LCOV - differential code coverage report
Current view: top level - src/backend/storage/lmgr - predicate.c (source / functions) Coverage Total Hit UNC LBC UIC UBC GBC GIC GNC CBC EUB ECB DUB DCB
Current: Differential Code Coverage HEAD vs 15 Lines: 72.7 % 1445 1050 46 54 257 38 72 622 134 222 253 648 32 126
Current Date: 2023-04-08 15:15:32 Functions: 90.1 % 71 64 7 64 7 54 10
Baseline: 15
Baseline Date: 2023-04-08 15:09:40
Legend: Lines: hit not hit

           TLA  Line data    Source code
       1                 : /*-------------------------------------------------------------------------
       2                 :  *
       3                 :  * predicate.c
       4                 :  *    POSTGRES predicate locking
       5                 :  *    to support full serializable transaction isolation
       6                 :  *
       7                 :  *
       8                 :  * The approach taken is to implement Serializable Snapshot Isolation (SSI)
       9                 :  * as initially described in this paper:
      10                 :  *
      11                 :  *  Michael J. Cahill, Uwe Röhm, and Alan D. Fekete. 2008.
      12                 :  *  Serializable isolation for snapshot databases.
      13                 :  *  In SIGMOD '08: Proceedings of the 2008 ACM SIGMOD
      14                 :  *  international conference on Management of data,
      15                 :  *  pages 729-738, New York, NY, USA. ACM.
      16                 :  *  http://doi.acm.org/10.1145/1376616.1376690
      17                 :  *
      18                 :  * and further elaborated in Cahill's doctoral thesis:
      19                 :  *
      20                 :  *  Michael James Cahill. 2009.
      21                 :  *  Serializable Isolation for Snapshot Databases.
      22                 :  *  Sydney Digital Theses.
      23                 :  *  University of Sydney, School of Information Technologies.
      24                 :  *  http://hdl.handle.net/2123/5353
      25                 :  *
      26                 :  *
      27                 :  * Predicate locks for Serializable Snapshot Isolation (SSI) are SIREAD
      28                 :  * locks, which are so different from normal locks that a distinct set of
      29                 :  * structures is required to handle them.  They are needed to detect
      30                 :  * rw-conflicts when the read happens before the write.  (When the write
      31                 :  * occurs first, the reading transaction can check for a conflict by
      32                 :  * examining the MVCC data.)
      33                 :  *
      34                 :  * (1)  Besides tuples actually read, they must cover ranges of tuples
      35                 :  *      which would have been read based on the predicate.  This will
      36                 :  *      require modelling the predicates through locks against database
      37                 :  *      objects such as pages, index ranges, or entire tables.
      38                 :  *
      39                 :  * (2)  They must be kept in RAM for quick access.  Because of this, it
      40                 :  *      isn't possible to always maintain tuple-level granularity -- when
      41                 :  *      the space allocated to store these approaches exhaustion, a
      42                 :  *      request for a lock may need to scan for situations where a single
      43                 :  *      transaction holds many fine-grained locks which can be coalesced
      44                 :  *      into a single coarser-grained lock.
      45                 :  *
      46                 :  * (3)  They never block anything; they are more like flags than locks
      47                 :  *      in that regard; although they refer to database objects and are
      48                 :  *      used to identify rw-conflicts with normal write locks.
      49                 :  *
      50                 :  * (4)  While they are associated with a transaction, they must survive
      51                 :  *      a successful COMMIT of that transaction, and remain until all
      52                 :  *      overlapping transactions complete.  This even means that they
      53                 :  *      must survive termination of the transaction's process.  If a
      54                 :  *      top level transaction is rolled back, however, it is immediately
      55                 :  *      flagged so that it can be ignored, and its SIREAD locks can be
      56                 :  *      released any time after that.
      57                 :  *
      58                 :  * (5)  The only transactions which create SIREAD locks or check for
      59                 :  *      conflicts with them are serializable transactions.
      60                 :  *
      61                 :  * (6)  When a write lock for a top level transaction is found to cover
      62                 :  *      an existing SIREAD lock for the same transaction, the SIREAD lock
      63                 :  *      can be deleted.
      64                 :  *
      65                 :  * (7)  A write from a serializable transaction must ensure that an xact
      66                 :  *      record exists for the transaction, with the same lifespan (until
      67                 :  *      all concurrent transaction complete or the transaction is rolled
      68                 :  *      back) so that rw-dependencies to that transaction can be
      69                 :  *      detected.
      70                 :  *
      71                 :  * We use an optimization for read-only transactions. Under certain
      72                 :  * circumstances, a read-only transaction's snapshot can be shown to
      73                 :  * never have conflicts with other transactions.  This is referred to
      74                 :  * as a "safe" snapshot (and one known not to be is "unsafe").
      75                 :  * However, it can't be determined whether a snapshot is safe until
      76                 :  * all concurrent read/write transactions complete.
      77                 :  *
      78                 :  * Once a read-only transaction is known to have a safe snapshot, it
      79                 :  * can release its predicate locks and exempt itself from further
      80                 :  * predicate lock tracking. READ ONLY DEFERRABLE transactions run only
      81                 :  * on safe snapshots, waiting as necessary for one to be available.
      82                 :  *
      83                 :  *
      84                 :  * Lightweight locks to manage access to the predicate locking shared
      85                 :  * memory objects must be taken in this order, and should be released in
      86                 :  * reverse order:
      87                 :  *
      88                 :  *  SerializableFinishedListLock
      89                 :  *      - Protects the list of transactions which have completed but which
      90                 :  *          may yet matter because they overlap still-active transactions.
      91                 :  *
      92                 :  *  SerializablePredicateListLock
      93                 :  *      - Protects the linked list of locks held by a transaction.  Note
      94                 :  *          that the locks themselves are also covered by the partition
      95                 :  *          locks of their respective lock targets; this lock only affects
      96                 :  *          the linked list connecting the locks related to a transaction.
      97                 :  *      - All transactions share this single lock (with no partitioning).
      98                 :  *      - There is never a need for a process other than the one running
      99                 :  *          an active transaction to walk the list of locks held by that
     100                 :  *          transaction, except parallel query workers sharing the leader's
     101                 :  *          transaction.  In the parallel case, an extra per-sxact lock is
     102                 :  *          taken; see below.
     103                 :  *      - It is relatively infrequent that another process needs to
     104                 :  *          modify the list for a transaction, but it does happen for such
     105                 :  *          things as index page splits for pages with predicate locks and
     106                 :  *          freeing of predicate locked pages by a vacuum process.  When
     107                 :  *          removing a lock in such cases, the lock itself contains the
     108                 :  *          pointers needed to remove it from the list.  When adding a
     109                 :  *          lock in such cases, the lock can be added using the anchor in
     110                 :  *          the transaction structure.  Neither requires walking the list.
     111                 :  *      - Cleaning up the list for a terminated transaction is sometimes
     112                 :  *          not done on a retail basis, in which case no lock is required.
     113                 :  *      - Due to the above, a process accessing its active transaction's
     114                 :  *          list always uses a shared lock, regardless of whether it is
     115                 :  *          walking or maintaining the list.  This improves concurrency
     116                 :  *          for the common access patterns.
     117                 :  *      - A process which needs to alter the list of a transaction other
     118                 :  *          than its own active transaction must acquire an exclusive
     119                 :  *          lock.
     120                 :  *
     121                 :  *  SERIALIZABLEXACT's member 'perXactPredicateListLock'
     122                 :  *      - Protects the linked list of predicate locks held by a transaction.
     123                 :  *          Only needed for parallel mode, where multiple backends share the
     124                 :  *          same SERIALIZABLEXACT object.  Not needed if
     125                 :  *          SerializablePredicateListLock is held exclusively.
     126                 :  *
     127                 :  *  PredicateLockHashPartitionLock(hashcode)
     128                 :  *      - The same lock protects a target, all locks on that target, and
     129                 :  *          the linked list of locks on the target.
     130                 :  *      - When more than one is needed, acquire in ascending address order.
     131                 :  *      - When all are needed (rare), acquire in ascending index order with
     132                 :  *          PredicateLockHashPartitionLockByIndex(index).
     133                 :  *
     134                 :  *  SerializableXactHashLock
     135                 :  *      - Protects both PredXact and SerializableXidHash.
     136                 :  *
     137                 :  *
     138                 :  * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
     139                 :  * Portions Copyright (c) 1994, Regents of the University of California
     140                 :  *
     141                 :  *
     142                 :  * IDENTIFICATION
     143                 :  *    src/backend/storage/lmgr/predicate.c
     144                 :  *
     145                 :  *-------------------------------------------------------------------------
     146                 :  */
     147                 : /*
     148                 :  * INTERFACE ROUTINES
     149                 :  *
     150                 :  * housekeeping for setting up shared memory predicate lock structures
     151                 :  *      InitPredicateLocks(void)
     152                 :  *      PredicateLockShmemSize(void)
     153                 :  *
     154                 :  * predicate lock reporting
     155                 :  *      GetPredicateLockStatusData(void)
     156                 :  *      PageIsPredicateLocked(Relation relation, BlockNumber blkno)
     157                 :  *
     158                 :  * predicate lock maintenance
     159                 :  *      GetSerializableTransactionSnapshot(Snapshot snapshot)
     160                 :  *      SetSerializableTransactionSnapshot(Snapshot snapshot,
     161                 :  *                                         VirtualTransactionId *sourcevxid)
     162                 :  *      RegisterPredicateLockingXid(void)
     163                 :  *      PredicateLockRelation(Relation relation, Snapshot snapshot)
     164                 :  *      PredicateLockPage(Relation relation, BlockNumber blkno,
     165                 :  *                      Snapshot snapshot)
     166                 :  *      PredicateLockTID(Relation relation, ItemPointer tid, Snapshot snapshot,
     167                 :  *                       TransactionId insert_xid)
     168                 :  *      PredicateLockPageSplit(Relation relation, BlockNumber oldblkno,
     169                 :  *                             BlockNumber newblkno)
     170                 :  *      PredicateLockPageCombine(Relation relation, BlockNumber oldblkno,
     171                 :  *                               BlockNumber newblkno)
     172                 :  *      TransferPredicateLocksToHeapRelation(Relation relation)
     173                 :  *      ReleasePredicateLocks(bool isCommit, bool isReadOnlySafe)
     174                 :  *
     175                 :  * conflict detection (may also trigger rollback)
     176                 :  *      CheckForSerializableConflictOut(Relation relation, TransactionId xid,
     177                 :  *                                      Snapshot snapshot)
     178                 :  *      CheckForSerializableConflictIn(Relation relation, ItemPointer tid,
     179                 :  *                                     BlockNumber blkno)
     180                 :  *      CheckTableForSerializableConflictIn(Relation relation)
     181                 :  *
     182                 :  * final rollback checking
     183                 :  *      PreCommit_CheckForSerializationFailure(void)
     184                 :  *
     185                 :  * two-phase commit support
     186                 :  *      AtPrepare_PredicateLocks(void);
     187                 :  *      PostPrepare_PredicateLocks(TransactionId xid);
     188                 :  *      PredicateLockTwoPhaseFinish(TransactionId xid, bool isCommit);
     189                 :  *      predicatelock_twophase_recover(TransactionId xid, uint16 info,
     190                 :  *                                     void *recdata, uint32 len);
     191                 :  */
     192                 : 
     193                 : #include "postgres.h"
     194                 : 
     195                 : #include "access/parallel.h"
     196                 : #include "access/slru.h"
     197                 : #include "access/subtrans.h"
     198                 : #include "access/transam.h"
     199                 : #include "access/twophase.h"
     200                 : #include "access/twophase_rmgr.h"
     201                 : #include "access/xact.h"
     202                 : #include "access/xlog.h"
     203                 : #include "miscadmin.h"
     204                 : #include "pgstat.h"
     205                 : #include "port/pg_lfind.h"
     206                 : #include "storage/bufmgr.h"
     207                 : #include "storage/predicate.h"
     208                 : #include "storage/predicate_internals.h"
     209                 : #include "storage/proc.h"
     210                 : #include "storage/procarray.h"
     211                 : #include "utils/rel.h"
     212                 : #include "utils/snapmgr.h"
     213                 : 
     214                 : /* Uncomment the next line to test the graceful degradation code. */
     215                 : /* #define TEST_SUMMARIZE_SERIAL */
     216                 : 
     217                 : /*
     218                 :  * Test the most selective fields first, for performance.
     219                 :  *
     220                 :  * a is covered by b if all of the following hold:
     221                 :  *  1) a.database = b.database
     222                 :  *  2) a.relation = b.relation
     223                 :  *  3) b.offset is invalid (b is page-granularity or higher)
     224                 :  *  4) either of the following:
     225                 :  *      4a) a.offset is valid (a is tuple-granularity) and a.page = b.page
     226                 :  *   or 4b) a.offset is invalid and b.page is invalid (a is
     227                 :  *          page-granularity and b is relation-granularity
     228                 :  */
     229                 : #define TargetTagIsCoveredBy(covered_target, covering_target)           \
     230                 :     ((GET_PREDICATELOCKTARGETTAG_RELATION(covered_target) == /* (2) */  \
     231                 :       GET_PREDICATELOCKTARGETTAG_RELATION(covering_target))             \
     232                 :      && (GET_PREDICATELOCKTARGETTAG_OFFSET(covering_target) ==          \
     233                 :          InvalidOffsetNumber)                                /* (3) */  \
     234                 :      && (((GET_PREDICATELOCKTARGETTAG_OFFSET(covered_target) !=         \
     235                 :            InvalidOffsetNumber)                              /* (4a) */ \
     236                 :           && (GET_PREDICATELOCKTARGETTAG_PAGE(covering_target) ==       \
     237                 :               GET_PREDICATELOCKTARGETTAG_PAGE(covered_target)))         \
     238                 :          || ((GET_PREDICATELOCKTARGETTAG_PAGE(covering_target) ==       \
     239                 :               InvalidBlockNumber)                            /* (4b) */ \
     240                 :              && (GET_PREDICATELOCKTARGETTAG_PAGE(covered_target)        \
     241                 :                  != InvalidBlockNumber)))                               \
     242                 :      && (GET_PREDICATELOCKTARGETTAG_DB(covered_target) ==    /* (1) */  \
     243                 :          GET_PREDICATELOCKTARGETTAG_DB(covering_target)))
     244                 : 
     245                 : /*
     246                 :  * The predicate locking target and lock shared hash tables are partitioned to
     247                 :  * reduce contention.  To determine which partition a given target belongs to,
     248                 :  * compute the tag's hash code with PredicateLockTargetTagHashCode(), then
     249                 :  * apply one of these macros.
     250                 :  * NB: NUM_PREDICATELOCK_PARTITIONS must be a power of 2!
     251                 :  */
     252                 : #define PredicateLockHashPartition(hashcode) \
     253                 :     ((hashcode) % NUM_PREDICATELOCK_PARTITIONS)
     254                 : #define PredicateLockHashPartitionLock(hashcode) \
     255                 :     (&MainLWLockArray[PREDICATELOCK_MANAGER_LWLOCK_OFFSET + \
     256                 :         PredicateLockHashPartition(hashcode)].lock)
     257                 : #define PredicateLockHashPartitionLockByIndex(i) \
     258                 :     (&MainLWLockArray[PREDICATELOCK_MANAGER_LWLOCK_OFFSET + (i)].lock)
     259                 : 
     260                 : #define NPREDICATELOCKTARGETENTS() \
     261                 :     mul_size(max_predicate_locks_per_xact, add_size(MaxBackends, max_prepared_xacts))
     262                 : 
     263                 : #define SxactIsOnFinishedList(sxact) (!dlist_node_is_detached(&(sxact)->finishedLink))
     264                 : 
     265                 : /*
     266                 :  * Note that a sxact is marked "prepared" once it has passed
     267                 :  * PreCommit_CheckForSerializationFailure, even if it isn't using
     268                 :  * 2PC. This is the point at which it can no longer be aborted.
     269                 :  *
     270                 :  * The PREPARED flag remains set after commit, so SxactIsCommitted
     271                 :  * implies SxactIsPrepared.
     272                 :  */
     273                 : #define SxactIsCommitted(sxact) (((sxact)->flags & SXACT_FLAG_COMMITTED) != 0)
     274                 : #define SxactIsPrepared(sxact) (((sxact)->flags & SXACT_FLAG_PREPARED) != 0)
     275                 : #define SxactIsRolledBack(sxact) (((sxact)->flags & SXACT_FLAG_ROLLED_BACK) != 0)
     276                 : #define SxactIsDoomed(sxact) (((sxact)->flags & SXACT_FLAG_DOOMED) != 0)
     277                 : #define SxactIsReadOnly(sxact) (((sxact)->flags & SXACT_FLAG_READ_ONLY) != 0)
     278                 : #define SxactHasSummaryConflictIn(sxact) (((sxact)->flags & SXACT_FLAG_SUMMARY_CONFLICT_IN) != 0)
     279                 : #define SxactHasSummaryConflictOut(sxact) (((sxact)->flags & SXACT_FLAG_SUMMARY_CONFLICT_OUT) != 0)
     280                 : /*
     281                 :  * The following macro actually means that the specified transaction has a
     282                 :  * conflict out *to a transaction which committed ahead of it*.  It's hard
     283                 :  * to get that into a name of a reasonable length.
     284                 :  */
     285                 : #define SxactHasConflictOut(sxact) (((sxact)->flags & SXACT_FLAG_CONFLICT_OUT) != 0)
     286                 : #define SxactIsDeferrableWaiting(sxact) (((sxact)->flags & SXACT_FLAG_DEFERRABLE_WAITING) != 0)
     287                 : #define SxactIsROSafe(sxact) (((sxact)->flags & SXACT_FLAG_RO_SAFE) != 0)
     288                 : #define SxactIsROUnsafe(sxact) (((sxact)->flags & SXACT_FLAG_RO_UNSAFE) != 0)
     289                 : #define SxactIsPartiallyReleased(sxact) (((sxact)->flags & SXACT_FLAG_PARTIALLY_RELEASED) != 0)
     290                 : 
     291                 : /*
     292                 :  * Compute the hash code associated with a PREDICATELOCKTARGETTAG.
     293                 :  *
     294                 :  * To avoid unnecessary recomputations of the hash code, we try to do this
     295                 :  * just once per function, and then pass it around as needed.  Aside from
     296                 :  * passing the hashcode to hash_search_with_hash_value(), we can extract
     297                 :  * the lock partition number from the hashcode.
     298                 :  */
     299                 : #define PredicateLockTargetTagHashCode(predicatelocktargettag) \
     300                 :     get_hash_value(PredicateLockTargetHash, predicatelocktargettag)
     301                 : 
     302                 : /*
     303                 :  * Given a predicate lock tag, and the hash for its target,
     304                 :  * compute the lock hash.
     305                 :  *
     306                 :  * To make the hash code also depend on the transaction, we xor the sxid
     307                 :  * struct's address into the hash code, left-shifted so that the
     308                 :  * partition-number bits don't change.  Since this is only a hash, we
     309                 :  * don't care if we lose high-order bits of the address; use an
     310                 :  * intermediate variable to suppress cast-pointer-to-int warnings.
     311                 :  */
     312                 : #define PredicateLockHashCodeFromTargetHashCode(predicatelocktag, targethash) \
     313                 :     ((targethash) ^ ((uint32) PointerGetDatum((predicatelocktag)->myXact)) \
     314                 :      << LOG2_NUM_PREDICATELOCK_PARTITIONS)
     315                 : 
     316                 : 
     317                 : /*
     318                 :  * The SLRU buffer area through which we access the old xids.
     319                 :  */
     320                 : static SlruCtlData SerialSlruCtlData;
     321                 : 
     322                 : #define SerialSlruCtl           (&SerialSlruCtlData)
     323                 : 
     324                 : #define SERIAL_PAGESIZE         BLCKSZ
     325                 : #define SERIAL_ENTRYSIZE            sizeof(SerCommitSeqNo)
     326                 : #define SERIAL_ENTRIESPERPAGE   (SERIAL_PAGESIZE / SERIAL_ENTRYSIZE)
     327                 : 
     328                 : /*
     329                 :  * Set maximum pages based on the number needed to track all transactions.
     330                 :  */
     331                 : #define SERIAL_MAX_PAGE         (MaxTransactionId / SERIAL_ENTRIESPERPAGE)
     332                 : 
     333                 : #define SerialNextPage(page) (((page) >= SERIAL_MAX_PAGE) ? 0 : (page) + 1)
     334                 : 
     335                 : #define SerialValue(slotno, xid) (*((SerCommitSeqNo *) \
     336                 :     (SerialSlruCtl->shared->page_buffer[slotno] + \
     337                 :     ((((uint32) (xid)) % SERIAL_ENTRIESPERPAGE) * SERIAL_ENTRYSIZE))))
     338                 : 
     339                 : #define SerialPage(xid) (((uint32) (xid)) / SERIAL_ENTRIESPERPAGE)
     340                 : 
     341                 : typedef struct SerialControlData
     342                 : {
     343                 :     int         headPage;       /* newest initialized page */
     344                 :     TransactionId headXid;      /* newest valid Xid in the SLRU */
     345                 :     TransactionId tailXid;      /* oldest xmin we might be interested in */
     346                 : }           SerialControlData;
     347                 : 
     348                 : typedef struct SerialControlData *SerialControl;
     349                 : 
     350                 : static SerialControl serialControl;
     351                 : 
     352                 : /*
     353                 :  * When the oldest committed transaction on the "finished" list is moved to
     354                 :  * SLRU, its predicate locks will be moved to this "dummy" transaction,
     355                 :  * collapsing duplicate targets.  When a duplicate is found, the later
     356                 :  * commitSeqNo is used.
     357                 :  */
     358                 : static SERIALIZABLEXACT *OldCommittedSxact;
     359                 : 
     360                 : 
     361                 : /*
     362                 :  * These configuration variables are used to set the predicate lock table size
     363                 :  * and to control promotion of predicate locks to coarser granularity in an
     364                 :  * attempt to degrade performance (mostly as false positive serialization
     365                 :  * failure) gracefully in the face of memory pressure.
     366                 :  */
     367                 : int         max_predicate_locks_per_xact;   /* in guc_tables.c */
     368                 : int         max_predicate_locks_per_relation;   /* in guc_tables.c */
     369                 : int         max_predicate_locks_per_page;   /* in guc_tables.c */
     370                 : 
     371                 : /*
     372                 :  * This provides a list of objects in order to track transactions
     373                 :  * participating in predicate locking.  Entries in the list are fixed size,
     374                 :  * and reside in shared memory.  The memory address of an entry must remain
     375                 :  * fixed during its lifetime.  The list will be protected from concurrent
     376                 :  * update externally; no provision is made in this code to manage that.  The
     377                 :  * number of entries in the list, and the size allowed for each entry is
     378                 :  * fixed upon creation.
