed;
     545                 :             }
     546                 :         }
     547                 : 
     548 CBC      159624 :         if (vrIsTrailingZeros && lastRemovedDigit == 5 && vr % 2 == 0)
     549                 :         {
     550                 :             /* Round even if the exact number is .....50..0. */
     551              15 :             lastRemovedDigit = 4;
     552                 :         }
     553                 : 
     554                 :         /*
     555                 :          * We need to take vr + 1 if vr is outside bounds or we need to round
     556                 :          * up.
     557                 :          */
     558          159624 :         output = vr + ((vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5);
     559                 :     }
     560                 :     else
     561                 :     {
     562                 :         /*
     563                 :          * Specialized for the common case (~99.3%). Percentages below are
     564                 :          * relative to this.
     565                 :          */
     566          637142 :         bool        roundUp = false;
     567          637142 :         const uint64 vpDiv100 = div100(vp);
     568          637142 :         const uint64 vmDiv100 = div100(vm);
     569                 : 
     570          637142 :         if (vpDiv100 > vmDiv100)
     571                 :         {
     572                 :             /* Optimization:remove two digits at a time(~86.2 %). */
     573          569809 :             const uint64 vrDiv100 = div100(vr);
     574          569809 :             const uint32 vrMod100 = (uint32) (vr - 100 * vrDiv100);
     575                 : 
     576          569809 :             roundUp = vrMod100 >= 50;
     577          569809 :             vr = vrDiv100;
     578          569809 :             vp = vpDiv100;
     579          569809 :             vm = vmDiv100;
     580          569809 :             removed += 2;
     581                 :         }
     582                 : 
     583                 :         /*----
     584                 :          * Loop iterations below (approximately), without optimization
     585                 :          * above:
     586                 :          *
     587                 :          * 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%,
     588                 :          * 6+: 0.02%
     589                 :          *
     590                 :          * Loop iterations below (approximately), with optimization
     591                 :          * above:
     592                 :          *
     593                 :          * 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02%
     594                 :          *----
     595                 :          */
     596                 :         for (;;)
     597         1471376 :         {
     598         2108518 :             const uint64 vpDiv10 = div10(vp);
     599         2108518 :             const uint64 vmDiv10 = div10(vm);
     600                 : 
     601         2108518 :             if (vpDiv10 <= vmDiv10)
     602          637142 :                 break;
     603                 : 
     604         1471376 :             const uint64 vrDiv10 = div10(vr);
     605         1471376 :             const uint32 vrMod10 = (uint32) (vr - 10 * vrDiv10);
     606                 : 
     607         1471376 :             roundUp = vrMod10 >= 5;
     608         1471376 :             vr = vrDiv10;
     609         1471376 :             vp = vpDiv10;
     610         1471376 :             vm = vmDiv10;
     611         1471376 :             ++removed;
     612                 :         }
     613                 : 
     614                 :         /*
     615                 :          * We need to take vr + 1 if vr is outside bounds or we need to round
     616                 :          * up.
     617                 :          */
     618          637142 :         output = vr + (vr == vm || roundUp);
     619                 :     }
     620                 : 
     621          796766 :     const int32 exp = e10 + removed;
     622                 : 
     623                 :     floating_decimal_64 fd;
     624                 : 
     625          796766 :     fd.exponent = exp;
     626          796766 :     fd.mantissa = output;
     627          796766 :     return fd;
     628                 : }
     629                 : 
     630                 : static inline int
     631         1979049 : to_chars_df(const floating_decimal_64 v, const uint32 olength, char *const result)
     632                 : {
     633                 :     /* Step 5: Print the decimal representation. */
     634         1979049 :     int         index = 0;
     635                 : 
     636         1979049 :     uint64      output = v.mantissa;
     637         1979049 :     int32       exp = v.exponent;
     638                 : 
     639                 :     /*----
     640                 :      * On entry, mantissa * 10^exp is the result to be output.
     641                 :      * Caller has already done the - sign if needed.