     379                 :  */
     380                 : static PredXactList PredXact;
     381                 : 
     382                 : /*
     383                 :  * This provides a pool of RWConflict data elements to use in conflict lists
     384                 :  * between transactions.
     385                 :  */
     386                 : static RWConflictPoolHeader RWConflictPool;
     387                 : 
     388                 : /*
     389                 :  * The predicate locking hash tables are in shared memory.
     390                 :  * Each backend keeps pointers to them.
     391                 :  */
     392                 : static HTAB *SerializableXidHash;
     393                 : static HTAB *PredicateLockTargetHash;
     394                 : static HTAB *PredicateLockHash;
     395                 : static dlist_head *FinishedSerializableTransactions;
     396                 : 
     397                 : /*
     398                 :  * Tag for a dummy entry in PredicateLockTargetHash. By temporarily removing
     399                 :  * this entry, you can ensure that there's enough scratch space available for
     400                 :  * inserting one entry in the hash table. This is an otherwise-invalid tag.
     401                 :  */
     402                 : static const PREDICATELOCKTARGETTAG ScratchTargetTag = {0, 0, 0, 0};
     403                 : static uint32 ScratchTargetTagHash;
     404                 : static LWLock *ScratchPartitionLock;
     405                 : 
     406                 : /*
     407                 :  * The local hash table used to determine when to combine multiple fine-
     408                 :  * grained locks into a single courser-grained lock.
     409                 :  */
     410                 : static HTAB *LocalPredicateLockHash = NULL;
     411                 : 
     412                 : /*
     413                 :  * Keep a pointer to the currently-running serializable transaction (if any)
     414                 :  * for quick reference. Also, remember if we have written anything that could
     415                 :  * cause a rw-conflict.
     416                 :  */
     417                 : static SERIALIZABLEXACT *MySerializableXact = InvalidSerializableXact;
     418                 : static bool MyXactDidWrite = false;
     419                 : 
     420                 : /*
     421                 :  * The SXACT_FLAG_RO_UNSAFE optimization might lead us to release
     422                 :  * MySerializableXact early.  If that happens in a parallel query, the leader
     423                 :  * needs to defer the destruction of the SERIALIZABLEXACT until end of
     424                 :  * transaction, because the workers still have a reference to it.  In that
     425                 :  * case, the leader stores it here.
     426                 :  */
     427                 : static SERIALIZABLEXACT *SavedSerializableXact = InvalidSerializableXact;
     428                 : 
     429                 : /* local functions */
     430                 : 
     431                 : static SERIALIZABLEXACT *CreatePredXact(void);
     432                 : static void ReleasePredXact(SERIALIZABLEXACT *sxact);
     433                 : 
     434                 : static bool RWConflictExists(const SERIALIZABLEXACT *reader, const SERIALIZABLEXACT *writer);
     435                 : static void SetRWConflict(SERIALIZABLEXACT *reader, SERIALIZABLEXACT *writer);
     436                 : static void SetPossibleUnsafeConflict(SERIALIZABLEXACT *roXact, SERIALIZABLEXACT *activeXact);
     437                 : static void ReleaseRWConflict(RWConflict conflict);
     438                 : static void FlagSxactUnsafe(SERIALIZABLEXACT *sxact);
     439                 : 
     440                 : static bool SerialPagePrecedesLogically(int page1, int page2);
     441                 : static void SerialInit(void);
     442                 : static void SerialAdd(TransactionId xid, SerCommitSeqNo minConflictCommitSeqNo);
     443                 : static SerCommitSeqNo SerialGetMinConflictCommitSeqNo(TransactionId xid);
     444                 : static void SerialSetActiveSerXmin(TransactionId xid);
     445                 : 
     446                 : static uint32 predicatelock_hash(const void *key, Size keysize);
     447                 : static void SummarizeOldestCommittedSxact(void);
     448                 : static Snapshot GetSafeSnapshot(Snapshot origSnapshot);
     449                 : static Snapshot GetSerializableTransactionSnapshotInt(Snapshot snapshot,
     450                 :                                                       VirtualTransactionId *sourcevxid,
     451                 :                                                       int sourcepid);
     452                 : static bool PredicateLockExists(const PREDICATELOCKTARGETTAG *targettag);
     453                 : static bool GetParentPredicateLockTag(const PREDICATELOCKTARGETTAG *tag,
     454                 :                                       PREDICATELOCKTARGETTAG *parent);
     455                 : static bool CoarserLockCovers(const PREDICATELOCKTARGETTAG *newtargettag);
     456                 : static void RemoveScratchTarget(bool lockheld);
     457                 : static void RestoreScratchTarget(bool lockheld);
     458                 : static void RemoveTargetIfNoLongerUsed(PREDICATELOCKTARGET *target,
     459                 :                                        uint32 targettaghash);
     460                 : static void DeleteChildTargetLocks(const PREDICATELOCKTARGETTAG *newtargettag);
     461                 : static int  MaxPredicateChildLocks(const PREDICATELOCKTARGETTAG *tag);
     462                 : static bool CheckAndPromotePredicateLockRequest(const PREDICATELOCKTARGETTAG *reqtag);
     463                 : static void DecrementParentLocks(const PREDICATELOCKTARGETTAG *targettag);
     464                 : static void CreatePredicateLock(const PREDICATELOCKTARGETTAG *targettag,
     465                 :                                 uint32 targettaghash,
     466                 :                                 SERIALIZABLEXACT *sxact);
     467                 : static void DeleteLockTarget(PREDICATELOCKTARGET *target, uint32 targettaghash);
     468                 : static bool TransferPredicateLocksToNewTarget(PREDICATELOCKTARGETTAG oldtargettag,
     469                 :                                               PREDICATELOCKTARGETTAG newtargettag,
     470                 :                                               bool removeOld);
     471                 : static void PredicateLockAcquire(const PREDICATELOCKTARGETTAG *targettag);
     472                 : static void DropAllPredicateLocksFromTable(Relation relation,
     473                 :                                            bool transfer);
     474                 : static void SetNewSxactGlobalXmin(void);
     475                 : static void ClearOldPredicateLocks(void);
     476                 : static void ReleaseOneSerializableXact(SERIALIZABLEXACT *sxact, bool partial,
     477                 :                                        bool summarize);
     478                 : static bool XidIsConcurrent(TransactionId xid);
     479                 : static void CheckTargetForConflictsIn(PREDICATELOCKTARGETTAG *targettag);
     480                 : static void FlagRWConflict(SERIALIZABLEXACT *reader, SERIALIZABLEXACT *writer);
     481                 : static void OnConflict_CheckForSerializationFailure(const SERIALIZABLEXACT *reader,
     482                 :                                                     SERIALIZABLEXACT *writer);
     483                 : static void CreateLocalPredicateLockHash(void);
     484                 : static void ReleasePredicateLocksLocal(void);
     485                 : 
     486                 : 
     487                 : /*------------------------------------------------------------------------*/
     488                 : 
     489                 : /*
     490                 :  * Does this relation participate in predicate locking? Temporary and system
     491                 :  * relations are exempt.
     492                 :  */
     493 ECB             : static inline bool
     494 GIC      144322 : PredicateLockingNeededForRelation(Relation relation)
     495 ECB             : {
     496 CBC      200781 :     return !(relation->rd_id < FirstUnpinnedObjectId ||
     497 GNC       56459 :              RelationUsesLocalBuffers(relation));
     498                 : }
     499                 : 
     500                 : /*
     501                 :  * When a public interface method is called for a read, this is the test to
     502                 :  * see if we should do a quick return.
     503                 :  *
     504                 :  * Note: this function has side-effects! If this transaction has been flagged
     505                 :  * as RO-safe since the last call, we release all predicate locks and reset
     506                 :  * MySerializableXact. That makes subsequent calls to return quickly.
     507                 :  *
     508                 :  * This is marked as 'inline' to eliminate the function call overhead in the
     509                 :  * common case that serialization is not needed.
     510 ECB             :  */
     511                 : static inline bool
     512 GIC   271976780 : SerializationNeededForRead(Relation relation, Snapshot snapshot)
     513 ECB             : {
     514                 :     /* Nothing to do if this is not a serializable transaction */
     515 GIC   271976780 :     if (MySerializableXact == InvalidSerializableXact)
     516       271838078 :         return false;
     517                 : 
     518                 :     /*
     519                 :      * Don't acquire locks or conflict when scanning with a special snapshot.
     520                 :      * This excludes things like CLUSTER and REINDEX. They use the wholesale
     521                 :      * functions TransferPredicateLocksToHeapRelation() and
     522                 :      * CheckTableForSerializableConflictIn() to participate in serialization,
     523 ECB             :      * but the scans involved don't need serialization.
     524                 :      */
     525 GIC      138702 :     if (!IsMVCCSnapshot(snapshot))
     526            1450 :         return false;
     527                 : 
     528                 :     /*
     529                 :      * Check if we have just become "RO-safe". If we have, immediately release
     530                 :      * all locks as they're not needed anymore. This also resets
     531                 :      * MySerializableXact, so that subsequent calls to this function can exit
     532                 :      * quickly.
     533                 :      *
     534                 :      * A transaction is flagged as RO_SAFE if all concurrent R/W transactions
     535                 :      * commit without having conflicts out to an earlier snapshot, thus
     536 ECB             :      * ensuring that no conflicts are possible for this transaction.
     537                 :      */
     538 CBC      137252 :     if (SxactIsROSafe(MySerializableXact))
     539 ECB             :     {
     540 GIC          33 :         ReleasePredicateLocks(false, true);
     541              33 :         return false;
     542                 :     }
     543 ECB             : 
     544                 :     /* Check if the relation doesn't participate in predicate locking */
     545 GIC      137219 :     if (!PredicateLockingNeededForRelation(relation))
     546 CBC       85415 :         return false;
     547                 : 
     548 GIC       51804 :     return true;                /* no excuse to skip predicate locking */
     549                 : }
     550                 : 
     551                 : /*
     552                 :  * Like SerializationNeededForRead(), but called on writes.
     553                 :  * The logic is the same, but there is no snapshot and we can't be RO-safe.
     554 ECB             :  */
     555                 : static inline bool
     556 GIC    24295083 : SerializationNeededForWrite(Relation relation)
     557 ECB             : {
     558                 :     /* Nothing to do if this is not a serializable transaction */
     559 GIC    24295083 :     if (MySerializableXact == InvalidSerializableXact)
     560        24288026 :         return false;
     561 ECB             : 
     562                 :     /* Check if the relation doesn't participate in predicate locking */
     563 GIC        7057 :     if (!PredicateLockingNeededForRelation(relation))
     564 CBC        2629 :         return false;
     565                 : 
     566 GIC        4428 :     return true;                /* no excuse to skip predicate locking */
     567                 : }
     568                 : 
     569                 : 
     570                 : /*------------------------------------------------------------------------*/
     571                 : 
     572                 : /*
     573                 :  * These functions are a simple implementation of a list for this specific
     574                 :  * type of struct.  If there is ever a generalized shared memory list, we
     575                 :  * should probably switch to that.
     576 ECB             :  */
     577                 : static SERIALIZABLEXACT *
     578 GIC        3467 : CreatePredXact(void)
     579                 : {
     580                 :     SERIALIZABLEXACT *sxact;
     581 EUB             : 
     582 GNC        3467 :     if (dlist_is_empty(&PredXact->availableList))
     583 UIC           0 :         return NULL;
     584                 : 
     585 GNC        3467 :     sxact = dlist_container(SERIALIZABLEXACT, xactLink,
     586                 :                             dlist_pop_head_node(&PredXact->availableList));
     587            3467 :     dlist_push_tail(&PredXact->activeList, &sxact->xactLink);
     588            3467 :     return sxact;
     589 ECB             : }
     590                 : 
     591                 : static void
     592 CBC        1641 : ReleasePredXact(SERIALIZABLEXACT *sxact)
     593 ECB             : {
     594 GIC        1641 :     Assert(ShmemAddrIsValid(sxact));
     595                 : 
     596 GNC        1641 :     dlist_delete(&sxact->xactLink);
     597            1641 :     dlist_push_tail(&PredXact->availableList, &sxact->xactLink);
     598 GIC        1641 : }
     599 ECB             : 
     600 EUB             : /*------------------------------------------------------------------------*/
     601                 : 
     602                 : /*
     603                 :  * These functions manage primitive access to the RWConflict pool and lists.
     604                 :  */
     605 ECB             : static bool
     606 CBC        2648 : RWConflictExists(const SERIALIZABLEXACT *reader, const SERIALIZABLEXACT *writer)
     607                 : {
     608                 :     dlist_iter  iter;
     609 ECB             : 
     610 CBC        2648 :     Assert(reader != writer);
     611 ECB             : 
     612                 :     /* Check the ends of the purported conflict first. */
     613 GIC        2648 :     if (SxactIsDoomed(reader)
     614            2648 :         || SxactIsDoomed(writer)
     615 GNC        2640 :         || dlist_is_empty(&reader->outConflicts)
     616             607 :         || dlist_is_empty(&writer->inConflicts))
     617 GIC        2113 :         return false;
     618                 : 
     619                 :     /*
     620                 :      * A conflict is possible; walk the list to find out.
     621                 :      *
     622                 :      * The unconstify is needed as we have no const version of
     623                 :      * dlist_foreach().
     624                 :      */
     625 GNC         559 :     dlist_foreach(iter, &unconstify(SERIALIZABLEXACT *, reader)->outConflicts)
     626 EUB             :     {
     627 GNC         535 :         RWConflict  conflict =
     628             535 :         dlist_container(RWConflictData, outLink, iter.cur);
     629                 : 
     630 GIC         535 :         if (conflict->sxactIn == writer)
     631             511 :             return true;
     632                 :     }
     633 ECB             : 
     634                 :     /* No conflict found. */
     635 CBC          24 :     return false;
     636 ECB             : }
     637                 : 
     638                 : static void
     639 GIC         780 : SetRWConflict(SERIALIZABLEXACT *reader, SERIALIZABLEXACT *writer)
     640 ECB             : {
     641                 :     RWConflict  conflict;
     642                 : 
     643 CBC         780 :     Assert(reader != writer);
     644             780 :     Assert(!RWConflictExists(reader, writer));
     645 ECB             : 
     646 GNC         780 :     if (dlist_is_empty(&RWConflictPool->availableList))
     647 UIC           0 :         ereport(ERROR,
     648 ECB             :                 (errcode(ERRCODE_OUT_OF_MEMORY),
     649                 :                  errmsg("not enough elements in RWConflictPool to record a read/write conflict"),
     650                 :                  errhint("You might need to run fewer transactions at a time or increase max_connections.")));
     651                 : 
     652 GNC         780 :     conflict = dlist_head_element(RWConflictData, outLink, &RWConflictPool->availableList);
     653             780 :     dlist_delete(&conflict->outLink);
     654                 : 
     655 GIC         780 :     conflict->sxactOut = reader;
     656             780 :     conflict->sxactIn = writer;
     657 GNC         780 :     dlist_push_tail(&reader->outConflicts, &conflict->outLink);
     658             780 :     dlist_push_tail(&writer->inConflicts, &conflict->inLink);
     659 GIC         780 : }
     660 ECB             : 
     661                 : static void
     662 GIC         132 : SetPossibleUnsafeConflict(SERIALIZABLEXACT *roXact,
     663 ECB             :                           SERIALIZABLEXACT *activeXact)
     664                 : {
     665                 :     RWConflict  conflict;
     666                 : 
     667 GIC         132 :     Assert(roXact != activeXact);
     668 CBC         132 :     Assert(SxactIsReadOnly(roXact));
     669 GIC         132 :     Assert(!SxactIsReadOnly(activeXact));
     670                 : 
     671 GNC         132 :     if (dlist_is_empty(&RWConflictPool->availableList))
     672 UIC           0 :         ereport(ERROR,
     673 ECB             :                 (errcode(ERRCODE_OUT_OF_MEMORY),
     674                 :                  errmsg("not enough elements in RWConflictPool to record a potential read/write conflict"),
     675                 :                  errhint("You might need to run fewer transactions at a time or increase max_connections.")));
     676                 : 
     677 GNC         132 :     conflict = dlist_head_element(RWConflictData, outLink, &RWConflictPool->availableList);
     678             132 :     dlist_delete(&conflict->outLink);
     679 ECB             : 
     680 CBC         132 :     conflict->sxactOut = activeXact;
     681             132 :     conflict->sxactIn = roXact;
     682 GNC         132 :     dlist_push_tail(&activeXact->possibleUnsafeConflicts, &conflict->outLink);
     683             132 :     dlist_push_tail(&roXact->possibleUnsafeConflicts, &conflict->inLink);
     684 GIC         132 : }
     685                 : 
     686                 : static void
     687             912 : ReleaseRWConflict(RWConflict conflict)
     688 ECB             : {
     689 GNC         912 :     dlist_delete(&conflict->inLink);
     690             912 :     dlist_delete(&conflict->outLink);
     691             912 :     dlist_push_tail(&RWConflictPool->availableList, &conflict->outLink);
     692 GIC         912 : }
     693                 : 
     694                 : static void
     695               3 : FlagSxactUnsafe(SERIALIZABLEXACT *sxact)
     696                 : {
     697                 :     dlist_mutable_iter iter;
     698                 : 
     699 CBC           3 :     Assert(SxactIsReadOnly(sxact));
     700               3 :     Assert(!SxactIsROSafe(sxact));
     701 ECB             : 
     702 CBC           3 :     sxact->flags |= SXACT_FLAG_RO_UNSAFE;
     703 ECB             : 
     704                 :     /*
     705                 :      * We know this isn't a safe snapshot, so we can stop looking for other
     706                 :      * potential conflicts.
     707                 :      */
     708 GNC           6 :     dlist_foreach_modify(iter, &sxact->possibleUnsafeConflicts)
     709                 :     {
     710               3 :         RWConflict  conflict =
     711               3 :         dlist_container(RWConflictData, inLink, iter.cur);
     712                 : 
     713 GIC           3 :         Assert(!SxactIsReadOnly(conflict->sxactOut));
     714               3 :         Assert(sxact == conflict->sxactIn);
     715                 : 
     716               3 :         ReleaseRWConflict(conflict);
     717                 :     }
     718               3 : }
     719                 : 
     720                 : /*------------------------------------------------------------------------*/
     721                 : 
     722                 : /*
     723                 :  * Decide whether a Serial page number is "older" for truncation purposes.
     724                 :  * Analogous to CLOGPagePrecedes().
     725 ECB             :  */
     726                 : static bool
     727 CBC       74866 : SerialPagePrecedesLogically(int page1, int page2)
     728                 : {
     729                 :     TransactionId xid1;
     730                 :     TransactionId xid2;
     731 ECB             : 
     732 GIC       74866 :     xid1 = ((TransactionId) page1) * SERIAL_ENTRIESPERPAGE;
     733           74866 :     xid1 += FirstNormalTransactionId + 1;
     734           74866 :     xid2 = ((TransactionId) page2) * SERIAL_ENTRIESPERPAGE;
     735           74866 :     xid2 += FirstNormalTransactionId + 1;
     736                 : 
     737          125994 :     return (TransactionIdPrecedes(xid1, xid2) &&
     738 CBC       51128 :             TransactionIdPrecedes(xid1, xid2 + SERIAL_ENTRIESPERPAGE - 1));
     739                 : }
     740                 : 
     741                 : #ifdef USE_ASSERT_CHECKING
     742                 : static void
     743 GIC        1826 : SerialPagePrecedesLogicallyUnitTests(void)
     744                 : {
     745 CBC        1826 :     int         per_page = SERIAL_ENTRIESPERPAGE,
     746            1826 :                 offset = per_page / 2;
     747 ECB             :     int         newestPage,
     748                 :                 oldestPage,
     749                 :                 headPage,
     750                 :                 targetPage;
     751                 :     TransactionId newestXact,
     752                 :                 oldestXact;
     753                 : 
     754                 :     /* GetNewTransactionId() has assigned the last XID it can safely use. */
     755 GIC        1826 :     newestPage = 2 * SLRU_PAGES_PER_SEGMENT - 1;    /* nothing special */
     756            1826 :     newestXact = newestPage * per_page + offset;
     757 CBC        1826 :     Assert(newestXact / per_page == newestPage);
     758            1826 :     oldestXact = newestXact + 1;
     759 GIC        1826 :     oldestXact -= 1U << 31;
     760 CBC        1826 :     oldestPage = oldestXact / per_page;
     761 ECB             : 
     762                 :     /*
     763                 :      * In this scenario, the SLRU headPage pertains to the last ~1000 XIDs
     764                 :      * assigned.  oldestXact finishes, ~2B XIDs having elapsed since it
     765                 :      * started.  Further transactions cause us to summarize oldestXact to
     766                 :      * tailPage.  Function must return false so SerialAdd() doesn't zero
     767                 :      * tailPage (which may contain entries for other old, recently-finished
     768                 :      * XIDs) and half the SLRU.  Reaching this requires burning ~2B XIDs in
     769                 :      * single-user mode, a negligible possibility.
     770                 :      */
     771 GIC        1826 :     headPage = newestPage;
     772            1826 :     targetPage = oldestPage;
     773            1826 :     Assert(!SerialPagePrecedesLogically(headPage, targetPage));
     774                 : 
     775                 :     /*
     776                 :      * In this scenario, the SLRU headPage pertains to oldestXact.  We're
     777                 :      * summarizing an XID near newestXact.  (Assume few other XIDs used
     778 EUB             :      * SERIALIZABLE, hence the minimal headPage advancement.  Assume
     779                 :      * oldestXact was long-running and only recently reached the SLRU.)
     780                 :      * Function must return true to make SerialAdd() create targetPage.
     781                 :      *
     782                 :      * Today's implementation mishandles this case, but it doesn't matter
     783                 :      * enough to fix.  Verify that the defect affects just one page by
     784                 :      * asserting correct treatment of its prior page.  Reaching this case
     785                 :      * requires burning ~2B XIDs in single-user mode, a negligible
     786                 :      * possibility.  Moreover, if it does happen, the consequence would be
     787                 :      * mild, namely a new transaction failing in SimpleLruReadPage().
     788                 :      */
     789 GIC        1826 :     headPage = oldestPage;
     790 GBC        1826 :     targetPage = newestPage;
     791 GIC        1826 :     Assert(SerialPagePrecedesLogically(headPage, targetPage - 1));
     792                 : #if 0
     793                 :     Assert(SerialPagePrecedesLogically(headPage, targetPage));
     794                 : #endif
     795            1826 : }
     796                 : #endif
     797 EUB             : 
     798                 : /*
     799                 :  * Initialize for the tracking of old serializable committed xids.
     800                 :  */
     801                 : static void
     802 GIC        1826 : SerialInit(void)
     803                 : {
     804                 :     bool        found;
     805                 : 
     806 EUB             :     /*
     807                 :      * Set up SLRU management of the pg_serial data.
     808                 :      */
     809 GBC        1826 :     SerialSlruCtl->PagePrecedes = SerialPagePrecedesLogically;
     810 GIC        1826 :     SimpleLruInit(SerialSlruCtl, "Serial",
     811            1826 :                   NUM_SERIAL_BUFFERS, 0, SerialSLRULock, "pg_serial",
     812                 :                   LWTRANCHE_SERIAL_BUFFER, SYNC_HANDLER_NONE);
     813 EUB             : #ifdef USE_ASSERT_CHECKING
     814 GBC        1826 :     SerialPagePrecedesLogicallyUnitTests();
     815                 : #endif
     816 GIC        1826 :     SlruPagePrecedesUnitTests(SerialSlruCtl, SERIAL_ENTRIESPERPAGE);
     817                 : 
     818 EUB             :     /*
     819                 :      * Create or attach to the SerialControl structure.
     820                 :      */
     821 GBC        1826 :     serialControl = (SerialControl)
     822            1826 :         ShmemInitStruct("SerialControlData", sizeof(SerialControlData), &found);
     823                 : 
     824            1826 :     Assert(found == IsUnderPostmaster);
     825 GIC        1826 :     if (!found)
     826                 :     {
     827 EUB             :         /*
     828                 :          * Set control information to reflect empty SLRU.
     829                 :          */
     830 GBC        1826 :         serialControl->headPage = -1;
     831 GIC        1826 :         serialControl->headXid = InvalidTransactionId;
     832 GBC        1826 :         serialControl->tailXid = InvalidTransactionId;
     833                 :     }
     834 GIC        1826 : }
     835 EUB             : 
     836                 : /*
     837                 :  * Record a committed read write serializable xid and the minimum
     838                 :  * commitSeqNo of any transactions to which this xid had a rw-conflict out.
     839                 :  * An invalid commitSeqNo means that there were no conflicts out from xid.
     840                 :  */
     841                 : static void
     842 UIC           0 : SerialAdd(TransactionId xid, SerCommitSeqNo minConflictCommitSeqNo)
     843                 : {
     844                 :     TransactionId tailXid;
     845                 :     int         targetPage;
     846                 :     int         slotno;
     847                 :     int         firstZeroPage;
     848                 :     bool        isNewPage;
     849 ECB             : 
     850 UIC           0 :     Assert(TransactionIdIsValid(xid));
     851                 : 
     852               0 :     targetPage = SerialPage(xid);
     853                 : 
     854               0 :     LWLockAcquire(SerialSLRULock, LW_EXCLUSIVE);
     855                 : 
     856 ECB             :     /*
     857                 :      * If no serializable transactions are active, there shouldn't be anything
     858                 :      * to push out to the SLRU.  Hitting this assert would mean there's
     859                 :      * something wrong with the earlier cleanup logic.
     860                 :      */
     861 LBC           0 :     tailXid = serialControl->tailXid;
     862 UIC           0 :     Assert(TransactionIdIsValid(tailXid));
     863 ECB             : 
     864                 :     /*
     865                 :      * If the SLRU is currently unused, zero out the whole active region from
     866 EUB             :      * tailXid to headXid before taking it into use. Otherwise zero out only
     867                 :      * any new pages that enter the tailXid-headXid range as we advance
     868                 :      * headXid.
     869                 :      */
     870 UBC           0 :     if (serialControl->headPage < 0)
     871                 :     {
     872 UIC           0 :         firstZeroPage = SerialPage(tailXid);
     873               0 :         isNewPage = true;
     874                 :     }
     875                 :     else
     876 EUB             :     {
     877 UIC           0 :         firstZeroPage = SerialNextPage(serialControl->headPage);
     878 UBC           0 :         isNewPage = SerialPagePrecedesLogically(serialControl->headPage,
     879 EUB             :                                                 targetPage);
     880                 :     }
     881                 : 
     882 UIC           0 :     if (!TransactionIdIsValid(serialControl->headXid)
     883               0 :         || TransactionIdFollows(xid, serialControl->headXid))
     884               0 :         serialControl->headXid = xid;
     885               0 :     if (isNewPage)
     886               0 :         serialControl->headPage = targetPage;
     887                 : 
     888               0 :     if (isNewPage)
     889                 :     {
     890 ECB             :         /* Initialize intervening pages. */
     891 UIC           0 :         while (firstZeroPage != targetPage)
     892 ECB             :         {
     893 UIC           0 :             (void) SimpleLruZeroPage(SerialSlruCtl, firstZeroPage);
     894               0 :             firstZeroPage = SerialNextPage(firstZeroPage);
     895                 :         }
     896               0 :         slotno = SimpleLruZeroPage(SerialSlruCtl, targetPage);
     897                 :     }
     898                 :     else
     899               0 :         slotno = SimpleLruReadPage(SerialSlruCtl, targetPage, true, xid);
     900 ECB             : 
     901 UIC           0 :     SerialValue(slotno, xid) = minConflictCommitSeqNo;
     902 LBC           0 :     SerialSlruCtl->shared->page_dirty[slotno] = true;
     903 ECB             : 
     904 LBC           0 :     LWLockRelease(SerialSLRULock);
     905               0 : }
     906                 : 
     907                 : /*
     908                 :  * Get the minimum commitSeqNo for any conflict out for the given xid.  For
     909                 :  * a transaction which exists but has no conflict out, InvalidSerCommitSeqNo
     910                 :  * will be returned.
     911                 :  */
     912                 : static SerCommitSeqNo
     913 GIC          25 : SerialGetMinConflictCommitSeqNo(TransactionId xid)
     914 ECB             : {
     915                 :     TransactionId headXid;
     916 EUB             :     TransactionId tailXid;
     917                 :     SerCommitSeqNo val;
     918                 :     int         slotno;
     919                 : 
     920 GBC          25 :     Assert(TransactionIdIsValid(xid));
     921                 : 
     922              25 :     LWLockAcquire(SerialSLRULock, LW_SHARED);
     923              25 :     headXid = serialControl->headXid;
     924 GIC          25 :     tailXid = serialControl->tailXid;
     925              25 :     LWLockRelease(SerialSLRULock);
     926 ECB             : 
     927 GIC          25 :     if (!TransactionIdIsValid(headXid))
     928              25 :         return 0;
     929 ECB             : 
     930 UIC           0 :     Assert(TransactionIdIsValid(tailXid));
     931 ECB             : 
     932 UIC           0 :     if (TransactionIdPrecedes(xid, tailXid)
     933               0 :         || TransactionIdFollows(xid, headXid))
     934               0 :         return 0;
     935                 : 
     936                 :     /*
     937                 :      * The following function must be called without holding SerialSLRULock,
     938                 :      * but will return with that lock held, which must then be released.
     939                 :      */
     940               0 :     slotno = SimpleLruReadPage_ReadOnly(SerialSlruCtl,
     941 ECB             :                                         SerialPage(xid), xid);
     942 UIC           0 :     val = SerialValue(slotno, xid);
     943               0 :     LWLockRelease(SerialSLRULock);
     944               0 :     return val;
     945 ECB             : }
     946                 : 
     947                 : /*
     948                 :  * Call this whenever there is a new xmin for active serializable
     949                 :  * transactions.  We don't need to keep information on transactions which
     950                 :  * precede that.  InvalidTransactionId means none active, so everything in
     951                 :  * the SLRU can be discarded.
     952                 :  */
     953                 : static void
     954 GBC        1710 : SerialSetActiveSerXmin(TransactionId xid)
     955                 : {
     956 GIC        1710 :     LWLockAcquire(SerialSLRULock, LW_EXCLUSIVE);
     957 EUB             : 
     958                 :     /*
     959                 :      * When no sxacts are active, nothing overlaps, set the xid values to
     960                 :      * invalid to show that there are no valid entries.  Don't clear headPage,
     961                 :      * though.  A new xmin might still land on that page, and we don't want to
     962                 :      * repeatedly zero out the same page.
     963                 :      */
     964 GIC        1710 :     if (!TransactionIdIsValid(xid))
     965                 :     {
     966             846 :         serialControl->tailXid = InvalidTransactionId;
     967             846 :         serialControl->headXid = InvalidTransactionId;
     968             846 :         LWLockRelease(SerialSLRULock);
     969             846 :         return;
     970                 :     }
     971                 : 
     972                 :     /*
     973                 :      * When we're recovering prepared transactions, the global xmin might move
     974                 :      * backwards depending on the order they're recovered. Normally that's not
     975                 :      * OK, but during recovery no serializable transactions will commit, so
     976                 :      * the SLRU is empty and we can get away with it.
     977                 :      */
     978             864 :     if (RecoveryInProgress())
     979                 :     {
     980 UIC           0 :         Assert(serialControl->headPage < 0);
     981               0 :         if (!TransactionIdIsValid(serialControl->tailXid)
     982               0 :             || TransactionIdPrecedes(xid, serialControl->tailXid))
     983                 :         {
     984               0 :             serialControl->tailXid = xid;
     985                 :         }
     986               0 :         LWLockRelease(SerialSLRULock);
     987               0 :         return;
     988                 :     }
     989                 : 
     990 GBC         864 :     Assert(!TransactionIdIsValid(serialControl->tailXid)
     991 EUB             :            || TransactionIdFollows(xid, serialControl->tailXid));
     992                 : 
     993 GIC         864 :     serialControl->tailXid = xid;
     994 EUB             : 
     995 GIC         864 :     LWLockRelease(SerialSLRULock);
     996                 : }
     997 EUB             : 
     998                 : /*
     999                 :  * Perform a checkpoint --- either during shutdown, or on-the-fly
    1000                 :  *
    1001                 :  * We don't have any data that needs to survive a restart, but this is a
    1002                 :  * convenient place to truncate the SLRU.
    1003                 :  */
    1004                 : void
    1005 GIC        2363 : CheckPointPredicate(void)
    1006                 : {
    1007                 :     int         tailPage;
    1008                 : 
    1009 GBC        2363 :     LWLockAcquire(SerialSLRULock, LW_EXCLUSIVE);
    1010                 : 
    1011                 :     /* Exit quickly if the SLRU is currently not in use. */
    1012 GIC        2363 :     if (serialControl->headPage < 0)
    1013                 :     {
    1014            2363 :         LWLockRelease(SerialSLRULock);
    1015            2363 :         return;
    1016                 :     }
    1017                 : 
    1018 UIC           0 :     if (TransactionIdIsValid(serialControl->tailXid))
    1019                 :     {
    1020                 :         /* We can truncate the SLRU up to the page containing tailXid */
    1021               0 :         tailPage = SerialPage(serialControl->tailXid);
    1022                 :     }
    1023                 :     else
    1024                 :     {
    1025 ECB             :         /*----------
    1026                 :          * The SLRU is no longer needed. Truncate to head before we set head
    1027                 :          * invalid.
    1028                 :          *
    1029                 :          * XXX: It's possible that the SLRU is not needed again until XID
    1030                 :          * wrap-around has happened, so that the segment containing headPage
    1031                 :          * that we leave behind will appear to be new again. In that case it
    1032                 :          * won't be removed until XID horizon advances enough to make it
    1033                 :          * current again.
    1034                 :          *
    1035                 :          * XXX: This should happen in vac_truncate_clog(), not in checkpoints.
    1036                 :          * Consider this scenario, starting from a system with no in-progress
    1037                 :          * transactions and VACUUM FREEZE having maximized oldestXact:
    1038                 :          * - Start a SERIALIZABLE transaction.
    1039                 :          * - Start, finish, and summarize a SERIALIZABLE transaction, creating
    1040                 :          *   one SLRU page.
    1041                 :          * - Consume XIDs to reach xidStopLimit.
    1042                 :          * - Finish all transactions.  Due to the long-running SERIALIZABLE
    1043                 :          *   transaction, earlier checkpoints did not touch headPage.  The
    1044                 :          *   next checkpoint will change it, but that checkpoint happens after
    1045                 :          *   the end of the scenario.
    1046                 :          * - VACUUM to advance XID limits.
    1047                 :          * - Consume ~2M XIDs, crossing the former xidWrapLimit.
    1048                 :          * - Start, finish, and summarize a SERIALIZABLE transaction.
    1049                 :          *   SerialAdd() declines to create the targetPage, because headPage
    1050                 :          *   is not regarded as in the past relative to that targetPage.  The
    1051                 :          *   transaction instigating the summarize fails in
    1052                 :          *   SimpleLruReadPage().
    1053                 :          */
    1054 UIC           0 :         tailPage = serialControl->headPage;
    1055               0 :         serialControl->headPage = -1;
    1056                 :     }
    1057                 : 
    1058               0 :     LWLockRelease(SerialSLRULock);
    1059                 : 
    1060                 :     /* Truncate away pages that are no longer required */
    1061               0 :     SimpleLruTruncate(SerialSlruCtl, tailPage);
    1062                 : 
    1063 ECB             :     /*
    1064                 :      * Write dirty SLRU pages to disk
    1065                 :      *
    1066                 :      * This is not actually necessary from a correctness point of view. We do
    1067                 :      * it merely as a debugging aid.
    1068                 :      *
    1069                 :      * We're doing this after the truncation to avoid writing pages right
    1070                 :      * before deleting the file in which they sit, which would be completely
    1071                 :      * pointless.
    1072                 :      */
    1073 UIC           0 :     SimpleLruWriteAll(SerialSlruCtl, true);
    1074                 : }
    1075                 : 
    1076                 : /*------------------------------------------------------------------------*/
    1077                 : 
    1078 ECB             : /*
    1079                 :  * InitPredicateLocks -- Initialize the predicate locking data structures.
    1080                 :  *
    1081                 :  * This is called from CreateSharedMemoryAndSemaphores(), which see for
    1082                 :  * more comments.  In the normal postmaster case, the shared hash tables
    1083                 :  * are created here.  Backends inherit the pointers
    1084                 :  * to the shared tables via fork().  In the EXEC_BACKEND case, each
    1085                 :  * backend re-executes this code to obtain pointers to the already existing
    1086                 :  * shared hash tables.
    1087                 :  */
    1088                 : void
    1089 GIC        1826 : InitPredicateLocks(void)
    1090                 : {
    1091                 :     HASHCTL     info;
    1092                 :     long        max_table_size;
    1093                 :     Size        requestSize;
    1094                 :     bool        found;
    1095                 : 
    1096                 : #ifndef EXEC_BACKEND
    1097 CBC        1826 :     Assert(!IsUnderPostmaster);
    1098                 : #endif
    1099                 : 
    1100                 :     /*
    1101                 :      * Compute size of predicate lock target hashtable. Note these
    1102                 :      * calculations must agree with PredicateLockShmemSize!
    1103                 :      */
    1104 GIC        1826 :     max_table_size = NPREDICATELOCKTARGETENTS();
    1105                 : 
    1106                 :     /*
    1107 ECB             :      * Allocate hash table for PREDICATELOCKTARGET structs.  This stores
    1108                 :      * per-predicate-lock-target information.
    1109                 :      */
    1110 GIC        1826 :     info.keysize = sizeof(PREDICATELOCKTARGETTAG);
    1111            1826 :     info.entrysize = sizeof(PREDICATELOCKTARGET);
    1112 CBC        1826 :     info.num_partitions = NUM_PREDICATELOCK_PARTITIONS;
    1113 ECB             : 
    1114 GIC        1826 :     PredicateLockTargetHash = ShmemInitHash("PREDICATELOCKTARGET hash",
    1115                 :                                             max_table_size,
    1116                 :                                             max_table_size,
    1117 ECB             :                                             &info,
    1118                 :                                             HASH_ELEM | HASH_BLOBS |
    1119                 :                                             HASH_PARTITION | HASH_FIXED_SIZE);
    1120                 : 
    1121                 :     /*
    1122                 :      * Reserve a dummy entry in the hash table; we use it to make sure there's
    1123                 :      * always one entry available when we need to split or combine a page,
    1124                 :      * because running out of space there could mean aborting a
    1125                 :      * non-serializable transaction.
    1126                 :      */
    1127 CBC        1826 :     if (!IsUnderPostmaster)
    1128                 :     {
    1129            1826 :         (void) hash_search(PredicateLockTargetHash, &ScratchTargetTag,
    1130 ECB             :                            HASH_ENTER, &found);
    1131 GIC        1826 :         Assert(!found);
    1132 ECB             :     }
    1133                 : 
    1134                 :     /* Pre-calculate the hash and partition lock of the scratch entry */
    1135 GIC        1826 :     ScratchTargetTagHash = PredicateLockTargetTagHashCode(&ScratchTargetTag);
    1136 CBC        1826 :     ScratchPartitionLock = PredicateLockHashPartitionLock(ScratchTargetTagHash);
    1137 ECB             : 
    1138                 :     /*
    1139                 :      * Allocate hash table for PREDICATELOCK structs.  This stores per
    1140                 :      * xact-lock-of-a-target information.
    1141                 :      */
    1142 CBC        1826 :     info.keysize = sizeof(PREDICATELOCKTAG);
    1143            1826 :     info.entrysize = sizeof(PREDICATELOCK);
    1144            1826 :     info.hash = predicatelock_hash;
    1145            1826 :     info.num_partitions = NUM_PREDICATELOCK_PARTITIONS;
    1146 ECB             : 
    1147                 :     /* Assume an average of 2 xacts per target */
    1148 CBC        1826 :     max_table_size *= 2;
    1149 ECB             : 
    1150 CBC        1826 :     PredicateLockHash = ShmemInitHash("PREDICATELOCK hash",
    1151 ECB             :                                       max_table_size,
    1152                 :                                       max_table_size,
    1153                 :                                       &info,
    1154                 :                                       HASH_ELEM | HASH_FUNCTION |
    1155                 :                                       HASH_PARTITION | HASH_FIXED_SIZE);
    1156                 : 
    1157                 :     /*
    1158                 :      * Compute size for serializable transaction hashtable. Note these
    1159                 :      * calculations must agree with PredicateLockShmemSize!
    1160                 :      */
    1161 CBC        1826 :     max_table_size = (MaxBackends + max_prepared_xacts);
    1162                 : 
    1163 ECB             :     /*
    1164                 :      * Allocate a list to hold information on transactions participating in
    1165                 :      * predicate locking.
    1166                 :      *
    1167                 :      * Assume an average of 10 predicate locking transactions per backend.
    1168                 :      * This allows aggressive cleanup while detail is present before data must
    1169                 :      * be summarized for storage in SLRU and the "dummy" transaction.
    1170                 :      */
    1171 GIC        1826 :     max_table_size *= 10;
    1172                 : 
    1173            1826 :     PredXact = ShmemInitStruct("PredXactList",
    1174                 :                                PredXactListDataSize,
    1175                 :                                &found);
    1176            1826 :     Assert(found == IsUnderPostmaster);
    1177            1826 :     if (!found)
    1178                 :     {
    1179                 :         int         i;
    1180                 : 
    1181 GNC        1826 :         dlist_init(&PredXact->availableList);
    1182            1826 :         dlist_init(&PredXact->activeList);
    1183 CBC        1826 :         PredXact->SxactGlobalXmin = InvalidTransactionId;
    1184 GIC        1826 :         PredXact->SxactGlobalXminCount = 0;
    1185            1826 :         PredXact->WritableSxactCount = 0;
    1186 CBC        1826 :         PredXact->LastSxactCommitSeqNo = FirstNormalSerCommitSeqNo - 1;
    1187            1826 :         PredXact->CanPartialClearThrough = 0;
    1188 GIC        1826 :         PredXact->HavePartialClearedThrough = 0;
    1189            1826 :         requestSize = mul_size((Size) max_table_size,
    1190                 :                                sizeof(SERIALIZABLEXACT));
    1191 CBC        1826 :         PredXact->element = ShmemAlloc(requestSize);
    1192 ECB             :         /* Add all elements to available list, clean. */
    1193 GIC        1826 :         memset(PredXact->element, 0, requestSize);
    1194 CBC     1923246 :         for (i = 0; i < max_table_size; i++)
    1195                 :         {
    1196 GNC     1921420 :             LWLockInitialize(&PredXact->element[i].perXactPredicateListLock,
    1197 ECB             :                              LWTRANCHE_PER_XACT_PREDICATE_LIST);
    1198 GNC     1921420 :             dlist_push_tail(&PredXact->availableList, &PredXact->element[i].xactLink);
    1199 ECB             :         }
    1200 GIC        1826 :         PredXact->OldCommittedSxact = CreatePredXact();
    1201            1826 :         SetInvalidVirtualTransactionId(PredXact->OldCommittedSxact->vxid);
    1202            1826 :         PredXact->OldCommittedSxact->prepareSeqNo = 0;
    1203            1826 :         PredXact->OldCommittedSxact->commitSeqNo = 0;
    1204            1826 :         PredXact->OldCommittedSxact->SeqNo.lastCommitBeforeSnapshot = 0;
    1205 GNC        1826 :         dlist_init(&PredXact->OldCommittedSxact->outConflicts);
    1206            1826 :         dlist_init(&PredXact->OldCommittedSxact->inConflicts);
    1207            1826 :         dlist_init(&PredXact->OldCommittedSxact->predicateLocks);
    1208            1826 :         dlist_node_init(&PredXact->OldCommittedSxact->finishedLink);
    1209            1826 :         dlist_init(&PredXact->OldCommittedSxact->possibleUnsafeConflicts);
    1210 GIC        1826 :         PredXact->OldCommittedSxact->topXid = InvalidTransactionId;
    1211 CBC        1826 :         PredXact->OldCommittedSxact->finishedBefore = InvalidTransactionId;
    1212            1826 :         PredXact->OldCommittedSxact->xmin = InvalidTransactionId;
    1213            1826 :         PredXact->OldCommittedSxact->flags = SXACT_FLAG_COMMITTED;
    1214 GIC        1826 :         PredXact->OldCommittedSxact->pid = 0;
    1215            1826 :         PredXact->OldCommittedSxact->pgprocno = INVALID_PGPROCNO;
    1216                 :     }
    1217                 :     /* This never changes, so let's keep a local copy. */
    1218            1826 :     OldCommittedSxact = PredXact->OldCommittedSxact;
    1219 ECB             : 
    1220                 :     /*
    1221                 :      * Allocate hash table for SERIALIZABLEXID structs.  This stores per-xid
    1222                 :      * information for serializable transactions which have accessed data.
    1223                 :      */
    1224 GIC        1826 :     info.keysize = sizeof(SERIALIZABLEXIDTAG);
    1225            1826 :     info.entrysize = sizeof(SERIALIZABLEXID);
    1226 ECB             : 
    1227 GIC        1826 :     SerializableXidHash = ShmemInitHash("SERIALIZABLEXID hash",
    1228 ECB             :                                         max_table_size,
    1229                 :                                         max_table_size,
    1230                 :                                         &info,
    1231                 :                                         HASH_ELEM | HASH_BLOBS |
    1232                 :                                         HASH_FIXED_SIZE);
    1233                 : 
    1234                 :     /*
    1235                 :      * Allocate space for tracking rw-conflicts in lists attached to the
    1236                 :      * transactions.