     642                 :      *
     643                 :      * We want to insert the point somewhere depending on the output length
     644                 :      * and exponent, which might mean adding zeros:
     645                 :      *
     646                 :      *            exp  | format
     647                 :      *            1+   |  ddddddddd000000
     648                 :      *            0    |  ddddddddd
     649                 :      *  -1 .. -len+1   |  dddddddd.d to d.ddddddddd
     650                 :      *  -len ...       |  0.ddddddddd to 0.000dddddd
     651                 :      */
     652         1979049 :     uint32      i = 0;
     653         1979049 :     int32       nexp = exp + olength;
     654                 : 
     655         1979049 :     if (nexp <= 0)
     656                 :     {
     657                 :         /* -nexp is number of 0s to add after '.' */
     658          129825 :         Assert(nexp >= -3);
     659                 :         /* 0.000ddddd */
     660          129825 :         index = 2 - nexp;
     661                 :         /* won't need more than this many 0s */
     662          129825 :         memcpy(result, "0.000000", 8);
     663                 :     }
     664         1849224 :     else if (exp < 0)
     665                 :     {
     666                 :         /*
     667                 :          * dddd.dddd; leave space at the start and move the '.' in after
     668                 :          */
     669          665188 :         index = 1;
     670                 :     }
     671                 :     else
     672                 :     {
     673                 :         /*
     674                 :          * We can save some code later by pre-filling with zeros. We know that
     675                 :          * there can be no more than 16 output digits in this form, otherwise
     676                 :          * we would not choose fixed-point output.
     677                 :          */
     678         1184036 :         Assert(exp < 16 && exp + olength <= 16);
     679         1184036 :         memset(result, '0', 16);
     680                 :     }
     681                 : 
     682                 :     /*
     683                 :      * We prefer 32-bit operations, even on 64-bit platforms. We have at most
     684                 :      * 17 digits, and uint32 can store 9 digits. If output doesn't fit into
     685                 :      * uint32, we cut off 8 digits, so the rest will fit into uint32.
     686                 :      */
     687         1979049 :     if ((output >> 32) != 0)
     688                 :     {
     689                 :         /* Expensive 64-bit division. */
     690          508619 :         const uint64 q = div1e8(output);
     691          508619 :         uint32      output2 = (uint32) (output - 100000000 * q);
     692          508619 :         const uint32 c = output2 % 10000;
     693                 : 
     694          508619 :         output = q;
     695          508619 :         output2 /= 10000;
     696                 : 
     697          508619 :         const uint32 d = output2 % 10000;
     698          508619 :         const uint32 c0 = (c % 100) << 1;
     699          508619 :         const uint32 c1 = (c / 100) << 1;
     700          508619 :         const uint32 d0 = (d % 100) << 1;
     701          508619 :         const uint32 d1 = (d / 100) << 1;
     702                 : 
     703          508619 :         memcpy(result + index + olength - i - 2, DIGIT_TABLE + c0, 2);
     704          508619 :         memcpy(result + index + olength - i - 4, DIGIT_TABLE + c1, 2);
     705          508619 :         memcpy(result + index + olength - i - 6, DIGIT_TABLE + d0, 2);
     706          508619 :         memcpy(result + index + olength - i - 8, DIGIT_TABLE + d1, 2);
     707          508619 :         i += 8;
     708                 :     }
     709                 : 
     710         1979049 :     uint32      output2 = (uint32) output;
     711                 : 
     712         2967189 :     while (output2 >= 10000)
     713                 :     {
     714          988140 :         const uint32 c = output2 - 10000 * (output2 / 10000);
     715          988140 :         const uint32 c0 = (c % 100) << 1;
     716          988140 :         const uint32 c1 = (c / 100) << 1;
     717                 : 
     718          988140 :         output2 /= 10000;
     719          988140 :         memcpy(result + index + olength - i - 2, DIGIT_TABLE + c0, 2);
     720          988140 :         memcpy(result + index + olength - i - 4, DIGIT_TABLE + c1, 2);
     721          988140 :         i += 4;
     722                 :     }
     723         1979049 :     if (output2 >= 100)
     724                 :     {
     725         1457639 :         const uint32 c = (output2 % 100) << 1;
     726                 : 
     727         1457639 :         output2 /= 100;
     728         1457639 :         memcpy(result + index + olength - i - 2, DIGIT_TABLE + c, 2);
     729         1457639 :         i += 2;
     730                 :     }
     731         1979049 :     if (output2 >= 10)
     732                 :     {
     733          851969 :         const uint32 c = output2 << 1;
     734                 : 
     735          851969 :         memcpy(result + index + olength - i - 2, DIGIT_TABLE + c, 2);
     736                 :     }
     737                 :     else
     738                 :     {
     739         1127080 :         result[index] = (char) ('0' + output2);
     740                 :     }
     741                 : 
     742         1979049 :     if (index == 1)
     743                 :     {
     744                 :         /*
     745                 :          * nexp is 1..15 here, representing the number of digits before the
     746                 :          * point. A value of 16 is not possible because we switch to
     747                 :          * scientific notation when the display exponent reaches 15.