    1237                 :      *
    1238                 :      * Assume an average of 5 conflicts per transaction.  Calculations suggest
    1239                 :      * that this will prevent resource exhaustion in even the most pessimal
    1240                 :      * loads up to max_connections = 200 with all 200 connections pounding the
    1241                 :      * database with serializable transactions.  Beyond that, there may be
    1242                 :      * occasional transactions canceled when trying to flag conflicts. That's
    1243                 :      * probably OK.
    1244                 :      */
    1245 CBC        1826 :     max_table_size *= 5;
    1246                 : 
    1247 GIC        1826 :     RWConflictPool = ShmemInitStruct("RWConflictPool",
    1248 ECB             :                                      RWConflictPoolHeaderDataSize,
    1249                 :                                      &found);
    1250 CBC        1826 :     Assert(found == IsUnderPostmaster);
    1251            1826 :     if (!found)
    1252                 :     {
    1253                 :         int         i;
    1254                 : 
    1255 GNC        1826 :         dlist_init(&RWConflictPool->availableList);
    1256 GIC        1826 :         requestSize = mul_size((Size) max_table_size,
    1257                 :                                RWConflictDataSize);
    1258            1826 :         RWConflictPool->element = ShmemAlloc(requestSize);
    1259 ECB             :         /* Add all elements to available list, clean. */
    1260 CBC        1826 :         memset(RWConflictPool->element, 0, requestSize);
    1261         9608926 :         for (i = 0; i < max_table_size; i++)
    1262                 :         {
    1263 GNC     9607100 :             dlist_push_tail(&RWConflictPool->availableList,
    1264         9607100 :                             &RWConflictPool->element[i].outLink);
    1265 ECB             :         }
    1266                 :     }
    1267                 : 
    1268                 :     /*
    1269                 :      * Create or attach to the header for the list of finished serializable
    1270                 :      * transactions.
    1271                 :      */
    1272 GNC        1826 :     FinishedSerializableTransactions = (dlist_head *)
    1273 GIC        1826 :         ShmemInitStruct("FinishedSerializableTransactions",
    1274                 :                         sizeof(dlist_head),
    1275                 :                         &found);
    1276            1826 :     Assert(found == IsUnderPostmaster);
    1277            1826 :     if (!found)
    1278 GNC        1826 :         dlist_init(FinishedSerializableTransactions);
    1279                 : 
    1280                 :     /*
    1281                 :      * Initialize the SLRU storage for old committed serializable
    1282                 :      * transactions.
    1283                 :      */
    1284 GIC        1826 :     SerialInit();
    1285            1826 : }
    1286                 : 
    1287                 : /*
    1288 EUB             :  * Estimate shared-memory space used for predicate lock table
    1289                 :  */
    1290                 : Size
    1291 GIC        2738 : PredicateLockShmemSize(void)
    1292                 : {
    1293 GBC        2738 :     Size        size = 0;
    1294                 :     long        max_table_size;
    1295                 : 
    1296 EUB             :     /* predicate lock target hash table */
    1297 GIC        2738 :     max_table_size = NPREDICATELOCKTARGETENTS();
    1298 GBC        2738 :     size = add_size(size, hash_estimate_size(max_table_size,
    1299                 :                                              sizeof(PREDICATELOCKTARGET)));
    1300                 : 
    1301                 :     /* predicate lock hash table */
    1302 GIC        2738 :     max_table_size *= 2;
    1303            2738 :     size = add_size(size, hash_estimate_size(max_table_size,
    1304                 :                                              sizeof(PREDICATELOCK)));
    1305                 : 
    1306                 :     /*
    1307                 :      * Since NPREDICATELOCKTARGETENTS is only an estimate, add 10% safety
    1308                 :      * margin.
    1309                 :      */
    1310            2738 :     size = add_size(size, size / 10);
    1311                 : 
    1312                 :     /* transaction list */
    1313            2738 :     max_table_size = MaxBackends + max_prepared_xacts;
    1314 CBC        2738 :     max_table_size *= 10;
    1315 GIC        2738 :     size = add_size(size, PredXactListDataSize);
    1316            2738 :     size = add_size(size, mul_size((Size) max_table_size,
    1317                 :                                    sizeof(SERIALIZABLEXACT)));
    1318                 : 
    1319                 :     /* transaction xid table */
    1320            2738 :     size = add_size(size, hash_estimate_size(max_table_size,
    1321                 :                                              sizeof(SERIALIZABLEXID)));
    1322                 : 
    1323 ECB             :     /* rw-conflict pool */
    1324 GIC        2738 :     max_table_size *= 5;
    1325            2738 :     size = add_size(size, RWConflictPoolHeaderDataSize);
    1326            2738 :     size = add_size(size, mul_size((Size) max_table_size,
    1327                 :                                    RWConflictDataSize));
    1328                 : 
    1329 ECB             :     /* Head for list of finished serializable transactions. */
    1330 GNC        2738 :     size = add_size(size, sizeof(dlist_head));
    1331 ECB             : 
    1332                 :     /* Shared memory structures for SLRU tracking of old committed xids. */
    1333 GIC        2738 :     size = add_size(size, sizeof(SerialControlData));
    1334 CBC        2738 :     size = add_size(size, SimpleLruShmemSize(NUM_SERIAL_BUFFERS, 0));
    1335 ECB             : 
    1336 CBC        2738 :     return size;
    1337 ECB             : }
    1338                 : 
    1339                 : 
    1340                 : /*
    1341                 :  * Compute the hash code associated with a PREDICATELOCKTAG.
    1342                 :  *
    1343                 :  * Because we want to use just one set of partition locks for both the
    1344                 :  * PREDICATELOCKTARGET and PREDICATELOCK hash tables, we have to make sure
    1345                 :  * that PREDICATELOCKs fall into the same partition number as their
    1346                 :  * associated PREDICATELOCKTARGETs.  dynahash.c expects the partition number
    1347                 :  * to be the low-order bits of the hash code, and therefore a
    1348                 :  * PREDICATELOCKTAG's hash code must have the same low-order bits as the
    1349                 :  * associated PREDICATELOCKTARGETTAG's hash code.  We achieve this with this
    1350                 :  * specialized hash function.
    1351                 :  */
    1352                 : static uint32
    1353 UIC           0 : predicatelock_hash(const void *key, Size keysize)
    1354 ECB             : {
    1355 UIC           0 :     const PREDICATELOCKTAG *predicatelocktag = (const PREDICATELOCKTAG *) key;
    1356                 :     uint32      targethash;
    1357 ECB             : 
    1358 LBC           0 :     Assert(keysize == sizeof(PREDICATELOCKTAG));
    1359 ECB             : 
    1360                 :     /* Look into the associated target object, and compute its hash code */
    1361 LBC           0 :     targethash = PredicateLockTargetTagHashCode(&predicatelocktag->myTarget->tag);
    1362                 : 
    1363 UIC           0 :     return PredicateLockHashCodeFromTargetHashCode(predicatelocktag, targethash);
    1364                 : }
    1365                 : 
    1366                 : 
    1367                 : /*
    1368                 :  * GetPredicateLockStatusData
    1369                 :  *      Return a table containing the internal state of the predicate
    1370                 :  *      lock manager for use in pg_lock_status.
    1371                 :  *
    1372 EUB             :  * Like GetLockStatusData, this function tries to hold the partition LWLocks
    1373                 :  * for as short a time as possible by returning two arrays that simply
    1374                 :  * contain the PREDICATELOCKTARGETTAG and SERIALIZABLEXACT for each lock
    1375                 :  * table entry. Multiple copies of the same PREDICATELOCKTARGETTAG and
    1376                 :  * SERIALIZABLEXACT will likely appear.
    1377                 :  */
    1378                 : PredicateLockData *
    1379 GIC         264 : GetPredicateLockStatusData(void)
    1380                 : {
    1381                 :     PredicateLockData *data;
    1382                 :     int         i;
    1383                 :     int         els,
    1384                 :                 el;
    1385                 :     HASH_SEQ_STATUS seqstat;
    1386                 :     PREDICATELOCK *predlock;
    1387                 : 
    1388 GBC         264 :     data = (PredicateLockData *) palloc(sizeof(PredicateLockData));
    1389                 : 
    1390 EUB             :     /*
    1391                 :      * To ensure consistency, take simultaneous locks on all partition locks
    1392                 :      * in ascending order, then SerializableXactHashLock.
    1393                 :      */
    1394 GIC        4488 :     for (i = 0; i < NUM_PREDICATELOCK_PARTITIONS; i++)
    1395            4224 :         LWLockAcquire(PredicateLockHashPartitionLockByIndex(i), LW_SHARED);
    1396             264 :     LWLockAcquire(SerializableXactHashLock, LW_SHARED);
    1397                 : 
    1398 EUB             :     /* Get number of locks and allocate appropriately-sized arrays. */
    1399 GIC         264 :     els = hash_get_num_entries(PredicateLockHash);
    1400 GBC         264 :     data->nelements = els;
    1401 GIC         264 :     data->locktags = (PREDICATELOCKTARGETTAG *)
    1402             264 :         palloc(sizeof(PREDICATELOCKTARGETTAG) * els);
    1403 GBC         264 :     data->xacts = (SERIALIZABLEXACT *)
    1404             264 :         palloc(sizeof(SERIALIZABLEXACT) * els);
    1405                 : 
    1406                 : 
    1407                 :     /* Scan through PredicateLockHash and copy contents */
    1408             264 :     hash_seq_init(&seqstat, PredicateLockHash);
    1409                 : 
    1410             264 :     el = 0;
    1411                 : 
    1412 GIC         267 :     while ((predlock = (PREDICATELOCK *) hash_seq_search(&seqstat)))
    1413                 :     {
    1414               3 :         data->locktags[el] = predlock->tag.myTarget->tag;
    1415               3 :         data->xacts[el] = *predlock->tag.myXact;
    1416               3 :         el++;
    1417                 :     }
    1418                 : 
    1419             264 :     Assert(el == els);
    1420                 : 
    1421                 :     /* Release locks in reverse order */
    1422             264 :     LWLockRelease(SerializableXactHashLock);
    1423            4488 :     for (i = NUM_PREDICATELOCK_PARTITIONS - 1; i >= 0; i--)
    1424            4224 :         LWLockRelease(PredicateLockHashPartitionLockByIndex(i));
    1425                 : 
    1426             264 :     return data;
    1427 ECB             : }
    1428                 : 
    1429                 : /*
    1430                 :  * Free up shared memory structures by pushing the oldest sxact (the one at
    1431                 :  * the front of the SummarizeOldestCommittedSxact queue) into summary form.
    1432                 :  * Each call will free exactly one SERIALIZABLEXACT structure and may also
    1433                 :  * free one or more of these structures: SERIALIZABLEXID, PREDICATELOCK,
    1434                 :  * PREDICATELOCKTARGET, RWConflictData.
    1435                 :  */
    1436                 : static void
    1437 UIC           0 : SummarizeOldestCommittedSxact(void)
    1438                 : {
    1439                 :     SERIALIZABLEXACT *sxact;
    1440                 : 
    1441 LBC           0 :     LWLockAcquire(SerializableFinishedListLock, LW_EXCLUSIVE);
    1442                 : 
    1443                 :     /*
    1444 ECB             :      * This function is only called if there are no sxact slots available.
    1445                 :      * Some of them must belong to old, already-finished transactions, so
    1446                 :      * there should be something in FinishedSerializableTransactions list that
    1447                 :      * we can summarize. However, there's a race condition: while we were not
    1448                 :      * holding any locks, a transaction might have ended and cleaned up all
    1449                 :      * the finished sxact entries already, freeing up their sxact slots. In
    1450                 :      * that case, we have nothing to do here. The caller will find one of the
    1451                 :      * slots released by the other backend when it retries.
    1452                 :      */
    1453 UNC           0 :     if (dlist_is_empty(FinishedSerializableTransactions))
    1454 ECB             :     {
    1455 LBC           0 :         LWLockRelease(SerializableFinishedListLock);
    1456 UIC           0 :         return;
    1457 ECB             :     }
    1458                 : 
    1459                 :     /*
    1460                 :      * Grab the first sxact off the finished list -- this will be the earliest
    1461                 :      * commit.  Remove it from the list.
    1462                 :      */
    1463 UNC           0 :     sxact = dlist_head_element(SERIALIZABLEXACT, finishedLink,
    1464                 :                                FinishedSerializableTransactions);
    1465               0 :     dlist_delete_thoroughly(&sxact->finishedLink);
    1466                 : 
    1467 ECB             :     /* Add to SLRU summary information. */
    1468 UIC           0 :     if (TransactionIdIsValid(sxact->topXid) && !SxactIsReadOnly(sxact))
    1469               0 :         SerialAdd(sxact->topXid, SxactHasConflictOut(sxact)
    1470 ECB             :                   ? sxact->SeqNo.earliestOutConflictCommit : InvalidSerCommitSeqNo);
    1471                 : 
    1472                 :     /* Summarize and release the detail. */
    1473 LBC           0 :     ReleaseOneSerializableXact(sxact, false, true);
    1474                 : 
    1475 UIC           0 :     LWLockRelease(SerializableFinishedListLock);
    1476                 : }
    1477                 : 
    1478                 : /*
    1479 EUB             :  * GetSafeSnapshot
    1480                 :  *      Obtain and register a snapshot for a READ ONLY DEFERRABLE
    1481                 :  *      transaction. Ensures that the snapshot is "safe", i.e. a
    1482                 :  *      read-only transaction running on it can execute serializably
    1483                 :  *      without further checks. This requires waiting for concurrent
    1484                 :  *      transactions to complete, and retrying with a new snapshot if
    1485                 :  *      one of them could possibly create a conflict.
    1486                 :  *
    1487                 :  *      As with GetSerializableTransactionSnapshot (which this is a subroutine
    1488                 :  *      for), the passed-in Snapshot pointer should reference a static data
    1489                 :  *      area that can safely be passed to GetSnapshotData.
    1490                 :  */
    1491                 : static Snapshot
    1492 GIC           4 : GetSafeSnapshot(Snapshot origSnapshot)
    1493                 : {
    1494                 :     Snapshot    snapshot;
    1495 ECB             : 
    1496 GIC           4 :     Assert(XactReadOnly && XactDeferrable);
    1497 ECB             : 
    1498                 :     while (true)
    1499                 :     {
    1500                 :         /*
    1501                 :          * GetSerializableTransactionSnapshotInt is going to call
    1502                 :          * GetSnapshotData, so we need to provide it the static snapshot area
    1503                 :          * our caller passed to us.  The pointer returned is actually the same
    1504                 :          * one passed to it, but we avoid assuming that here.
    1505                 :          */
    1506 CBC           5 :         snapshot = GetSerializableTransactionSnapshotInt(origSnapshot,
    1507 ECB             :                                                          NULL, InvalidPid);
    1508                 : 
    1509 CBC           5 :         if (MySerializableXact == InvalidSerializableXact)
    1510 GIC           4 :             return snapshot;    /* no concurrent r/w xacts; it's safe */
    1511 ECB             : 
    1512 CBC           1 :         LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
    1513                 : 
    1514                 :         /*
    1515                 :          * Wait for concurrent transactions to finish. Stop early if one of
    1516                 :          * them marked us as conflicted.
    1517 ECB             :          */
    1518 GIC           1 :         MySerializableXact->flags |= SXACT_FLAG_DEFERRABLE_WAITING;
    1519 GNC           2 :         while (!(dlist_is_empty(&MySerializableXact->possibleUnsafeConflicts) ||
    1520 CBC           1 :                  SxactIsROUnsafe(MySerializableXact)))
    1521                 :         {
    1522               1 :             LWLockRelease(SerializableXactHashLock);
    1523               1 :             ProcWaitForSignal(WAIT_EVENT_SAFE_SNAPSHOT);
    1524 GIC           1 :             LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
    1525 ECB             :         }
    1526 GIC           1 :         MySerializableXact->flags &= ~SXACT_FLAG_DEFERRABLE_WAITING;
    1527 ECB             : 
    1528 CBC           1 :         if (!SxactIsROUnsafe(MySerializableXact))
    1529                 :         {
    1530 UIC           0 :             LWLockRelease(SerializableXactHashLock);
    1531               0 :             break;              /* success */
    1532 ECB             :         }
    1533                 : 
    1534 CBC           1 :         LWLockRelease(SerializableXactHashLock);
    1535                 : 
    1536                 :         /* else, need to retry... */
    1537 GIC           1 :         ereport(DEBUG2,
    1538                 :                 (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
    1539                 :                  errmsg_internal("deferrable snapshot was unsafe; trying a new one")));
    1540               1 :         ReleasePredicateLocks(false, false);
    1541                 :     }
    1542                 : 
    1543                 :     /*
    1544                 :      * Now we have a safe snapshot, so we don't need to do any further checks.
    1545                 :      */
    1546 UIC           0 :     Assert(SxactIsROSafe(MySerializableXact));
    1547               0 :     ReleasePredicateLocks(false, true);
    1548                 : 
    1549 LBC           0 :     return snapshot;
    1550                 : }
    1551 ECB             : 
    1552                 : /*
    1553                 :  * GetSafeSnapshotBlockingPids
    1554                 :  *      If the specified process is currently blocked in GetSafeSnapshot,
    1555                 :  *      write the process IDs of all processes that it is blocked by
    1556                 :  *      into the caller-supplied buffer output[].  The list is truncated at
    1557                 :  *      output_size, and the number of PIDs written into the buffer is
    1558                 :  *      returned.  Returns zero if the given PID is not currently blocked
    1559                 :  *      in GetSafeSnapshot.
    1560 EUB             :  */
    1561                 : int
    1562 GIC        2103 : GetSafeSnapshotBlockingPids(int blocked_pid, int *output, int output_size)
    1563                 : {
    1564            2103 :     int         num_written = 0;
    1565                 :     dlist_iter  iter;
    1566 GNC        2103 :     SERIALIZABLEXACT *blocking_sxact = NULL;
    1567                 : 
    1568 GIC        2103 :     LWLockAcquire(SerializableXactHashLock, LW_SHARED);
    1569                 : 
    1570                 :     /* Find blocked_pid's SERIALIZABLEXACT by linear search. */
    1571 GNC        4400 :     dlist_foreach(iter, &PredXact->activeList)
    1572 ECB             :     {
    1573 GNC        2463 :         SERIALIZABLEXACT *sxact =
    1574            2463 :             dlist_container(SERIALIZABLEXACT, xactLink, iter.cur);
    1575                 : 
    1576 CBC        2463 :         if (sxact->pid == blocked_pid)
    1577                 :         {
    1578 GNC         166 :             blocking_sxact = sxact;
    1579 GIC         166 :             break;
    1580                 :         }
    1581 ECB             :     }
    1582                 : 
    1583                 :     /* Did we find it, and is it currently waiting in GetSafeSnapshot? */
    1584 GNC        2103 :     if (blocking_sxact != NULL && SxactIsDeferrableWaiting(blocking_sxact))
    1585                 :     {
    1586                 :         /* Traverse the list of possible unsafe conflicts collecting PIDs. */
    1587               2 :         dlist_foreach(iter, &blocking_sxact->possibleUnsafeConflicts)
    1588                 :         {
    1589               2 :             RWConflict  possibleUnsafeConflict =
    1590               2 :             dlist_container(RWConflictData, inLink, iter.cur);
    1591                 : 
    1592 CBC           2 :             output[num_written++] = possibleUnsafeConflict->sxactOut->pid;
    1593                 : 
    1594 GNC           2 :             if (num_written >= output_size)
    1595               2 :                 break;
    1596                 :         }
    1597                 :     }
    1598                 : 
    1599 GIC        2103 :     LWLockRelease(SerializableXactHashLock);
    1600                 : 
    1601            2103 :     return num_written;
    1602                 : }
    1603                 : 
    1604                 : /*
    1605 ECB             :  * Acquire a snapshot that can be used for the current transaction.
    1606                 :  *
    1607                 :  * Make sure we have a SERIALIZABLEXACT reference in MySerializableXact.
    1608                 :  * It should be current for this process and be contained in PredXact.
    1609                 :  *
    1610                 :  * The passed-in Snapshot pointer should reference a static data area that
    1611                 :  * can safely be passed to GetSnapshotData.  The return value is actually
    1612                 :  * always this same pointer; no new snapshot data structure is allocated
    1613                 :  * within this function.
    1614 EUB             :  */
    1615                 : Snapshot
    1616 GIC        1640 : GetSerializableTransactionSnapshot(Snapshot snapshot)
    1617                 : {
    1618            1640 :     Assert(IsolationIsSerializable());
    1619 EUB             : 
    1620                 :     /*
    1621                 :      * Can't use serializable mode while recovery is still active, as it is,
    1622                 :      * for example, on a hot standby.  We could get here despite the check in
    1623                 :      * check_transaction_isolation() if default_transaction_isolation is set
    1624                 :      * to serializable, so phrase the hint accordingly.
    1625                 :      */
    1626 GIC        1640 :     if (RecoveryInProgress())
    1627 UIC           0 :         ereport(ERROR,
    1628                 :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
    1629                 :                  errmsg("cannot use serializable mode in a hot standby"),
    1630                 :                  errdetail("\"default_transaction_isolation\" is set to \"serializable\"."),
    1631                 :                  errhint("You can use \"SET default_transaction_isolation = 'repeatable read'\" to change the default.")));
    1632                 : 
    1633 ECB             :     /*
    1634                 :      * A special optimization is available for SERIALIZABLE READ ONLY
    1635                 :      * DEFERRABLE transactions -- we can wait for a suitable snapshot and
    1636                 :      * thereby avoid all SSI overhead once it's running.
    1637                 :      */
    1638 GIC        1640 :     if (XactReadOnly && XactDeferrable)
    1639               4 :         return GetSafeSnapshot(snapshot);
    1640                 : 
    1641            1636 :     return GetSerializableTransactionSnapshotInt(snapshot,
    1642                 :                                                  NULL, InvalidPid);
    1643 ECB             : }
    1644                 : 
    1645                 : /*
    1646                 :  * Import a snapshot to be used for the current transaction.
    1647                 :  *
    1648                 :  * This is nearly the same as GetSerializableTransactionSnapshot, except that
    1649                 :  * we don't take a new snapshot, but rather use the data we're handed.
    1650                 :  *
    1651                 :  * The caller must have verified that the snapshot came from a serializable
    1652                 :  * transaction; and if we're read-write, the source transaction must not be
    1653 EUB             :  * read-only.
    1654                 :  */
    1655 ECB             : void
    1656 CBC          13 : SetSerializableTransactionSnapshot(Snapshot snapshot,
    1657 ECB             :                                    VirtualTransactionId *sourcevxid,
    1658                 :                                    int sourcepid)
    1659                 : {
    1660 GIC          13 :     Assert(IsolationIsSerializable());
    1661                 : 
    1662                 :     /*
    1663                 :      * If this is called by parallel.c in a parallel worker, we don't want to
    1664                 :      * create a SERIALIZABLEXACT just yet because the leader's
    1665                 :      * SERIALIZABLEXACT will be installed with AttachSerializableXact().  We
    1666                 :      * also don't want to reject SERIALIZABLE READ ONLY DEFERRABLE in this
    1667                 :      * case, because the leader has already determined that the snapshot it
    1668                 :      * has passed us is safe.  So there is nothing for us to do.
    1669                 :      */
    1670              13 :     if (IsParallelWorker())
    1671              13 :         return;
    1672                 : 
    1673                 :     /*
    1674 ECB             :      * We do not allow SERIALIZABLE READ ONLY DEFERRABLE transactions to
    1675                 :      * import snapshots, since there's no way to wait for a safe snapshot when
    1676                 :      * we're using the snap we're told to.  (XXX instead of throwing an error,
    1677                 :      * we could just ignore the XactDeferrable flag?)
    1678                 :      */
    1679 LBC           0 :     if (XactReadOnly && XactDeferrable)
    1680 UIC           0 :         ereport(ERROR,
    1681 EUB             :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
    1682                 :                  errmsg("a snapshot-importing transaction must not be READ ONLY DEFERRABLE")));
    1683                 : 
    1684 UIC           0 :     (void) GetSerializableTransactionSnapshotInt(snapshot, sourcevxid,
    1685 ECB             :                                                  sourcepid);
    1686                 : }
    1687                 : 
    1688                 : /*
    1689                 :  * Guts of GetSerializableTransactionSnapshot
    1690 EUB             :  *
    1691                 :  * If sourcevxid is valid, this is actually an import operation and we should
    1692                 :  * skip calling GetSnapshotData, because the snapshot contents are already
    1693                 :  * loaded up.  HOWEVER: to avoid race conditions, we must check that the
    1694                 :  * source xact is still running after we acquire SerializableXactHashLock.
    1695                 :  * We do that by calling ProcArrayInstallImportedXmin.
    1696                 :  */
    1697                 : static Snapshot
    1698 GIC        1641 : GetSerializableTransactionSnapshotInt(Snapshot snapshot,
    1699                 :                                       VirtualTransactionId *sourcevxid,
    1700                 :                                       int sourcepid)
    1701                 : {
    1702                 :     PGPROC     *proc;
    1703                 :     VirtualTransactionId vxid;
    1704                 :     SERIALIZABLEXACT *sxact,
    1705                 :                *othersxact;
    1706                 : 
    1707                 :     /* We only do this for serializable transactions.  Once. */
    1708            1641 :     Assert(MySerializableXact == InvalidSerializableXact);
    1709                 : 
    1710            1641 :     Assert(!RecoveryInProgress());
    1711                 : 
    1712                 :     /*
    1713 ECB             :      * Since all parts of a serializable transaction must use the same
    1714                 :      * snapshot, it is too late to establish one after a parallel operation
    1715                 :      * has begun.
    1716                 :      */
    1717 CBC        1641 :     if (IsInParallelMode())
    1718 UIC           0 :         elog(ERROR, "cannot establish serializable snapshot during a parallel operation");
    1719                 : 
    1720 GIC        1641 :     proc = MyProc;
    1721 CBC        1641 :     Assert(proc != NULL);
    1722            1641 :     GET_VXID_FROM_PGPROC(vxid, *proc);
    1723 ECB             : 
    1724                 :     /*
    1725                 :      * First we get the sxact structure, which may involve looping and access
    1726                 :      * to the "finished" list to free a structure for use.
    1727                 :      *
    1728                 :      * We must hold SerializableXactHashLock when taking/checking the snapshot
    1729                 :      * to avoid race conditions, for much the same reasons that
    1730                 :      * GetSnapshotData takes the ProcArrayLock.  Since we might have to
    1731                 :      * release SerializableXactHashLock to call SummarizeOldestCommittedSxact,
    1732                 :      * this means we have to create the sxact first, which is a bit annoying
    1733                 :      * (in particular, an elog(ERROR) in procarray.c would cause us to leak
    1734                 :      * the sxact).  Consider refactoring to avoid this.
    1735                 :      */
    1736                 : #ifdef TEST_SUMMARIZE_SERIAL
    1737                 :     SummarizeOldestCommittedSxact();
    1738                 : #endif
    1739 GIC        1641 :     LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
    1740 ECB             :     do
    1741                 :     {
    1742 GIC        1641 :         sxact = CreatePredXact();
    1743                 :         /* If null, push out committed sxact to SLRU summary & retry. */
    1744            1641 :         if (!sxact)
    1745                 :         {
    1746 UIC           0 :             LWLockRelease(SerializableXactHashLock);
    1747               0 :             SummarizeOldestCommittedSxact();
    1748 LBC           0 :             LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
    1749                 :         }
    1750 CBC        1641 :     } while (!sxact);
    1751                 : 
    1752 ECB             :     /* Get the snapshot, or check that it's safe to use */
    1753 CBC        1641 :     if (!sourcevxid)
    1754            1641 :         snapshot = GetSnapshotData(snapshot);
    1755 UIC           0 :     else if (!ProcArrayInstallImportedXmin(snapshot->xmin, sourcevxid))
    1756 ECB             :     {
    1757 UIC           0 :         ReleasePredXact(sxact);
    1758               0 :         LWLockRelease(SerializableXactHashLock);
    1759               0 :         ereport(ERROR,
    1760                 :                 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
    1761                 :                  errmsg("could not import the requested snapshot"),
    1762                 :                  errdetail("The source process with PID %d is not running anymore.",
    1763                 :                            sourcepid)));
    1764                 :     }
    1765                 : 
    1766 ECB             :     /*
    1767                 :      * If there are no serializable transactions which are not read-only, we
    1768 EUB             :      * can "opt out" of predicate locking and conflict checking for a
    1769                 :      * read-only transaction.
    1770                 :      *
    1771                 :      * The reason this is safe is that a read-only transaction can only become
    1772                 :      * part of a dangerous structure if it overlaps a writable transaction
    1773                 :      * which in turn overlaps a writable transaction which committed before
    1774                 :      * the read-only transaction started.  A new writable transaction can
    1775 ECB             :      * overlap this one, but it can't meet the other condition of overlapping
    1776                 :      * a transaction which committed before this one started.
    1777                 :      */
    1778 GIC        1641 :     if (XactReadOnly && PredXact->WritableSxactCount == 0)
    1779                 :     {
    1780             112 :         ReleasePredXact(sxact);
    1781 CBC         112 :         LWLockRelease(SerializableXactHashLock);
    1782 GIC         112 :         return snapshot;
    1783 ECB             :     }
    1784                 : 
    1785                 :     /* Initialize the structure. */
    1786 CBC        1529 :     sxact->vxid = vxid;
    1787 GIC        1529 :     sxact->SeqNo.lastCommitBeforeSnapshot = PredXact->LastSxactCommitSeqNo;
    1788 CBC        1529 :     sxact->prepareSeqNo = InvalidSerCommitSeqNo;
    1789 GIC        1529 :     sxact->commitSeqNo = InvalidSerCommitSeqNo;
    1790 GNC        1529 :     dlist_init(&(sxact->outConflicts));
    1791            1529 :     dlist_init(&(sxact->inConflicts));
    1792            1529 :     dlist_init(&(sxact->possibleUnsafeConflicts));
    1793 GIC        1529 :     sxact->topXid = GetTopTransactionIdIfAny();
    1794            1529 :     sxact->finishedBefore = InvalidTransactionId;
    1795 CBC        1529 :     sxact->xmin = snapshot->xmin;
    1796 GIC        1529 :     sxact->pid = MyProcPid;
    1797            1529 :     sxact->pgprocno = MyProc->pgprocno;
    1798 GNC        1529 :     dlist_init(&sxact->predicateLocks);
    1799            1529 :     dlist_node_init(&sxact->finishedLink);
    1800 GIC        1529 :     sxact->flags = 0;
    1801 CBC        1529 :     if (XactReadOnly)
    1802                 :     {
    1803                 :         dlist_iter  iter;
    1804                 : 
    1805             106 :         sxact->flags |= SXACT_FLAG_READ_ONLY;
    1806                 : 
    1807 ECB             :         /*
    1808                 :          * Register all concurrent r/w transactions as possible conflicts; if
    1809                 :          * all of them commit without any outgoing conflicts to earlier
    1810                 :          * transactions then this snapshot can be deemed safe (and we can run
    1811                 :          * without tracking predicate locks).
    1812                 :          */
    1813 GNC         464 :         dlist_foreach(iter, &PredXact->activeList)
    1814 ECB             :         {
    1815 GNC         358 :             othersxact = dlist_container(SERIALIZABLEXACT, xactLink, iter.cur);
    1816                 : 
    1817 CBC         358 :             if (!SxactIsCommitted(othersxact)
    1818             239 :                 && !SxactIsDoomed(othersxact)
    1819             239 :                 && !SxactIsReadOnly(othersxact))
    1820                 :             {
    1821 GIC         132 :                 SetPossibleUnsafeConflict(sxact, othersxact);
    1822                 :             }
    1823 ECB             :         }
    1824                 : 
    1825                 :         /*
    1826                 :          * If we didn't find any possibly unsafe conflicts because every
    1827                 :          * uncommitted writable transaction turned out to be doomed, then we
    1828                 :          * can "opt out" immediately.  See comments above the earlier check for
    1829                 :          * PredXact->WritableSxactCount == 0.
    1830                 :          */
    1831 GNC         106 :         if (dlist_is_empty(&sxact->possibleUnsafeConflicts))
    1832                 :         {
    1833 UIC           0 :             ReleasePredXact(sxact);
    1834               0 :             LWLockRelease(SerializableXactHashLock);
    1835               0 :             return snapshot;
    1836                 :         }
    1837                 :     }
    1838                 :     else
    1839                 :     {
    1840 CBC        1423 :         ++(PredXact->WritableSxactCount);
    1841            1423 :         Assert(PredXact->WritableSxactCount <=
    1842                 :                (MaxBackends + max_prepared_xacts));
    1843                 :     }
    1844 ECB             : 
    1845                 :     /* Maintain serializable global xmin info. */
    1846 CBC        1529 :     if (!TransactionIdIsValid(PredXact->SxactGlobalXmin))
    1847                 :     {
    1848 GIC         846 :         Assert(PredXact->SxactGlobalXminCount == 0);
    1849 CBC         846 :         PredXact->SxactGlobalXmin = snapshot->xmin;
    1850 GIC         846 :         PredXact->SxactGlobalXminCount = 1;
    1851 CBC         846 :         SerialSetActiveSerXmin(snapshot->xmin);
    1852                 :     }
    1853             683 :     else if (TransactionIdEquals(snapshot->xmin, PredXact->SxactGlobalXmin))
    1854 ECB             :     {
    1855 GIC         649 :         Assert(PredXact->SxactGlobalXminCount > 0);
    1856             649 :         PredXact->SxactGlobalXminCount++;
    1857 ECB             :     }
    1858                 :     else
    1859                 :     {
    1860 CBC          34 :         Assert(TransactionIdFollows(snapshot->xmin, PredXact->SxactGlobalXmin));
    1861 ECB             :     }
    1862                 : 
    1863 GIC        1529 :     MySerializableXact = sxact;
    1864            1529 :     MyXactDidWrite = false;     /* haven't written anything yet */
    1865                 : 
    1866            1529 :     LWLockRelease(SerializableXactHashLock);
    1867                 : 
    1868            1529 :     CreateLocalPredicateLockHash();
    1869                 : 
    1870            1529 :     return snapshot;
    1871                 : }
    1872                 : 
    1873                 : static void
    1874            1542 : CreateLocalPredicateLockHash(void)
    1875                 : {
    1876                 :     HASHCTL     hash_ctl;
    1877                 : 
    1878                 :     /* Initialize the backend-local hash table of parent locks */
    1879 GBC        1542 :     Assert(LocalPredicateLockHash == NULL);
    1880 GIC        1542 :     hash_ctl.keysize = sizeof(PREDICATELOCKTARGETTAG);
    1881            1542 :     hash_ctl.entrysize = sizeof(LOCALPREDICATELOCK);
    1882            1542 :     LocalPredicateLockHash = hash_create("Local predicate lock",
    1883                 :                                          max_predicate_locks_per_xact,
    1884                 :                                          &hash_ctl,
    1885                 :                                          HASH_ELEM | HASH_BLOBS);
    1886 GBC        1542 : }
    1887                 : 
    1888                 : /*
    1889                 :  * Register the top level XID in SerializableXidHash.
    1890                 :  * Also store it for easy reference in MySerializableXact.
    1891 EUB             :  */
    1892                 : void
    1893 GBC      298065 : RegisterPredicateLockingXid(TransactionId xid)
    1894                 : {
    1895 EUB             :     SERIALIZABLEXIDTAG sxidtag;
    1896                 :     SERIALIZABLEXID *sxid;
    1897                 :     bool        found;
    1898                 : 
    1899                 :     /*
    1900                 :      * If we're not tracking predicate lock data for this transaction, we
    1901                 :      * should ignore the request and return quickly.
    1902                 :      */
    1903 GIC      298065 :     if (MySerializableXact == InvalidSerializableXact)
    1904          296802 :         return;
    1905                 : 
    1906                 :     /* We should have a valid XID and be at the top level. */
    1907            1263 :     Assert(TransactionIdIsValid(xid));
    1908                 : 
    1909            1263 :     LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
    1910                 : 
    1911                 :     /* This should only be done once per transaction. */
    1912            1263 :     Assert(MySerializableXact->topXid == InvalidTransactionId);
    1913                 : 
    1914            1263 :     MySerializableXact->topXid = xid;
    1915                 : 
    1916 CBC        1263 :     sxidtag.xid = xid;
    1917 GIC        1263 :     sxid = (SERIALIZABLEXID *) hash_search(SerializableXidHash,
    1918                 :                                            &sxidtag,
    1919                 :                                            HASH_ENTER, &found);
    1920            1263 :     Assert(!found);
    1921 ECB             : 
    1922                 :     /* Initialize the structure. */
    1923 GIC        1263 :     sxid->myXact = MySerializableXact;
    1924            1263 :     LWLockRelease(SerializableXactHashLock);
    1925 ECB             : }
    1926                 : 
    1927                 : 
    1928                 : /*
    1929                 :  * Check whether there are any predicate locks held by any transaction
    1930                 :  * for the page at the given block number.
    1931                 :  *
    1932                 :  * Note that the transaction may be completed but not yet subject to
    1933                 :  * cleanup due to overlapping serializable transactions.  This must
    1934                 :  * return valid information regardless of transaction isolation level.
    1935                 :  *
    1936                 :  * Also note that this doesn't check for a conflicting relation lock,
    1937                 :  * just a lock specifically on the given page.
    1938                 :  *
    1939                 :  * One use is to support proper behavior during GiST index vacuum.
    1940                 :  */
    1941                 : bool
    1942 UIC           0 : PageIsPredicateLocked(Relation relation, BlockNumber blkno)
    1943 ECB             : {
    1944                 :     PREDICATELOCKTARGETTAG targettag;
    1945                 :     uint32      targettaghash;
    1946                 :     LWLock     *partitionLock;
    1947                 :     PREDICATELOCKTARGET *target;
    1948                 : 
    1949 UIC           0 :     SET_PREDICATELOCKTARGETTAG_PAGE(targettag,
    1950                 :                                     relation->rd_locator.dbOid,
    1951                 :                                     relation->rd_id,
    1952 ECB             :                                     blkno);
    1953                 : 
    1954 LBC           0 :     targettaghash = PredicateLockTargetTagHashCode(&targettag);
    1955 UIC           0 :     partitionLock = PredicateLockHashPartitionLock(targettaghash);
    1956               0 :     LWLockAcquire(partitionLock, LW_SHARED);
    1957                 :     target = (PREDICATELOCKTARGET *)
    1958 LBC           0 :         hash_search_with_hash_value(PredicateLockTargetHash,
    1959                 :                                     &targettag, targettaghash,
    1960 ECB             :                                     HASH_FIND, NULL);
    1961 UIC           0 :     LWLockRelease(partitionLock);
    1962 ECB             : 
    1963 UIC           0 :     return (target != NULL);
    1964                 : }
    1965                 : 
    1966 ECB             : 
    1967                 : /*
    1968                 :  * Check whether a particular lock is held by this transaction.
    1969                 :  *
    1970 EUB             :  * Important note: this function may return false even if the lock is
    1971                 :  * being held, because it uses the local lock table which is not
    1972                 :  * updated if another transaction modifies our lock list (e.g. to
    1973                 :  * split an index page). It can also return true when a coarser
    1974                 :  * granularity lock that covers this target is being held. Be careful
    1975                 :  * to only use this function in circumstances where such errors are
    1976                 :  * acceptable!
    1977                 :  */
    1978                 : static bool
    1979 GIC       77194 : PredicateLockExists(const PREDICATELOCKTARGETTAG *targettag)
    1980                 : {
    1981                 :     LOCALPREDICATELOCK *lock;
    1982 ECB             : 
    1983                 :     /* check local hash table */
    1984 GIC       77194 :     lock = (LOCALPREDICATELOCK *) hash_search(LocalPredicateLockHash,
    1985                 :                                               targettag,
    1986                 :                                               HASH_FIND, NULL);
    1987 ECB             : 
    1988 GIC       77194 :     if (!lock)
    1989           30089 :         return false;
    1990 ECB             : 
    1991                 :     /*
    1992                 :      * Found entry in the table, but still need to check whether it's actually
    1993                 :      * held -- it could just be a parent of some held lock.
    1994                 :      */
    1995 GIC       47105 :     return lock->held;
    1996                 : }
    1997                 : 
    1998 ECB             : /*
    1999                 :  * Return the parent lock tag in the lock hierarchy: the next coarser
    2000                 :  * lock that covers the provided tag.
    2001                 :  *
    2002                 :  * Returns true and sets *parent to the parent tag if one exists,
    2003                 :  * returns false if none exists.
    2004                 :  */
    2005                 : static bool
    2006 GIC       45149 : GetParentPredicateLockTag(const PREDICATELOCKTARGETTAG *tag,
    2007                 :                           PREDICATELOCKTARGETTAG *parent)
    2008                 : {
    2009           45149 :     switch (GET_PREDICATELOCKTARGETTAG_TYPE(*tag))
    2010                 :     {
    2011 CBC        9800 :         case PREDLOCKTAG_RELATION:
    2012                 :             /* relation locks have no parent lock */
    2013 GIC        9800 :             return false;
    2014                 : 
    2015 CBC        8416 :         case PREDLOCKTAG_PAGE:
    2016                 :             /* parent lock is relation lock */
    2017            8416 :             SET_PREDICATELOCKTARGETTAG_RELATION(*parent,
    2018 EUB             :                                                 GET_PREDICATELOCKTARGETTAG_DB(*tag),
    2019 ECB             :                                                 GET_PREDICATELOCKTARGETTAG_RELATION(*tag));
    2020                 : 
    2021 GIC        8416 :             return true;
    2022                 : 
    2023 CBC       26933 :         case PREDLOCKTAG_TUPLE:
    2024 ECB             :             /* parent lock is page lock */
    2025 GBC       26933 :             SET_PREDICATELOCKTARGETTAG_PAGE(*parent,
    2026 ECB             :                                             GET_PREDICATELOCKTARGETTAG_DB(*tag),
    2027                 :                                             GET_PREDICATELOCKTARGETTAG_RELATION(*tag),
    2028                 :                                             GET_PREDICATELOCKTARGETTAG_PAGE(*tag));
    2029 GIC       26933 :             return true;
    2030                 :     }
    2031                 : 
    2032 ECB             :     /* not reachable */
    2033 UIC           0 :     Assert(false);
    2034                 :     return false;
    2035                 : }
    2036 ECB             : 
    2037                 : /*
    2038                 :  * Check whether the lock we are considering is already covered by a
    2039 EUB             :  * coarser lock for our transaction.
    2040 ECB             :  *
    2041                 :  * Like PredicateLockExists, this function might return a false
    2042                 :  * negative, but it will never return a false positive.
    2043                 :  */
    2044                 : static bool
    2045 CBC       26031 : CoarserLockCovers(const PREDICATELOCKTARGETTAG *newtargettag)
    2046 EUB             : {
    2047 ECB             :     PREDICATELOCKTARGETTAG targettag,
    2048                 :                 parenttag;
    2049                 : 
    2050 GIC       26031 :     targettag = *newtargettag;
    2051                 : 
    2052                 :     /* check parents iteratively until no more */
    2053           31415 :     while (GetParentPredicateLockTag(&targettag, &parenttag))
    2054 ECB             :     {
    2055 GIC       27205 :         targettag = parenttag;
    2056           27205 :         if (PredicateLockExists(&targettag))
    2057           21821 :             return true;
    2058 ECB             :     }
    2059                 : 
    2060                 :     /* no more parents to check; lock is not covered */
    2061 CBC        4210 :     return false;
    2062 ECB             : }
    2063                 : 
    2064                 : /*
    2065                 :  * Remove the dummy entry from the predicate lock target hash, to free up some
    2066                 :  * scratch space. The caller must be holding SerializablePredicateListLock,
    2067                 :  * and must restore the entry with RestoreScratchTarget() before releasing the
    2068                 :  * lock.
    2069                 :  *
    2070                 :  * If lockheld is true, the caller is already holding the partition lock
    2071                 :  * of the partition containing the scratch entry.
    2072                 :  */
    2073                 : static void
    2074 GIC          19 : RemoveScratchTarget(bool lockheld)
    2075                 : {
    2076                 :     bool        found;
    2077                 : 
    2078              19 :     Assert(LWLockHeldByMe(SerializablePredicateListLock));
    2079                 : 
    2080              19 :     if (!lockheld)
    2081 UIC           0 :         LWLockAcquire(ScratchPartitionLock, LW_EXCLUSIVE);
    2082 GIC          19 :     hash_search_with_hash_value(PredicateLockTargetHash,
    2083                 :                                 &ScratchTargetTag,
    2084                 :                                 ScratchTargetTagHash,
    2085 ECB             :                                 HASH_REMOVE, &found);
    2086 GIC          19 :     Assert(found);
    2087              19 :     if (!lockheld)
    2088 UIC           0 :         LWLockRelease(ScratchPartitionLock);
    2089 GIC          19 : }
    2090                 : 
    2091 ECB             : /*
    2092                 :  * Re-insert the dummy entry in predicate lock target hash.