     748                 :          */
     749          665188 :         Assert(nexp < 16);
     750                 :         /* gcc only seems to want to optimize memmove for small 2^n */
     751          665188 :         if (nexp & 8)
     752                 :         {
     753             380 :             memmove(result + index - 1, result + index, 8);
     754             380 :             index += 8;
     755                 :         }
     756          665188 :         if (nexp & 4)
     757                 :         {
     758            3094 :             memmove(result + index - 1, result + index, 4);
     759            3094 :             index += 4;
     760                 :         }
     761          665188 :         if (nexp & 2)
     762                 :         {
     763          656173 :             memmove(result + index - 1, result + index, 2);
     764          656173 :             index += 2;
     765                 :         }
     766          665188 :         if (nexp & 1)
     767                 :         {
     768          551499 :             result[index - 1] = result[index];
     769                 :         }
     770          665188 :         result[nexp] = '.';
     771          665188 :         index = olength + 1;
     772                 :     }
     773         1313861 :     else if (exp >= 0)
     774                 :     {
     775                 :         /* we supplied the trailing zeros earlier, now just set the length. */
     776         1184036 :         index = olength + exp;
     777                 :     }
     778                 :     else
     779                 :     {
     780          129825 :         index = olength + (2 - nexp);
     781                 :     }
     782                 : 
     783         1979049 :     return index;
     784                 : }
     785                 : 
     786                 : static inline int
     787         1980847 : to_chars(floating_decimal_64 v, const bool sign, char *const result)
     788                 : {
     789                 :     /* Step 5: Print the decimal representation. */
     790         1980847 :     int         index = 0;
     791                 : 
     792         1980847 :     uint64      output = v.mantissa;
     793         1980847 :     uint32      olength = decimalLength(output);
     794         1980847 :     int32       exp = v.exponent + olength - 1;
     795                 : 
     796         1980847 :     if (sign)
     797                 :     {
     798           65609 :         result[index++] = '-';
     799                 :     }
     800                 : 
     801                 :     /*
     802                 :      * The thresholds for fixed-point output are chosen to match printf
     803                 :      * defaults. Beware that both the code of to_chars_df and the value of
     804                 :      * DOUBLE_SHORTEST_DECIMAL_LEN are sensitive to these thresholds.
     805                 :      */
     806         1980847 :     if (exp >= -4 && exp < 15)
     807         1979049 :         return to_chars_df(v, olength, result + index) + sign;
     808                 : 
     809                 :     /*
     810                 :      * If v.exponent is exactly 0, we might have reached here via the small
     811                 :      * integer fast path, in which case v.mantissa might contain trailing
     812                 :      * (decimal) zeros. For scientific notation we need to move these zeros
     813                 :      * into the exponent. (For fixed point this doesn't matter, which is why
     814                 :      * we do this here rather than above.)
     815                 :      *
     816                 :      * Since we already calculated the display exponent (exp) above based on
     817                 :      * the old decimal length, that value does not change here. Instead, we
     818                 :      * just reduce the display length for each digit removed.
     819                 :      *
     820                 :      * If we didn't get here via the fast path, the raw exponent will not
     821                 :      * usually be 0, and there will be no trailing zeros, so we pay no more
     822                 :      * than one div10/multiply extra cost. We claw back half of that by
     823                 :      * checking for divisibility by 2 before dividing by 10.
     824                 :      */
     825            1798 :     if (v.exponent == 0)
     826                 :     {
     827             555 :         while ((output & 1) == 0)
     828                 :         {
     829             513 :             const uint64 q = div10(output);
     830             513 :             const uint32 r = (uint32) (output - 10 * q);
     831                 : 
     832             513 :             if (r != 0)
     833             288 :                 break;
     834             225 :             output = q;
     835             225 :             --olength;
     836                 :         }
     837                 :     }
     838                 : 
     839                 :     /*----
     840                 :      * Print the decimal digits.
     841                 :      *
     842                 :      * The following code is equivalent to:
     843                 :      *
     844                 :      * for (uint32 i = 0; i < olength - 1; ++i) {
     845                 :      *   const uint32 c = output % 10; output /= 10;
     846                 :      *   result[index + olength - i] = (char) ('0' + c);
     847                 :      * }
     848                 :      * result[index] = '0' + output % 10;
     849                 :      *----
     850                 :      */
     851                 : 
     852            1798 :     uint32      i = 0;
     853                 : 
     854                 :     /*
     855                 :      * We prefer 32-bit operations, even on 64-bit platforms. We have at most
     856                 :      * 17 digits, and uint32 can store 9 digits. If output doesn't fit into
     857                 :      * uint32, we cut off 8 digits, so the rest will fit into uint32.
     858                 :      */
     859            1798 :     if ((output >> 32) != 0)
     860                 :     {
     861                 :         /* Expensive 64-bit division. */
     862            1330 :         const uint64 q = div1e8(output);
     863            1330 :         uint32      output2 = (uint32) (output - 100000000 * q);
     864                 : 
     865            1330 :         output = q;
     866                 : 
     867            1330 :         const uint32 c = output2 % 10000;
     868                 : 
     869            1330 :         output2 /= 10000;
     870                 : 
     871            1330 :         const uint32 d = output2 % 10000;
     872            1330 :         const uint32 c0 = (c % 100) << 1;
     873            1330 :         const uint32 c1 = (c / 100) << 1;
     874            1330 :         const uint32 d0 = (d % 100) << 1;
     875            1330 :         const uint32 d1 = (d / 100) << 1;
     876                 : 
     877            1330 :         memcpy(result + index + olength - i - 1, DIGIT_TABLE + c0, 2);
     878            1330 :         memcpy(result + index + olength - i - 3, DIGIT_TABLE + c1, 2);
     879            1330 :         memcpy(result + index + olength - i - 5, DIGIT_TABLE + d0, 2);
     880            1330 :         memcpy(result + index + olength - i - 7, DIGIT_TABLE + d1, 2);
     881            1330 :         i += 8;
     882                 :     }
     883                 : 
     884            1798 :     uint32      output2 = (uint32) output;
     885                 : 
     886            3768 :     while (output2 >= 10000)
     887                 :     {
     888            1970 :         const uint32 c = output2 - 10000 * (output2 / 10000);
     889                 : 
     890            1970 :         output2 /= 10000;
     891                 : 
     892            1970 :         const uint32 c0 = (c % 100) << 1;
     893            1970 :         const uint32 c1 = (c / 100) << 1;
     894                 : 
     895            1970 :         memcpy(result + index + olength - i - 1, DIGIT_TABLE + c0, 2);
     896            1970 :         memcpy(result + index + olength - i - 3, DIGIT_TABLE + c1, 2);
     897            1970 :         i += 4;
     898                 :     }
     899            1798 :     if (output2 >= 100)
     900                 :     {
     901             553 :         const uint32 c = (output2 % 100) << 1;
     902                 : 
     903             553 :         output2 /= 100;
     904             553 :         memcpy(result + index + olength - i - 1, DIGIT_TABLE + c, 2);
     905             553 :         i += 2;
     906                 :     }
     907            1798 :     if (output2 >= 10)
     908                 :     {
     909             753 :         const uint32 c = output2 << 1;
     910                 : 
     911                 :         /*
     912                 :          * We can't use memcpy here: the decimal dot goes between these two
     913                 :          * digits.