    2093                 :  */
    2094                 : static void
    2095 GIC          19 : RestoreScratchTarget(bool lockheld)
    2096 ECB             : {
    2097                 :     bool        found;
    2098                 : 
    2099 GIC          19 :     Assert(LWLockHeldByMe(SerializablePredicateListLock));
    2100                 : 
    2101              19 :     if (!lockheld)
    2102 LBC           0 :         LWLockAcquire(ScratchPartitionLock, LW_EXCLUSIVE);
    2103 GIC          19 :     hash_search_with_hash_value(PredicateLockTargetHash,
    2104 ECB             :                                 &ScratchTargetTag,
    2105                 :                                 ScratchTargetTagHash,
    2106                 :                                 HASH_ENTER, &found);
    2107 CBC          19 :     Assert(!found);
    2108 GIC          19 :     if (!lockheld)
    2109 LBC           0 :         LWLockRelease(ScratchPartitionLock);
    2110 GIC          19 : }
    2111                 : 
    2112                 : /*
    2113                 :  * Check whether the list of related predicate locks is empty for a
    2114                 :  * predicate lock target, and remove the target if it is.
    2115 ECB             :  */
    2116                 : static void
    2117 GIC        4204 : RemoveTargetIfNoLongerUsed(PREDICATELOCKTARGET *target, uint32 targettaghash)
    2118 ECB             : {
    2119                 :     PREDICATELOCKTARGET *rmtarget PG_USED_FOR_ASSERTS_ONLY;
    2120                 : 
    2121 CBC        4204 :     Assert(LWLockHeldByMe(SerializablePredicateListLock));
    2122 ECB             : 
    2123                 :     /* Can't remove it until no locks at this target. */
    2124 GNC        4204 :     if (!dlist_is_empty(&target->predicateLocks))
    2125 CBC         961 :         return;
    2126                 : 
    2127                 :     /* Actually remove the target. */
    2128            3243 :     rmtarget = hash_search_with_hash_value(PredicateLockTargetHash,
    2129 GIC        3243 :                                            &target->tag,
    2130 ECB             :                                            targettaghash,
    2131                 :                                            HASH_REMOVE, NULL);
    2132 CBC        3243 :     Assert(rmtarget == target);
    2133                 : }
    2134 ECB             : 
    2135                 : /*
    2136                 :  * Delete child target locks owned by this process.
    2137                 :  * This implementation is assuming that the usage of each target tag field
    2138                 :  * is uniform.  No need to make this hard if we don't have to.
    2139                 :  *
    2140                 :  * We acquire an LWLock in the case of parallel mode, because worker
    2141                 :  * backends have access to the leader's SERIALIZABLEXACT.  Otherwise,
    2142                 :  * we aren't acquiring LWLocks for the predicate lock or lock
    2143                 :  * target structures associated with this transaction unless we're going
    2144                 :  * to modify them, because no other process is permitted to modify our
    2145                 :  * locks.
    2146                 :  */
    2147                 : static void
    2148 GIC        2344 : DeleteChildTargetLocks(const PREDICATELOCKTARGETTAG *newtargettag)
    2149                 : {
    2150                 :     SERIALIZABLEXACT *sxact;
    2151                 :     PREDICATELOCK *predlock;
    2152                 :     dlist_mutable_iter iter;
    2153                 : 
    2154            2344 :     LWLockAcquire(SerializablePredicateListLock, LW_SHARED);
    2155            2344 :     sxact = MySerializableXact;
    2156            2344 :     if (IsInParallelMode())
    2157              11 :         LWLockAcquire(&sxact->perXactPredicateListLock, LW_EXCLUSIVE);
    2158                 : 
    2159 GNC        7766 :     dlist_foreach_modify(iter, &sxact->predicateLocks)
    2160 ECB             :     {
    2161                 :         PREDICATELOCKTAG oldlocktag;
    2162                 :         PREDICATELOCKTARGET *oldtarget;
    2163                 :         PREDICATELOCKTARGETTAG oldtargettag;
    2164                 : 
    2165 GNC        5422 :         predlock = dlist_container(PREDICATELOCK, xactLink, iter.cur);
    2166                 : 
    2167 GIC        5422 :         oldlocktag = predlock->tag;
    2168            5422 :         Assert(oldlocktag.myXact == sxact);
    2169            5422 :         oldtarget = oldlocktag.myTarget;
    2170            5422 :         oldtargettag = oldtarget->tag;
    2171 EUB             : 
    2172 GIC        5422 :         if (TargetTagIsCoveredBy(oldtargettag, *newtargettag))
    2173                 :         {
    2174                 :             uint32      oldtargettaghash;
    2175                 :             LWLock     *partitionLock;
    2176 EUB             :             PREDICATELOCK *rmpredlock PG_USED_FOR_ASSERTS_ONLY;
    2177                 : 
    2178 GIC         999 :             oldtargettaghash = PredicateLockTargetTagHashCode(&oldtargettag);
    2179             999 :             partitionLock = PredicateLockHashPartitionLock(oldtargettaghash);
    2180                 : 
    2181             999 :             LWLockAcquire(partitionLock, LW_EXCLUSIVE);
    2182                 : 
    2183 GNC         999 :             dlist_delete(&predlock->xactLink);
    2184             999 :             dlist_delete(&predlock->targetLink);
    2185 GIC         999 :             rmpredlock = hash_search_with_hash_value
    2186                 :                 (PredicateLockHash,
    2187                 :                  &oldlocktag,
    2188             999 :                  PredicateLockHashCodeFromTargetHashCode(&oldlocktag,
    2189 ECB             :                                                          oldtargettaghash),
    2190                 :                  HASH_REMOVE, NULL);
    2191 GIC         999 :             Assert(rmpredlock == predlock);
    2192                 : 
    2193             999 :             RemoveTargetIfNoLongerUsed(oldtarget, oldtargettaghash);
    2194                 : 
    2195             999 :             LWLockRelease(partitionLock);
    2196                 : 
    2197             999 :             DecrementParentLocks(&oldtargettag);
    2198 ECB             :         }
    2199                 :     }
    2200 GIC        2344 :     if (IsInParallelMode())
    2201 CBC          11 :         LWLockRelease(&sxact->perXactPredicateListLock);
    2202 GIC        2344 :     LWLockRelease(SerializablePredicateListLock);
    2203 CBC        2344 : }
    2204 ECB             : 
    2205                 : /*
    2206                 :  * Returns the promotion limit for a given predicate lock target.  This is the
    2207                 :  * max number of descendant locks allowed before promoting to the specified
    2208                 :  * tag. Note that the limit includes non-direct descendants (e.g., both tuples
    2209                 :  * and pages for a relation lock).
    2210                 :  *
    2211                 :  * Currently the default limit is 2 for a page lock, and half of the value of
    2212                 :  * max_pred_locks_per_transaction - 1 for a relation lock, to match behavior
    2213                 :  * of earlier releases when upgrading.
    2214                 :  *
    2215                 :  * TODO SSI: We should probably add additional GUCs to allow a maximum ratio
    2216                 :  * of page and tuple locks based on the pages in a relation, and the maximum
    2217                 :  * ratio of tuple locks to tuples in a page.  This would provide more
    2218                 :  * generally "balanced" allocation of locks to where they are most useful,
    2219                 :  * while still allowing the absolute numbers to prevent one relation from
    2220                 :  * tying up all predicate lock resources.
    2221                 :  */
    2222                 : static int
    2223 GIC        5384 : MaxPredicateChildLocks(const PREDICATELOCKTARGETTAG *tag)
    2224                 : {
    2225 CBC        5384 :     switch (GET_PREDICATELOCKTARGETTAG_TYPE(*tag))
    2226 ECB             :     {
    2227 GIC        3518 :         case PREDLOCKTAG_RELATION:
    2228            3518 :             return max_predicate_locks_per_relation < 0
    2229                 :                 ? (max_predicate_locks_per_xact
    2230 CBC        3518 :                    / (-max_predicate_locks_per_relation)) - 1
    2231 GIC        3518 :                 : max_predicate_locks_per_relation;
    2232                 : 
    2233 CBC        1866 :         case PREDLOCKTAG_PAGE:
    2234            1866 :             return max_predicate_locks_per_page;
    2235                 : 
    2236 UIC           0 :         case PREDLOCKTAG_TUPLE:
    2237 ECB             : 
    2238                 :             /*
    2239                 :              * not reachable: nothing is finer-granularity than a tuple, so we
    2240                 :              * should never try to promote to it.
    2241                 :              */
    2242 UIC           0 :             Assert(false);
    2243                 :             return 0;
    2244                 :     }
    2245                 : 
    2246                 :     /* not reachable */
    2247               0 :     Assert(false);
    2248                 :     return 0;
    2249                 : }
    2250                 : 
    2251                 : /*
    2252 ECB             :  * For all ancestors of a newly-acquired predicate lock, increment
    2253                 :  * their child count in the parent hash table. If any of them have
    2254                 :  * more descendants than their promotion threshold, acquire the
    2255                 :  * coarsest such lock.
    2256                 :  *
    2257                 :  * Returns true if a parent lock was acquired and false otherwise.
    2258                 :  */
    2259                 : static bool
    2260 GIC        4210 : CheckAndPromotePredicateLockRequest(const PREDICATELOCKTARGETTAG *reqtag)
    2261                 : {
    2262                 :     PREDICATELOCKTARGETTAG targettag,
    2263                 :                 nexttag,
    2264                 :                 promotiontag;
    2265 ECB             :     LOCALPREDICATELOCK *parentlock;
    2266                 :     bool        found,
    2267                 :                 promote;
    2268                 : 
    2269 GIC        4210 :     promote = false;
    2270                 : 
    2271            4210 :     targettag = *reqtag;
    2272                 : 
    2273                 :     /* check parents iteratively */
    2274           13804 :     while (GetParentPredicateLockTag(&targettag, &nexttag))
    2275                 :     {
    2276            5384 :         targettag = nexttag;
    2277 CBC        5384 :         parentlock = (LOCALPREDICATELOCK *) hash_search(LocalPredicateLockHash,
    2278 EUB             :                                                         &targettag,
    2279                 :                                                         HASH_ENTER,
    2280 ECB             :                                                         &found);
    2281 GIC        5384 :         if (!found)
    2282                 :         {
    2283            3323 :             parentlock->held = false;
    2284            3323 :             parentlock->childLocks = 1;
    2285                 :         }
    2286                 :         else
    2287 CBC        2061 :             parentlock->childLocks++;
    2288                 : 
    2289 GBC        5384 :         if (parentlock->childLocks >
    2290            5384 :             MaxPredicateChildLocks(&targettag))
    2291                 :         {
    2292                 :             /*
    2293 ECB             :              * We should promote to this parent lock. Continue to check its
    2294                 :              * ancestors, however, both to get their child counts right and to
    2295                 :              * check whether we should just go ahead and promote to one of
    2296                 :              * them.
    2297                 :              */
    2298 GIC         333 :             promotiontag = targettag;
    2299 CBC         333 :             promote = true;
    2300                 :         }
    2301                 :     }
    2302 ECB             : 
    2303 GIC        4210 :     if (promote)
    2304                 :     {
    2305                 :         /* acquire coarsest ancestor eligible for promotion */
    2306             333 :         PredicateLockAcquire(&promotiontag);
    2307             333 :         return true;
    2308                 :     }
    2309                 :     else
    2310            3877 :         return false;
    2311                 : }
    2312                 : 
    2313                 : /*
    2314 ECB             :  * When releasing a lock, decrement the child count on all ancestor
    2315                 :  * locks.
    2316                 :  *
    2317                 :  * This is called only when releasing a lock via
    2318                 :  * DeleteChildTargetLocks (i.e. when a lock becomes redundant because
    2319                 :  * we've acquired its parent, possibly due to promotion) or when a new
    2320                 :  * MVCC write lock makes the predicate lock unnecessary. There's no
    2321                 :  * point in calling it when locks are released at transaction end, as
    2322                 :  * this information is no longer needed.
    2323                 :  */
    2324                 : static void
    2325 GIC        1380 : DecrementParentLocks(const PREDICATELOCKTARGETTAG *targettag)
    2326 ECB             : {
    2327                 :     PREDICATELOCKTARGETTAG parenttag,
    2328                 :                 nexttag;
    2329                 : 
    2330 GIC        1380 :     parenttag = *targettag;
    2331                 : 
    2332            4140 :     while (GetParentPredicateLockTag(&parenttag, &nexttag))
    2333 ECB             :     {
    2334                 :         uint32      targettaghash;
    2335                 :         LOCALPREDICATELOCK *parentlock,
    2336                 :                    *rmlock PG_USED_FOR_ASSERTS_ONLY;
    2337 EUB             : 
    2338 GIC        2760 :         parenttag = nexttag;
    2339            2760 :         targettaghash = PredicateLockTargetTagHashCode(&parenttag);
    2340                 :         parentlock = (LOCALPREDICATELOCK *)
    2341 CBC        2760 :             hash_search_with_hash_value(LocalPredicateLockHash,
    2342 ECB             :                                         &parenttag, targettaghash,
    2343                 :                                         HASH_FIND, NULL);
    2344                 : 
    2345                 :         /*
    2346                 :          * There's a small chance the parent lock doesn't exist in the lock
    2347                 :          * table. This can happen if we prematurely removed it because an
    2348                 :          * index split caused the child refcount to be off.
    2349                 :          */
    2350 GIC        2760 :         if (parentlock == NULL)
    2351 LBC           0 :             continue;
    2352 EUB             : 
    2353 GIC        2760 :         parentlock->childLocks--;
    2354                 : 
    2355                 :         /*
    2356                 :          * Under similar circumstances the parent lock's refcount might be
    2357 ECB             :          * zero. This only happens if we're holding that lock (otherwise we
    2358                 :          * would have removed the entry).
    2359                 :          */
    2360 CBC        2760 :         if (parentlock->childLocks < 0)
    2361 ECB             :         {
    2362 UIC           0 :             Assert(parentlock->held);
    2363               0 :             parentlock->childLocks = 0;
    2364 ECB             :         }
    2365                 : 
    2366 CBC        2760 :         if ((parentlock->childLocks == 0) && (!parentlock->held))
    2367 ECB             :         {
    2368                 :             rmlock = (LOCALPREDICATELOCK *)
    2369 GIC         750 :                 hash_search_with_hash_value(LocalPredicateLockHash,
    2370                 :                                             &parenttag, targettaghash,
    2371                 :                                             HASH_REMOVE, NULL);
    2372             750 :             Assert(rmlock == parentlock);
    2373                 :         }
    2374                 :     }
    2375            1380 : }
    2376                 : 
    2377                 : /*
    2378 ECB             :  * Indicate that a predicate lock on the given target is held by the
    2379                 :  * specified transaction. Has no effect if the lock is already held.
    2380                 :  *
    2381                 :  * This updates the lock table and the sxact's lock list, and creates
    2382                 :  * the lock target if necessary, but does *not* do anything related to
    2383                 :  * granularity promotion or the local lock table. See
    2384                 :  * PredicateLockAcquire for that.
    2385                 :  */
    2386                 : static void
    2387 GIC        4210 : CreatePredicateLock(const PREDICATELOCKTARGETTAG *targettag,
    2388 ECB             :                     uint32 targettaghash,
    2389                 :                     SERIALIZABLEXACT *sxact)
    2390                 : {
    2391                 :     PREDICATELOCKTARGET *target;
    2392                 :     PREDICATELOCKTAG locktag;
    2393                 :     PREDICATELOCK *lock;
    2394                 :     LWLock     *partitionLock;
    2395                 :     bool        found;
    2396                 : 
    2397 GIC        4210 :     partitionLock = PredicateLockHashPartitionLock(targettaghash);
    2398                 : 
    2399 CBC        4210 :     LWLockAcquire(SerializablePredicateListLock, LW_SHARED);
    2400            4210 :     if (IsInParallelMode())
    2401              16 :         LWLockAcquire(&sxact->perXactPredicateListLock, LW_EXCLUSIVE);
    2402 GIC        4210 :     LWLockAcquire(partitionLock, LW_EXCLUSIVE);
    2403                 : 
    2404 ECB             :     /* Make sure that the target is represented. */
    2405                 :     target = (PREDICATELOCKTARGET *)
    2406 GIC        4210 :         hash_search_with_hash_value(PredicateLockTargetHash,
    2407                 :                                     targettag, targettaghash,
    2408                 :                                     HASH_ENTER_NULL, &found);
    2409            4210 :     if (!target)
    2410 UIC           0 :         ereport(ERROR,
    2411 ECB             :                 (errcode(ERRCODE_OUT_OF_MEMORY),
    2412                 :                  errmsg("out of shared memory"),
    2413                 :                  errhint("You might need to increase max_pred_locks_per_transaction.")));
    2414 GIC        4210 :     if (!found)
    2415 GNC        3243 :         dlist_init(&target->predicateLocks);
    2416                 : 
    2417                 :     /* We've got the sxact and target, make sure they're joined. */
    2418 GIC        4210 :     locktag.myTarget = target;
    2419            4210 :     locktag.myXact = sxact;
    2420                 :     lock = (PREDICATELOCK *)
    2421            4210 :         hash_search_with_hash_value(PredicateLockHash, &locktag,
    2422 CBC        4210 :                                     PredicateLockHashCodeFromTargetHashCode(&locktag, targettaghash),
    2423 ECB             :                                     HASH_ENTER_NULL, &found);
    2424 GIC        4210 :     if (!lock)
    2425 UIC           0 :         ereport(ERROR,
    2426                 :                 (errcode(ERRCODE_OUT_OF_MEMORY),
    2427                 :                  errmsg("out of shared memory"),
    2428                 :                  errhint("You might need to increase max_pred_locks_per_transaction.")));
    2429                 : 
    2430 GIC        4210 :     if (!found)
    2431                 :     {
    2432 GNC        4204 :         dlist_push_tail(&target->predicateLocks, &lock->targetLink);
    2433            4204 :         dlist_push_tail(&sxact->predicateLocks, &lock->xactLink);
    2434 GIC        4204 :         lock->commitSeqNo = InvalidSerCommitSeqNo;
    2435                 :     }
    2436 ECB             : 
    2437 GIC        4210 :     LWLockRelease(partitionLock);
    2438            4210 :     if (IsInParallelMode())
    2439              16 :         LWLockRelease(&sxact->perXactPredicateListLock);
    2440 CBC        4210 :     LWLockRelease(SerializablePredicateListLock);
    2441            4210 : }
    2442                 : 
    2443 ECB             : /*
    2444                 :  * Acquire a predicate lock on the specified target for the current
    2445                 :  * connection if not already held. This updates the local lock table
    2446                 :  * and uses it to implement granularity promotion. It will consolidate
    2447                 :  * multiple locks into a coarser lock if warranted, and will release
    2448                 :  * any finer-grained locks covered by the new one.
    2449                 :  */
    2450                 : static void
    2451 GIC       26235 : PredicateLockAcquire(const PREDICATELOCKTARGETTAG *targettag)
    2452                 : {
    2453                 :     uint32      targettaghash;
    2454                 :     bool        found;
    2455                 :     LOCALPREDICATELOCK *locallock;
    2456                 : 
    2457                 :     /* Do we have the lock already, or a covering lock? */
    2458           26235 :     if (PredicateLockExists(targettag))
    2459 CBC       22025 :         return;
    2460                 : 
    2461 GIC       26031 :     if (CoarserLockCovers(targettag))
    2462           21821 :         return;
    2463 ECB             : 
    2464                 :     /* the same hash and LW lock apply to the lock target and the local lock. */
    2465 GIC        4210 :     targettaghash = PredicateLockTargetTagHashCode(targettag);
    2466 ECB             : 
    2467                 :     /* Acquire lock in local table */
    2468                 :     locallock = (LOCALPREDICATELOCK *)
    2469 GIC        4210 :         hash_search_with_hash_value(LocalPredicateLockHash,
    2470 ECB             :                                     targettag, targettaghash,
    2471                 :                                     HASH_ENTER, &found);
    2472 GIC        4210 :     locallock->held = true;
    2473            4210 :     if (!found)
    2474            3877 :         locallock->childLocks = 0;
    2475                 : 
    2476                 :     /* Actually create the lock */
    2477            4210 :     CreatePredicateLock(targettag, targettaghash, MySerializableXact);
    2478                 : 
    2479                 :     /*
    2480                 :      * Lock has been acquired. Check whether it should be promoted to a
    2481 ECB             :      * coarser granularity, or whether there are finer-granularity locks to
    2482                 :      * clean up.
    2483                 :      */
    2484 GIC        4210 :     if (CheckAndPromotePredicateLockRequest(targettag))
    2485                 :     {
    2486 ECB             :         /*
    2487                 :          * Lock request was promoted to a coarser-granularity lock, and that
    2488                 :          * lock was acquired. It will delete this lock and any of its
    2489                 :          * children, so we're done.
    2490                 :          */
    2491                 :     }
    2492                 :     else
    2493                 :     {
    2494                 :         /* Clean up any finer-granularity locks */
    2495 CBC        3877 :         if (GET_PREDICATELOCKTARGETTAG_TYPE(*targettag) != PREDLOCKTAG_TUPLE)
    2496 GBC        2344 :             DeleteChildTargetLocks(targettag);
    2497                 :     }
    2498                 : }
    2499                 : 
    2500                 : 
    2501                 : /*
    2502                 :  *      PredicateLockRelation
    2503                 :  *
    2504                 :  * Gets a predicate lock at the relation level.
    2505 ECB             :  * Skip if not in full serializable transaction isolation level.
    2506                 :  * Skip if this is a temporary table.
    2507                 :  * Clear any finer-grained predicate locks this session has on the relation.
    2508                 :  */
    2509 EUB             : void
    2510 GIC     1194493 : PredicateLockRelation(Relation relation, Snapshot snapshot)
    2511 ECB             : {
    2512                 :     PREDICATELOCKTARGETTAG tag;
    2513                 : 
    2514 GIC     1194493 :     if (!SerializationNeededForRead(relation, snapshot))
    2515         1193780 :         return;
    2516 ECB             : 
    2517 GIC         713 :     SET_PREDICATELOCKTARGETTAG_RELATION(tag,
    2518                 :                                         relation->rd_locator.dbOid,
    2519                 :                                         relation->rd_id);
    2520             713 :     PredicateLockAcquire(&tag);
    2521                 : }
    2522                 : 
    2523                 : /*
    2524                 :  *      PredicateLockPage
    2525                 :  *
    2526                 :  * Gets a predicate lock at the page level.
    2527                 :  * Skip if not in full serializable transaction isolation level.
    2528                 :  * Skip if this is a temporary table.