     914                 :          */
     915             753 :         result[index + olength - i] = DIGIT_TABLE[c + 1];
     916             753 :         result[index] = DIGIT_TABLE[c];
     917                 :     }
     918                 :     else
     919                 :     {
     920            1045 :         result[index] = (char) ('0' + output2);
     921                 :     }
     922                 : 
     923                 :     /* Print decimal point if needed. */
     924            1798 :     if (olength > 1)
     925                 :     {
     926            1399 :         result[index + 1] = '.';
     927            1399 :         index += olength + 1;
     928                 :     }
     929                 :     else
     930                 :     {
     931             399 :         ++index;
     932                 :     }
     933                 : 
     934                 :     /* Print the exponent. */
     935            1798 :     result[index++] = 'e';
     936            1798 :     if (exp < 0)
     937                 :     {
     938             686 :         result[index++] = '-';
     939             686 :         exp = -exp;
     940                 :     }
     941                 :     else
     942            1112 :         result[index++] = '+';
     943                 : 
     944            1798 :     if (exp >= 100)
     945                 :     {
     946             596 :         const int32 c = exp % 10;
     947                 : 
     948             596 :         memcpy(result + index, DIGIT_TABLE + 2 * (exp / 10), 2);
     949             596 :         result[index + 2] = (char) ('0' + c);
     950             596 :         index += 3;
     951                 :     }
     952                 :     else
     953                 :     {
     954            1202 :         memcpy(result + index, DIGIT_TABLE + 2 * exp, 2);
     955            1202 :         index += 2;
     956                 :     }
     957                 : 
     958            1798 :     return index;
     959                 : }
     960                 : 
     961                 : static inline bool
     962         1980847 : d2d_small_int(const uint64 ieeeMantissa,
     963                 :               const uint32 ieeeExponent,
     964                 :               floating_decimal_64 *v)
     965                 : {
     966         1980847 :     const int32 e2 = (int32) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS;
     967                 : 
     968                 :     /*
     969                 :      * Avoid using multiple "return false;" here since it tends to provoke the
     970                 :      * compiler into inlining multiple copies of d2d, which is undesirable.
     971                 :      */
     972                 : 
     973         1980847 :     if (e2 >= -DOUBLE_MANTISSA_BITS && e2 <= 0)
     974                 :     {
     975                 :         /*----
     976                 :          * Since 2^52 <= m2 < 2^53 and 0 <= -e2 <= 52:
     977                 :          *   1 <= f = m2 / 2^-e2 < 2^53.
     978                 :          *
     979                 :          * Test if the lower -e2 bits of the significand are 0, i.e. whether
     980                 :          * the fraction is 0. We can use ieeeMantissa here, since the implied
     981                 :          * 1 bit can never be tested by this; the implied 1 can only be part
     982                 :          * of a fraction if e2 < -DOUBLE_MANTISSA_BITS which we already
     983                 :          * checked. (e.g. 0.5 gives ieeeMantissa == 0 and e2 == -53)
     984                 :          */
     985         1849284 :         const uint64 mask = (UINT64CONST(1) << -e2) - 1;
     986         1849284 :         const uint64 fraction = ieeeMantissa & mask;
     987                 : 
     988         1849284 :         if (fraction == 0)
     989                 :         {
     990                 :             /*----
     991                 :              * f is an integer in the range [1, 2^53).
     992                 :              * Note: mantissa might contain trailing (decimal) 0's.
     993                 :              * Note: since 2^53 < 10^16, there is no need to adjust
     994                 :              * decimalLength().