    2529 EUB             :  * Skip if a coarser predicate lock already covers this page.
    2530                 :  * Clear any finer-grained predicate locks this session has on the relation.
    2531                 :  */
    2532                 : void
    2533 GBC    10333049 : PredicateLockPage(Relation relation, BlockNumber blkno, Snapshot snapshot)
    2534                 : {
    2535 EUB             :     PREDICATELOCKTARGETTAG tag;
    2536                 : 
    2537 GBC    10333049 :     if (!SerializationNeededForRead(relation, snapshot))
    2538 GIC    10331614 :         return;
    2539 EUB             : 
    2540 GIC        1435 :     SET_PREDICATELOCKTARGETTAG_PAGE(tag,
    2541                 :                                     relation->rd_locator.dbOid,
    2542 EUB             :                                     relation->rd_id,
    2543                 :                                     blkno);
    2544 GIC        1435 :     PredicateLockAcquire(&tag);
    2545 EUB             : }
    2546                 : 
    2547                 : /*
    2548                 :  *      PredicateLockTID
    2549                 :  *
    2550                 :  * Gets a predicate lock at the tuple level.
    2551                 :  * Skip if not in full serializable transaction isolation level.
    2552                 :  * Skip if this is a temporary table.
    2553                 :  */
    2554                 : void
    2555 GIC    19026793 : PredicateLockTID(Relation relation, ItemPointer tid, Snapshot snapshot,
    2556 EUB             :                  TransactionId tuple_xid)
    2557                 : {
    2558                 :     PREDICATELOCKTARGETTAG tag;
    2559                 : 
    2560 GBC    19026793 :     if (!SerializationNeededForRead(relation, snapshot))
    2561 GIC    19003039 :         return;
    2562                 : 
    2563                 :     /*
    2564                 :      * Return if this xact wrote it.
    2565                 :      */
    2566           23754 :     if (relation->rd_index == NULL)
    2567                 :     {
    2568                 :         /* If we wrote it; we already have a write lock. */
    2569           23754 :         if (TransactionIdIsCurrentTransactionId(tuple_xid))
    2570 UIC           0 :             return;
    2571                 :     }
    2572                 : 
    2573                 :     /*
    2574                 :      * Do quick-but-not-definitive test for a relation lock first.  This will
    2575                 :      * never cause a return when the relation is *not* locked, but will
    2576                 :      * occasionally let the check continue when there really *is* a relation
    2577                 :      * level lock.
    2578                 :      */
    2579 GIC       23754 :     SET_PREDICATELOCKTARGETTAG_RELATION(tag,
    2580                 :                                         relation->rd_locator.dbOid,
    2581                 :                                         relation->rd_id);
    2582           23754 :     if (PredicateLockExists(&tag))
    2583 UIC           0 :         return;
    2584                 : 
    2585 GIC       23754 :     SET_PREDICATELOCKTARGETTAG_TUPLE(tag,
    2586                 :                                      relation->rd_locator.dbOid,
    2587                 :                                      relation->rd_id,
    2588                 :                                      ItemPointerGetBlockNumber(tid),
    2589                 :                                      ItemPointerGetOffsetNumber(tid));
    2590 GBC       23754 :     PredicateLockAcquire(&tag);
    2591                 : }
    2592                 : 
    2593                 : 
    2594                 : /*
    2595                 :  *      DeleteLockTarget
    2596                 :  *
    2597                 :  * Remove a predicate lock target along with any locks held for it.
    2598                 :  *
    2599                 :  * Caller must hold SerializablePredicateListLock and the
    2600 EUB             :  * appropriate hash partition lock for the target.
    2601                 :  */
    2602                 : static void
    2603 UIC           0 : DeleteLockTarget(PREDICATELOCKTARGET *target, uint32 targettaghash)
    2604                 : {
    2605                 :     dlist_mutable_iter iter;
    2606                 : 
    2607 UBC           0 :     Assert(LWLockHeldByMeInMode(SerializablePredicateListLock,
    2608                 :                                 LW_EXCLUSIVE));
    2609 UIC           0 :     Assert(LWLockHeldByMe(PredicateLockHashPartitionLock(targettaghash)));
    2610                 : 
    2611               0 :     LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
    2612 EUB             : 
    2613 UNC           0 :     dlist_foreach_modify(iter, &target->predicateLocks)
    2614                 :     {
    2615               0 :         PREDICATELOCK *predlock =
    2616               0 :         dlist_container(PREDICATELOCK, targetLink, iter.cur);
    2617                 :         bool        found;
    2618                 : 
    2619               0 :         dlist_delete(&(predlock->xactLink));
    2620               0 :         dlist_delete(&(predlock->targetLink));
    2621                 : 
    2622 UBC           0 :         hash_search_with_hash_value
    2623                 :             (PredicateLockHash,
    2624               0 :              &predlock->tag,
    2625               0 :              PredicateLockHashCodeFromTargetHashCode(&predlock->tag,
    2626 EUB             :                                                      targettaghash),
    2627                 :              HASH_REMOVE, &found);
    2628 UIC           0 :         Assert(found);
    2629                 :     }
    2630               0 :     LWLockRelease(SerializableXactHashLock);
    2631                 : 
    2632                 :     /* Remove the target itself, if possible. */
    2633               0 :     RemoveTargetIfNoLongerUsed(target, targettaghash);
    2634               0 : }
    2635 EUB             : 
    2636                 : 
    2637                 : /*
    2638                 :  *      TransferPredicateLocksToNewTarget
    2639                 :  *
    2640                 :  * Move or copy all the predicate locks for a lock target, for use by
    2641                 :  * index page splits/combines and other things that create or replace
    2642                 :  * lock targets. If 'removeOld' is true, the old locks and the target
    2643                 :  * will be removed.
    2644                 :  *
    2645                 :  * Returns true on success, or false if we ran out of shared memory to
    2646                 :  * allocate the new target or locks. Guaranteed to always succeed if
    2647                 :  * removeOld is set (by using the scratch entry in PredicateLockTargetHash
    2648                 :  * for scratch space).
    2649                 :  *
    2650                 :  * Warning: the "removeOld" option should be used only with care,
    2651                 :  * because this function does not (indeed, can not) update other
    2652                 :  * backends' LocalPredicateLockHash. If we are only adding new
    2653                 :  * entries, this is not a problem: the local lock table is used only
    2654                 :  * as a hint, so missing entries for locks that are held are
    2655                 :  * OK. Having entries for locks that are no longer held, as can happen
    2656                 :  * when using "removeOld", is not in general OK. We can only use it
    2657                 :  * safely when replacing a lock with a coarser-granularity lock that
    2658                 :  * covers it, or if we are absolutely certain that no one will need to
    2659                 :  * refer to that lock in the future.
    2660                 :  *
    2661                 :  * Caller must hold SerializablePredicateListLock exclusively.
    2662                 :  */
    2663                 : static bool
    2664 UIC           0 : TransferPredicateLocksToNewTarget(PREDICATELOCKTARGETTAG oldtargettag,
    2665                 :                                   PREDICATELOCKTARGETTAG newtargettag,
    2666                 :                                   bool removeOld)
    2667                 : {
    2668 EUB             :     uint32      oldtargettaghash;
    2669                 :     LWLock     *oldpartitionLock;
    2670                 :     PREDICATELOCKTARGET *oldtarget;
    2671                 :     uint32      newtargettaghash;
    2672                 :     LWLock     *newpartitionLock;
    2673                 :     bool        found;
    2674 UIC           0 :     bool        outOfShmem = false;
    2675 EUB             : 
    2676 UIC           0 :     Assert(LWLockHeldByMeInMode(SerializablePredicateListLock,
    2677 EUB             :                                 LW_EXCLUSIVE));
    2678                 : 
    2679 UBC           0 :     oldtargettaghash = PredicateLockTargetTagHashCode(&oldtargettag);
    2680 UIC           0 :     newtargettaghash = PredicateLockTargetTagHashCode(&newtargettag);
    2681 UBC           0 :     oldpartitionLock = PredicateLockHashPartitionLock(oldtargettaghash);
    2682               0 :     newpartitionLock = PredicateLockHashPartitionLock(newtargettaghash);
    2683                 : 
    2684               0 :     if (removeOld)
    2685                 :     {
    2686 EUB             :         /*
    2687                 :          * Remove the dummy entry to give us scratch space, so we know we'll
    2688                 :          * be able to create the new lock target.
    2689                 :          */
    2690 UBC           0 :         RemoveScratchTarget(false);
    2691                 :     }
    2692                 : 
    2693                 :     /*
    2694 EUB             :      * We must get the partition locks in ascending sequence to avoid
    2695                 :      * deadlocks. If old and new partitions are the same, we must request the
    2696                 :      * lock only once.
    2697                 :      */
    2698 UIC           0 :     if (oldpartitionLock < newpartitionLock)
    2699                 :     {
    2700 UBC           0 :         LWLockAcquire(oldpartitionLock,
    2701 UIC           0 :                       (removeOld ? LW_EXCLUSIVE : LW_SHARED));
    2702               0 :         LWLockAcquire(newpartitionLock, LW_EXCLUSIVE);
    2703 EUB             :     }
    2704 UBC           0 :     else if (oldpartitionLock > newpartitionLock)
    2705 EUB             :     {
    2706 UBC           0 :         LWLockAcquire(newpartitionLock, LW_EXCLUSIVE);
    2707 UIC           0 :         LWLockAcquire(oldpartitionLock,
    2708 UBC           0 :                       (removeOld ? LW_EXCLUSIVE : LW_SHARED));
    2709                 :     }
    2710 EUB             :     else
    2711 UIC           0 :         LWLockAcquire(newpartitionLock, LW_EXCLUSIVE);
    2712 EUB             : 
    2713                 :     /*
    2714                 :      * Look for the old target.  If not found, that's OK; no predicate locks
    2715                 :      * are affected, so we can just clean up and return. If it does exist,
    2716                 :      * walk its list of predicate locks and move or copy them to the new
    2717                 :      * target.
    2718                 :      */
    2719 UBC           0 :     oldtarget = hash_search_with_hash_value(PredicateLockTargetHash,
    2720                 :                                             &oldtargettag,
    2721                 :                                             oldtargettaghash,
    2722 EUB             :                                             HASH_FIND, NULL);
    2723                 : 
    2724 UIC           0 :     if (oldtarget)
    2725                 :     {
    2726 EUB             :         PREDICATELOCKTARGET *newtarget;
    2727                 :         PREDICATELOCKTAG newpredlocktag;
    2728                 :         dlist_mutable_iter iter;
    2729                 : 
    2730 UBC           0 :         newtarget = hash_search_with_hash_value(PredicateLockTargetHash,
    2731 EUB             :                                                 &newtargettag,
    2732                 :                                                 newtargettaghash,
    2733                 :                                                 HASH_ENTER_NULL, &found);
    2734                 : 
    2735 UIC           0 :         if (!newtarget)
    2736 EUB             :         {
    2737                 :             /* Failed to allocate due to insufficient shmem */
    2738 UBC           0 :             outOfShmem = true;
    2739 UIC           0 :             goto exit;
    2740 EUB             :         }
    2741                 : 
    2742                 :         /* If we created a new entry, initialize it */
    2743 UBC           0 :         if (!found)
    2744 UNC           0 :             dlist_init(&newtarget->predicateLocks);
    2745 EUB             : 
    2746 UBC           0 :         newpredlocktag.myTarget = newtarget;
    2747                 : 
    2748                 :         /*
    2749 EUB             :          * Loop through all the locks on the old target, replacing them with
    2750                 :          * locks on the new target.
    2751                 :          */
    2752 UIC           0 :         LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
    2753                 : 
    2754 UNC           0 :         dlist_foreach_modify(iter, &oldtarget->predicateLocks)
    2755                 :         {
    2756               0 :             PREDICATELOCK *oldpredlock =
    2757               0 :             dlist_container(PREDICATELOCK, targetLink, iter.cur);
    2758                 :             PREDICATELOCK *newpredlock;
    2759 UIC           0 :             SerCommitSeqNo oldCommitSeqNo = oldpredlock->commitSeqNo;
    2760                 : 
    2761               0 :             newpredlocktag.myXact = oldpredlock->tag.myXact;
    2762                 : 
    2763               0 :             if (removeOld)
    2764                 :             {
    2765 UNC           0 :                 dlist_delete(&(oldpredlock->xactLink));
    2766               0 :                 dlist_delete(&(oldpredlock->targetLink));
    2767                 : 
    2768 UIC           0 :                 hash_search_with_hash_value
    2769                 :                     (PredicateLockHash,
    2770               0 :                      &oldpredlock->tag,
    2771               0 :                      PredicateLockHashCodeFromTargetHashCode(&oldpredlock->tag,
    2772                 :                                                              oldtargettaghash),
    2773                 :                      HASH_REMOVE, &found);
    2774               0 :                 Assert(found);
    2775                 :             }
    2776                 : 
    2777                 :             newpredlock = (PREDICATELOCK *)
    2778               0 :                 hash_search_with_hash_value(PredicateLockHash,
    2779 ECB             :                                             &newpredlocktag,
    2780 UIC           0 :                                             PredicateLockHashCodeFromTargetHashCode(&newpredlocktag,
    2781                 :                                                                                     newtargettaghash),
    2782                 :                                             HASH_ENTER_NULL,
    2783                 :                                             &found);
    2784               0 :             if (!newpredlock)
    2785                 :             {
    2786                 :                 /* Out of shared memory. Undo what we've done so far. */
    2787               0 :                 LWLockRelease(SerializableXactHashLock);
    2788               0 :                 DeleteLockTarget(newtarget, newtargettaghash);
    2789               0 :                 outOfShmem = true;
    2790               0 :                 goto exit;
    2791                 :             }
    2792               0 :             if (!found)
    2793                 :             {
    2794 UNC           0 :                 dlist_push_tail(&(newtarget->predicateLocks),
    2795                 :                                 &(newpredlock->targetLink));
    2796               0 :                 dlist_push_tail(&(newpredlocktag.myXact->predicateLocks),
    2797                 :                                 &(newpredlock->xactLink));
    2798 LBC           0 :                 newpredlock->commitSeqNo = oldCommitSeqNo;
    2799 ECB             :             }
    2800                 :             else
    2801                 :             {
    2802 LBC           0 :                 if (newpredlock->commitSeqNo < oldCommitSeqNo)
    2803 UIC           0 :                     newpredlock->commitSeqNo = oldCommitSeqNo;
    2804 ECB             :             }
    2805                 : 
    2806 LBC           0 :             Assert(newpredlock->commitSeqNo != 0);
    2807 UIC           0 :             Assert((newpredlock->commitSeqNo == InvalidSerCommitSeqNo)
    2808 EUB             :                    || (newpredlock->tag.myXact == OldCommittedSxact));
    2809                 :         }
    2810 UIC           0 :         LWLockRelease(SerializableXactHashLock);
    2811 ECB             : 
    2812 LBC           0 :         if (removeOld)
    2813                 :         {
    2814 UNC           0 :             Assert(dlist_is_empty(&oldtarget->predicateLocks));
    2815 LBC           0 :             RemoveTargetIfNoLongerUsed(oldtarget, oldtargettaghash);
    2816                 :         }
    2817                 :     }
    2818                 : 
    2819 ECB             : 
    2820 LBC           0 : exit:
    2821                 :     /* Release partition locks in reverse order of acquisition. */
    2822 UIC           0 :     if (oldpartitionLock < newpartitionLock)
    2823 ECB             :     {
    2824 LBC           0 :         LWLockRelease(newpartitionLock);
    2825               0 :         LWLockRelease(oldpartitionLock);
    2826 ECB             :     }
    2827 UIC           0 :     else if (oldpartitionLock > newpartitionLock)
    2828                 :     {
    2829               0 :         LWLockRelease(oldpartitionLock);
    2830               0 :         LWLockRelease(newpartitionLock);
    2831                 :     }
    2832 ECB             :     else
    2833 LBC           0 :         LWLockRelease(newpartitionLock);
    2834                 : 
    2835 UIC           0 :     if (removeOld)
    2836 ECB             :     {
    2837                 :         /* We shouldn't run out of memory if we're moving locks */
    2838 LBC           0 :         Assert(!outOfShmem);
    2839                 : 
    2840                 :         /* Put the scratch entry back */
    2841 UIC           0 :         RestoreScratchTarget(false);
    2842                 :     }
    2843                 : 
    2844               0 :     return !outOfShmem;
    2845 ECB             : }
    2846                 : 
    2847 EUB             : /*
    2848                 :  * Drop all predicate locks of any granularity from the specified relation,
    2849                 :  * which can be a heap relation or an index relation.  If 'transfer' is true,
    2850                 :  * acquire a relation lock on the heap for any transactions with any lock(s)
    2851                 :  * on the specified relation.
    2852                 :  *
    2853                 :  * This requires grabbing a lot of LW locks and scanning the entire lock
    2854                 :  * target table for matches.  That makes this more expensive than most
    2855                 :  * predicate lock management functions, but it will only be called for DDL
    2856                 :  * type commands that are expensive anyway, and there are fast returns when
    2857                 :  * no serializable transactions are active or the relation is temporary.
    2858                 :  *
    2859                 :  * We don't use the TransferPredicateLocksToNewTarget function because it
    2860                 :  * acquires its own locks on the partitions of the two targets involved,
    2861                 :  * and we'll already be holding all partition locks.
    2862                 :  *
    2863                 :  * We can't throw an error from here, because the call could be from a
    2864                 :  * transaction which is not serializable.
    2865                 :  *
    2866                 :  * NOTE: This is currently only called with transfer set to true, but that may
    2867                 :  * change.  If we decide to clean up the locks from a table on commit of a
    2868                 :  * transaction which executed DROP TABLE, the false condition will be useful.
    2869                 :  */
    2870                 : static void
    2871 GIC       13605 : DropAllPredicateLocksFromTable(Relation relation, bool transfer)
    2872                 : {
    2873                 :     HASH_SEQ_STATUS seqstat;
    2874 EUB             :     PREDICATELOCKTARGET *oldtarget;
    2875                 :     PREDICATELOCKTARGET *heaptarget;
    2876                 :     Oid         dbId;
    2877                 :     Oid         relId;
    2878                 :     Oid         heapId;
    2879                 :     int         i;
    2880                 :     bool        isIndex;
    2881                 :     bool        found;
    2882                 :     uint32      heaptargettaghash;
    2883                 : 
    2884                 :     /*
    2885                 :      * Bail out quickly if there are no serializable transactions running.
    2886                 :      * It's safe to check this without taking locks because the caller is
    2887                 :      * holding an ACCESS EXCLUSIVE lock on the relation.  No new locks which
    2888                 :      * would matter here can be acquired while that is held.
    2889                 :      */
    2890 GIC       13605 :     if (!TransactionIdIsValid(PredXact->SxactGlobalXmin))
    2891           13586 :         return;
    2892                 : 
    2893              35 :     if (!PredicateLockingNeededForRelation(relation))
    2894 GBC          16 :         return;
    2895 EUB             : 
    2896 GNC          19 :     dbId = relation->rd_locator.dbOid;
    2897 GBC          19 :     relId = relation->rd_id;
    2898 GIC          19 :     if (relation->rd_index == NULL)
    2899                 :     {
    2900 UIC           0 :         isIndex = false;
    2901               0 :         heapId = relId;
    2902                 :     }
    2903 EUB             :     else
    2904                 :     {
    2905 GIC          19 :         isIndex = true;
    2906 GBC          19 :         heapId = relation->rd_index->indrelid;
    2907                 :     }
    2908              19 :     Assert(heapId != InvalidOid);
    2909 GIC          19 :     Assert(transfer || !isIndex);   /* index OID only makes sense with
    2910                 :                                      * transfer */
    2911                 : 
    2912 EUB             :     /* Retrieve first time needed, then keep. */
    2913 GBC          19 :     heaptargettaghash = 0;
    2914 GIC          19 :     heaptarget = NULL;
    2915 EUB             : 
    2916                 :     /* Acquire locks on all lock partitions */
    2917 GBC          19 :     LWLockAcquire(SerializablePredicateListLock, LW_EXCLUSIVE);
    2918 GIC         323 :     for (i = 0; i < NUM_PREDICATELOCK_PARTITIONS; i++)
    2919             304 :         LWLockAcquire(PredicateLockHashPartitionLockByIndex(i), LW_EXCLUSIVE);
    2920              19 :     LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
    2921 EUB             : 
    2922                 :     /*
    2923                 :      * Remove the dummy entry to give us scratch space, so we know we'll be
    2924                 :      * able to create the new lock target.
    2925                 :      */
    2926 GIC          19 :     if (transfer)
    2927 GBC          19 :         RemoveScratchTarget(true);
    2928                 : 
    2929                 :     /* Scan through target map */
    2930 GIC          19 :     hash_seq_init(&seqstat, PredicateLockTargetHash);
    2931 EUB             : 
    2932 GBC          36 :     while ((oldtarget = (PREDICATELOCKTARGET *) hash_seq_search(&seqstat)))
    2933                 :     {
    2934                 :         dlist_mutable_iter iter;
    2935 EUB             : 
    2936                 :         /*
    2937                 :          * Check whether this is a target which needs attention.
    2938                 :          */
    2939 GIC          17 :         if (GET_PREDICATELOCKTARGETTAG_RELATION(oldtarget->tag) != relId)
    2940              17 :             continue;           /* wrong relation id */
    2941 UBC           0 :         if (GET_PREDICATELOCKTARGETTAG_DB(oldtarget->tag) != dbId)
    2942 UIC           0 :             continue;           /* wrong database id */
    2943 UBC           0 :         if (transfer && !isIndex
    2944 UIC           0 :             && GET_PREDICATELOCKTARGETTAG_TYPE(oldtarget->tag) == PREDLOCKTAG_RELATION)
    2945               0 :             continue;           /* already the right lock */
    2946                 : 
    2947 ECB             :         /*
    2948                 :          * If we made it here, we have work to do.  We make sure the heap
    2949                 :          * relation lock exists, then we walk the list of predicate locks for
    2950                 :          * the old target we found, moving all locks to the heap relation lock
    2951                 :          * -- unless they already hold that.
    2952                 :          */
    2953                 : 
    2954                 :         /*
    2955                 :          * First make sure we have the heap relation target.  We only need to
    2956                 :          * do this once.
    2957                 :          */
    2958 UIC           0 :         if (transfer && heaptarget == NULL)
    2959                 :         {
    2960                 :             PREDICATELOCKTARGETTAG heaptargettag;
    2961                 : 
    2962               0 :             SET_PREDICATELOCKTARGETTAG_RELATION(heaptargettag, dbId, heapId);
    2963 LBC           0 :             heaptargettaghash = PredicateLockTargetTagHashCode(&heaptargettag);
    2964 UIC           0 :             heaptarget = hash_search_with_hash_value(PredicateLockTargetHash,
    2965 ECB             :                                                      &heaptargettag,
    2966                 :                                                      heaptargettaghash,
    2967                 :                                                      HASH_ENTER, &found);
    2968 UIC           0 :             if (!found)
    2969 UNC           0 :                 dlist_init(&heaptarget->predicateLocks);
    2970                 :         }
    2971                 : 
    2972                 :         /*
    2973                 :          * Loop through all the locks on the old target, replacing them with
    2974                 :          * locks on the new target.