     995                 :              */
     996         1184081 :             const uint64 m2 = (UINT64CONST(1) << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
     997                 : 
     998         1184081 :             v->mantissa = m2 >> -e2;
     999         1184081 :             v->exponent = 0;
    1000         1184081 :             return true;
    1001                 :         }
    1002                 :     }
    1003                 : 
    1004          796766 :     return false;
    1005                 : }
    1006                 : 
    1007                 : /*
    1008                 :  * Store the shortest decimal representation of the given double as an
    1009                 :  * UNTERMINATED string in the caller's supplied buffer (which must be at least
    1010                 :  * DOUBLE_SHORTEST_DECIMAL_LEN-1 bytes long).
    1011                 :  *
    1012                 :  * Returns the number of bytes stored.
    1013                 :  */
    1014                 : int
    1015         1984142 : double_to_shortest_decimal_bufn(double f, char *result)
    1016                 : {
    1017                 :     /*
    1018                 :      * Step 1: Decode the floating-point number, and unify normalized and
    1019                 :      * subnormal cases.
    1020                 :      */
    1021         1984142 :     const uint64 bits = double_to_bits(f);
    1022                 : 
    1023                 :     /* Decode bits into sign, mantissa, and exponent. */
    1024         1984142 :     const bool  ieeeSign = ((bits >> (DOUBLE_MANTISSA_BITS + DOUBLE_EXPONENT_BITS)) & 1) != 0;
    1025         1984142 :     const uint64 ieeeMantissa = bits & ((UINT64CONST(1) << DOUBLE_MANTISSA_BITS) - 1);
    1026         1984142 :     const uint32 ieeeExponent = (uint32) ((bits >> DOUBLE_MANTISSA_BITS) & ((1u << DOUBLE_EXPONENT_BITS) - 1));
    1027                 : 
    1028                 :     /* Case distinction; exit early for the easy cases. */
    1029         1984142 :     if (ieeeExponent == ((1u << DOUBLE_EXPONENT_BITS) - 1u) || (ieeeExponent == 0 && ieeeMantissa == 0))
    1030                 :     {
    1031            3295 :         return copy_special_str(result, ieeeSign, (ieeeExponent != 0), (ieeeMantissa != 0));
    1032                 :     }
    1033                 : 
    1034                 :     floating_decimal_64 v;
    1035         1980847 :     const bool  isSmallInt = d2d_small_int(ieeeMantissa, ieeeExponent, &v);
    1036                 : 
    1037         1980847 :     if (!isSmallInt)
    1038                 :     {
    1039          796766 :         v = d2d(ieeeMantissa, ieeeExponent);
    1040                 :     }
    1041                 : 
    1042         1980847 :     return to_chars(v, ieeeSign, result);
    1043                 : }
    1044                 : 
    1045                 : /*
    1046                 :  * Store the shortest decimal representation of the given double as a
    1047                 :  * null-terminated string in the caller's supplied buffer (which must be at
    1048                 :  * least DOUBLE_SHORTEST_DECIMAL_LEN bytes long).
    1049                 :  *
    1050                 :  * Returns the string length.
    1051                 :  */
    1052                 : int
    1053         1984142 : double_to_shortest_decimal_buf(double f, char *result)
    1054                 : {
    1055         1984142 :     const int   index = double_to_shortest_decimal_bufn(f, result);
    1056                 : 
    1057                 :     /* Terminate the string. */
    1058         1984142 :     Assert(index < DOUBLE_SHORTEST_DECIMAL_LEN);
    1059         1984142 :     result[index] = '\0';
    1060         1984142 :     return index;
    1061                 : }
    1062                 : 
    1063                 : /*
    1064                 :  * Return the shortest decimal representation as a null-terminated palloc'd
    1065                 :  * string (outside the backend, uses malloc() instead).
    1066                 :  *
    1067                 :  * Caller is responsible for freeing the result.
    1068                 :  */
    1069                 : char *
    1070 UBC           0 : double_to_shortest_decimal(double f)
    1071                 : {
    1072               0 :     char       *const result = (char *) palloc(DOUBLE_SHORTEST_DECIMAL_LEN);
    1073                 : 
    1074               0 :     double_to_shortest_decimal_buf(f, result);
    1075               0 :     return result;
    1076                 : }
        

Generated by: LCOV version v1.16-55-g56c0a2a