    2975                 :          */
    2976               0 :         dlist_foreach_modify(iter, &oldtarget->predicateLocks)
    2977                 :         {
    2978               0 :             PREDICATELOCK *oldpredlock =
    2979               0 :             dlist_container(PREDICATELOCK, targetLink, iter.cur);
    2980                 :             PREDICATELOCK *newpredlock;
    2981 ECB             :             SerCommitSeqNo oldCommitSeqNo;
    2982                 :             SERIALIZABLEXACT *oldXact;
    2983                 : 
    2984                 :             /*
    2985                 :              * Remove the old lock first. This avoids the chance of running
    2986                 :              * out of lock structure entries for the hash table.
    2987                 :              */
    2988 UIC           0 :             oldCommitSeqNo = oldpredlock->commitSeqNo;
    2989               0 :             oldXact = oldpredlock->tag.myXact;
    2990                 : 
    2991 UNC           0 :             dlist_delete(&(oldpredlock->xactLink));
    2992                 : 
    2993 ECB             :             /*
    2994                 :              * No need for retail delete from oldtarget list, we're removing
    2995                 :              * the whole target anyway.
    2996                 :              */
    2997 LBC           0 :             hash_search(PredicateLockHash,
    2998 UIC           0 :                         &oldpredlock->tag,
    2999 EUB             :                         HASH_REMOVE, &found);
    3000 UBC           0 :             Assert(found);
    3001 EUB             : 
    3002 UIC           0 :             if (transfer)
    3003 EUB             :             {
    3004                 :                 PREDICATELOCKTAG newpredlocktag;
    3005                 : 
    3006 UIC           0 :                 newpredlocktag.myTarget = heaptarget;
    3007 UBC           0 :                 newpredlocktag.myXact = oldXact;
    3008                 :                 newpredlock = (PREDICATELOCK *)
    3009 UIC           0 :                     hash_search_with_hash_value(PredicateLockHash,
    3010                 :                                                 &newpredlocktag,
    3011               0 :                                                 PredicateLockHashCodeFromTargetHashCode(&newpredlocktag,
    3012 EUB             :                                                                                         heaptargettaghash),
    3013                 :                                                 HASH_ENTER,
    3014                 :                                                 &found);
    3015 UIC           0 :                 if (!found)
    3016                 :                 {
    3017 UNC           0 :                     dlist_push_tail(&(heaptarget->predicateLocks),
    3018                 :                                     &(newpredlock->targetLink));
    3019               0 :                     dlist_push_tail(&(newpredlocktag.myXact->predicateLocks),
    3020                 :                                     &(newpredlock->xactLink));
    3021 UIC           0 :                     newpredlock->commitSeqNo = oldCommitSeqNo;
    3022 EUB             :                 }
    3023                 :                 else
    3024                 :                 {
    3025 UIC           0 :                     if (newpredlock->commitSeqNo < oldCommitSeqNo)
    3026               0 :                         newpredlock->commitSeqNo = oldCommitSeqNo;
    3027                 :                 }
    3028                 : 
    3029               0 :                 Assert(newpredlock->commitSeqNo != 0);
    3030 UBC           0 :                 Assert((newpredlock->commitSeqNo == InvalidSerCommitSeqNo)
    3031                 :                        || (newpredlock->tag.myXact == OldCommittedSxact));
    3032 EUB             :             }
    3033                 :         }
    3034                 : 
    3035 UIC           0 :         hash_search(PredicateLockTargetHash, &oldtarget->tag, HASH_REMOVE,
    3036                 :                     &found);
    3037               0 :         Assert(found);
    3038                 :     }
    3039                 : 
    3040 EUB             :     /* Put the scratch entry back */
    3041 GIC          19 :     if (transfer)
    3042              19 :         RestoreScratchTarget(true);
    3043 EUB             : 
    3044                 :     /* Release locks in reverse order */
    3045 GIC          19 :     LWLockRelease(SerializableXactHashLock);
    3046 GBC         323 :     for (i = NUM_PREDICATELOCK_PARTITIONS - 1; i >= 0; i--)
    3047 GIC         304 :         LWLockRelease(PredicateLockHashPartitionLockByIndex(i));
    3048              19 :     LWLockRelease(SerializablePredicateListLock);
    3049                 : }
    3050                 : 
    3051                 : /*
    3052                 :  * TransferPredicateLocksToHeapRelation
    3053                 :  *      For all transactions, transfer all predicate locks for the given
    3054                 :  *      relation to a single relation lock on the heap.
    3055                 :  */
    3056                 : void
    3057           13605 : TransferPredicateLocksToHeapRelation(Relation relation)
    3058                 : {
    3059 CBC       13605 :     DropAllPredicateLocksFromTable(relation, true);
    3060 GIC       13605 : }
    3061                 : 
    3062                 : 
    3063                 : /*
    3064                 :  *      PredicateLockPageSplit
    3065                 :  *
    3066                 :  * Copies any predicate locks for the old page to the new page.
    3067                 :  * Skip if this is a temporary table or toast table.
    3068                 :  *
    3069                 :  * NOTE: A page split (or overflow) affects all serializable transactions,
    3070                 :  * even if it occurs in the context of another transaction isolation level.
    3071                 :  *
    3072                 :  * NOTE: This currently leaves the local copy of the locks without
    3073 ECB             :  * information on the new lock which is in shared memory.  This could cause
    3074                 :  * problems if enough page splits occur on locked pages without the processes
    3075                 :  * which hold the locks getting in and noticing.
    3076                 :  */
    3077                 : void
    3078 GIC       41358 : PredicateLockPageSplit(Relation relation, BlockNumber oldblkno,
    3079                 :                        BlockNumber newblkno)
    3080                 : {
    3081 ECB             :     PREDICATELOCKTARGETTAG oldtargettag;
    3082                 :     PREDICATELOCKTARGETTAG newtargettag;
    3083                 :     bool        success;
    3084                 : 
    3085                 :     /*
    3086                 :      * Bail out quickly if there are no serializable transactions running.
    3087                 :      *
    3088                 :      * It's safe to do this check without taking any additional locks. Even if
    3089                 :      * a serializable transaction starts concurrently, we know it can't take
    3090                 :      * any SIREAD locks on the page being split because the caller is holding
    3091                 :      * the associated buffer page lock. Memory reordering isn't an issue; the
    3092                 :      * memory barrier in the LWLock acquisition guarantees that this read
    3093                 :      * occurs while the buffer page lock is held.
    3094                 :      */
    3095 CBC       41358 :     if (!TransactionIdIsValid(PredXact->SxactGlobalXmin))
    3096           41358 :         return;
    3097 ECB             : 
    3098 GIC          11 :     if (!PredicateLockingNeededForRelation(relation))
    3099 CBC          11 :         return;
    3100 ECB             : 
    3101 UBC           0 :     Assert(oldblkno != newblkno);
    3102               0 :     Assert(BlockNumberIsValid(oldblkno));
    3103 UIC           0 :     Assert(BlockNumberIsValid(newblkno));
    3104 ECB             : 
    3105 LBC           0 :     SET_PREDICATELOCKTARGETTAG_PAGE(oldtargettag,
    3106                 :                                     relation->rd_locator.dbOid,
    3107 EUB             :                                     relation->rd_id,
    3108                 :                                     oldblkno);
    3109 UBC           0 :     SET_PREDICATELOCKTARGETTAG_PAGE(newtargettag,
    3110                 :                                     relation->rd_locator.dbOid,
    3111                 :                                     relation->rd_id,
    3112                 :                                     newblkno);
    3113 ECB             : 
    3114 LBC           0 :     LWLockAcquire(SerializablePredicateListLock, LW_EXCLUSIVE);
    3115                 : 
    3116                 :     /*
    3117                 :      * Try copying the locks over to the new page's tag, creating it if
    3118                 :      * necessary.
    3119                 :      */
    3120 UIC           0 :     success = TransferPredicateLocksToNewTarget(oldtargettag,
    3121                 :                                                 newtargettag,
    3122                 :                                                 false);
    3123                 : 
    3124               0 :     if (!success)
    3125                 :     {
    3126                 :         /*
    3127                 :          * No more predicate lock entries are available. Failure isn't an
    3128                 :          * option here, so promote the page lock to a relation lock.
    3129                 :          */
    3130                 : 
    3131                 :         /* Get the parent relation lock's lock tag */
    3132               0 :         success = GetParentPredicateLockTag(&oldtargettag,
    3133                 :                                             &newtargettag);
    3134               0 :         Assert(success);
    3135                 : 
    3136                 :         /*
    3137                 :          * Move the locks to the parent. This shouldn't fail.
    3138                 :          *
    3139                 :          * Note that here we are removing locks held by other backends,
    3140                 :          * leading to a possible inconsistency in their local lock hash table.
    3141                 :          * This is OK because we're replacing it with a lock that covers the
    3142 ECB             :          * old one.
    3143                 :          */
    3144 LBC           0 :         success = TransferPredicateLocksToNewTarget(oldtargettag,
    3145                 :                                                     newtargettag,
    3146                 :                                                     true);
    3147 UIC           0 :         Assert(success);
    3148                 :     }
    3149                 : 
    3150               0 :     LWLockRelease(SerializablePredicateListLock);
    3151                 : }
    3152                 : 
    3153                 : /*
    3154                 :  *      PredicateLockPageCombine
    3155                 :  *
    3156                 :  * Combines predicate locks for two existing pages.
    3157                 :  * Skip if this is a temporary table or toast table.
    3158                 :  *
    3159                 :  * NOTE: A page combine affects all serializable transactions, even if it
    3160                 :  * occurs in the context of another transaction isolation level.
    3161 ECB             :  */
    3162                 : void
    3163 GIC        2675 : PredicateLockPageCombine(Relation relation, BlockNumber oldblkno,
    3164 ECB             :                          BlockNumber newblkno)
    3165                 : {
    3166                 :     /*
    3167                 :      * Page combines differ from page splits in that we ought to be able to
    3168                 :      * remove the locks on the old page after transferring them to the new
    3169                 :      * page, instead of duplicating them. However, because we can't edit other
    3170                 :      * backends' local lock tables, removing the old lock would leave them
    3171                 :      * with an entry in their LocalPredicateLockHash for a lock they're not
    3172                 :      * holding, which isn't acceptable. So we wind up having to do the same
    3173                 :      * work as a page split, acquiring a lock on the new page and keeping the
    3174                 :      * old page locked too. That can lead to some false positives, but should
    3175                 :      * be rare in practice.
    3176                 :      */
    3177 GIC        2675 :     PredicateLockPageSplit(relation, oldblkno, newblkno);
    3178            2675 : }
    3179                 : 
    3180                 : /*
    3181 ECB             :  * Walk the list of in-progress serializable transactions and find the new
    3182                 :  * xmin.
    3183                 :  */
    3184                 : static void
    3185 GIC         864 : SetNewSxactGlobalXmin(void)
    3186                 : {
    3187                 :     dlist_iter  iter;
    3188                 : 
    3189 CBC         864 :     Assert(LWLockHeldByMe(SerializableXactHashLock));
    3190                 : 
    3191             864 :     PredXact->SxactGlobalXmin = InvalidTransactionId;
    3192             864 :     PredXact->SxactGlobalXminCount = 0;
    3193 ECB             : 
    3194 GNC        3272 :     dlist_foreach(iter, &PredXact->activeList)
    3195                 :     {
    3196            2408 :         SERIALIZABLEXACT *sxact =
    3197            2408 :         dlist_container(SERIALIZABLEXACT, xactLink, iter.cur);
    3198                 : 
    3199 GIC        2408 :         if (!SxactIsRolledBack(sxact)
    3200            2110 :             && !SxactIsCommitted(sxact)
    3201 CBC          18 :             && sxact != OldCommittedSxact)
    3202                 :         {
    3203              18 :             Assert(sxact->xmin != InvalidTransactionId);
    3204              18 :             if (!TransactionIdIsValid(PredXact->SxactGlobalXmin)
    3205 UIC           0 :                 || TransactionIdPrecedes(sxact->xmin,
    3206               0 :                                          PredXact->SxactGlobalXmin))
    3207 ECB             :             {
    3208 GIC          18 :                 PredXact->SxactGlobalXmin = sxact->xmin;
    3209              18 :                 PredXact->SxactGlobalXminCount = 1;
    3210                 :             }
    3211 UIC           0 :             else if (TransactionIdEquals(sxact->xmin,
    3212                 :                                          PredXact->SxactGlobalXmin))
    3213 LBC           0 :                 PredXact->SxactGlobalXminCount++;
    3214 ECB             :         }
    3215                 :     }
    3216                 : 
    3217 GIC         864 :     SerialSetActiveSerXmin(PredXact->SxactGlobalXmin);
    3218             864 : }
    3219                 : 
    3220                 : /*
    3221                 :  *      ReleasePredicateLocks
    3222 ECB             :  *
    3223                 :  * Releases predicate locks based on completion of the current transaction,
    3224                 :  * whether committed or rolled back.  It can also be called for a read only
    3225                 :  * transaction when it becomes impossible for the transaction to become
    3226                 :  * part of a dangerous structure.
    3227                 :  *
    3228                 :  * We do nothing unless this is a serializable transaction.
    3229                 :  *
    3230                 :  * This method must ensure that shared memory hash tables are cleaned
    3231                 :  * up in some relatively timely fashion.
    3232                 :  *
    3233                 :  * If this transaction is committing and is holding any predicate locks,
    3234                 :  * it must be added to a list of completed serializable transactions still
    3235                 :  * holding locks.
    3236                 :  *
    3237                 :  * If isReadOnlySafe is true, then predicate locks are being released before
    3238                 :  * the end of the transaction because MySerializableXact has been determined
    3239                 :  * to be RO_SAFE.  In non-parallel mode we can release it completely, but it
    3240                 :  * in parallel mode we partially release the SERIALIZABLEXACT and keep it
    3241                 :  * around until the end of the transaction, allowing each backend to clear its
    3242                 :  * MySerializableXact variable and benefit from the optimization in its own
    3243                 :  * time.
    3244                 :  */
    3245                 : void
    3246 CBC      486218 : ReleasePredicateLocks(bool isCommit, bool isReadOnlySafe)
    3247                 : {
    3248 GIC      486218 :     bool        partiallyReleasing = false;
    3249                 :     bool        needToClear;
    3250 ECB             :     SERIALIZABLEXACT *roXact;
    3251                 :     dlist_mutable_iter iter;
    3252                 : 
    3253                 :     /*
    3254                 :      * We can't trust XactReadOnly here, because a transaction which started
    3255                 :      * as READ WRITE can show as READ ONLY later, e.g., within
    3256                 :      * subtransactions.  We want to flag a transaction as READ ONLY if it
    3257                 :      * commits without writing so that de facto READ ONLY transactions get the
    3258                 :      * benefit of some RO optimizations, so we will use this local variable to
    3259                 :      * get some cleanup logic right which is based on whether the transaction
    3260                 :      * was declared READ ONLY at the top level.
    3261                 :      */
    3262                 :     bool        topLevelIsDeclaredReadOnly;
    3263                 : 
    3264                 :     /* We can't be both committing and releasing early due to RO_SAFE. */
    3265 GIC      486218 :     Assert(!(isCommit && isReadOnlySafe));
    3266                 : 
    3267                 :     /* Are we at the end of a transaction, that is, a commit or abort? */
    3268          486218 :     if (!isReadOnlySafe)
    3269                 :     {
    3270                 :         /*
    3271                 :          * Parallel workers mustn't release predicate locks at the end of
    3272                 :          * their transaction.  The leader will do that at the end of its
    3273 ECB             :          * transaction.
    3274                 :          */
    3275 GIC      486185 :         if (IsParallelWorker())
    3276                 :         {
    3277            3894 :             ReleasePredicateLocksLocal();
    3278          484687 :             return;
    3279 ECB             :         }
    3280                 : 
    3281                 :         /*
    3282                 :          * By the time the leader in a parallel query reaches end of
    3283                 :          * transaction, it has waited for all workers to exit.
    3284                 :          */
    3285 CBC      482291 :         Assert(!ParallelContextActive());
    3286                 : 
    3287                 :         /*
    3288                 :          * If the leader in a parallel query earlier stashed a partially
    3289                 :          * released SERIALIZABLEXACT for final clean-up at end of transaction
    3290                 :          * (because workers might still have been accessing it), then it's
    3291                 :          * time to restore it.
    3292                 :          */
    3293 GIC      482291 :         if (SavedSerializableXact != InvalidSerializableXact)
    3294                 :         {
    3295               1 :             Assert(MySerializableXact == InvalidSerializableXact);
    3296               1 :             MySerializableXact = SavedSerializableXact;
    3297               1 :             SavedSerializableXact = InvalidSerializableXact;
    3298               1 :             Assert(SxactIsPartiallyReleased(MySerializableXact));
    3299                 :         }
    3300                 :     }
    3301 ECB             : 
    3302 CBC      482324 :     if (MySerializableXact == InvalidSerializableXact)
    3303                 :     {
    3304 GIC      480790 :         Assert(LocalPredicateLockHash == NULL);
    3305          480790 :         return;
    3306                 :     }
    3307                 : 
    3308            1534 :     LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
    3309                 : 
    3310 ECB             :     /*
    3311                 :      * If the transaction is committing, but it has been partially released
    3312                 :      * already, then treat this as a roll back.  It was marked as rolled back.
    3313                 :      */
    3314 GIC        1534 :     if (isCommit && SxactIsPartiallyReleased(MySerializableXact))
    3315 CBC           2 :         isCommit = false;
    3316 ECB             : 
    3317                 :     /*
    3318                 :      * If we're called in the middle of a transaction because we discovered
    3319                 :      * that the SXACT_FLAG_RO_SAFE flag was set, then we'll partially release
    3320                 :      * it (that is, release the predicate locks and conflicts, but not the
    3321                 :      * SERIALIZABLEXACT itself) if we're the first backend to have noticed.
    3322                 :      */
    3323 GIC        1534 :     if (isReadOnlySafe && IsInParallelMode())
    3324                 :     {
    3325                 :         /*
    3326                 :          * The leader needs to stash a pointer to it, so that it can
    3327 ECB             :          * completely release it at end-of-transaction.
    3328                 :          */
    3329 GIC           5 :         if (!IsParallelWorker())
    3330               1 :             SavedSerializableXact = MySerializableXact;
    3331                 : 
    3332                 :         /*
    3333                 :          * The first backend to reach this condition will partially release
    3334                 :          * the SERIALIZABLEXACT.  All others will just clear their
    3335                 :          * backend-local state so that they stop doing SSI checks for the rest
    3336                 :          * of the transaction.
    3337 ECB             :          */
    3338 GIC           5 :         if (SxactIsPartiallyReleased(MySerializableXact))
    3339 ECB             :         {
    3340 CBC           3 :             LWLockRelease(SerializableXactHashLock);
    3341 GIC           3 :             ReleasePredicateLocksLocal();
    3342 CBC           3 :             return;
    3343 ECB             :         }
    3344                 :         else
    3345                 :         {
    3346 GIC           2 :             MySerializableXact->flags |= SXACT_FLAG_PARTIALLY_RELEASED;
    3347               2 :             partiallyReleasing = true;
    3348                 :             /* ... and proceed to perform the partial release below. */
    3349                 :         }
    3350 ECB             :     }
    3351 CBC        1531 :     Assert(!isCommit || SxactIsPrepared(MySerializableXact));
    3352            1531 :     Assert(!isCommit || !SxactIsDoomed(MySerializableXact));
    3353 GIC        1531 :     Assert(!SxactIsCommitted(MySerializableXact));
    3354            1531 :     Assert(SxactIsPartiallyReleased(MySerializableXact)
    3355                 :            || !SxactIsRolledBack(MySerializableXact));
    3356                 : 
    3357                 :     /* may not be serializable during COMMIT/ROLLBACK PREPARED */
    3358 GBC        1531 :     Assert(MySerializableXact->pid == 0 || IsolationIsSerializable());
    3359                 : 
    3360 EUB             :     /* We'd better not already be on the cleanup list. */
    3361 GIC        1531 :     Assert(!SxactIsOnFinishedList(MySerializableXact));
    3362                 : 
    3363            1531 :     topLevelIsDeclaredReadOnly = SxactIsReadOnly(MySerializableXact);
    3364                 : 
    3365                 :     /*
    3366                 :      * We don't hold XidGenLock lock here, assuming that TransactionId is
    3367                 :      * atomic!
    3368 ECB             :      *
    3369                 :      * If this value is changing, we don't care that much whether we get the
    3370                 :      * old or new value -- it is just used to determine how far
    3371                 :      * SxactGlobalXmin must advance before this transaction can be fully
    3372                 :      * cleaned up.  The worst that could happen is we wait for one more
    3373                 :      * transaction to complete before freeing some RAM; correctness of visible
    3374                 :      * behavior is not affected.
    3375                 :      */
    3376 GIC        1531 :     MySerializableXact->finishedBefore = XidFromFullTransactionId(ShmemVariableCache->nextXid);
    3377 ECB             : 
    3378 EUB             :     /*
    3379 ECB             :      * If it's not a commit it's either a rollback or a read-only transaction
    3380                 :      * flagged SXACT_FLAG_RO_SAFE, and we can clear our locks immediately.
    3381                 :      */
    3382 GIC        1531 :     if (isCommit)
    3383 ECB             :     {
    3384 CBC        1210 :         MySerializableXact->flags |= SXACT_FLAG_COMMITTED;
    3385            1210 :         MySerializableXact->commitSeqNo = ++(PredXact->LastSxactCommitSeqNo);
    3386 ECB             :         /* Recognize implicit read-only transaction (commit without write). */
    3387 GIC        1210 :         if (!MyXactDidWrite)
    3388             233 :             MySerializableXact->flags |= SXACT_FLAG_READ_ONLY;
    3389                 :     }
    3390                 :     else
    3391                 :     {
    3392                 :         /*
    3393 ECB             :          * The DOOMED flag indicates that we intend to roll back this
    3394                 :          * transaction and so it should not cause serialization failures for
    3395                 :          * other transactions that conflict with it. Note that this flag might
    3396                 :          * already be set, if another backend marked this transaction for
    3397                 :          * abort.
    3398                 :          *
    3399                 :          * The ROLLED_BACK flag further indicates that ReleasePredicateLocks
    3400                 :          * has been called, and so the SerializableXact is eligible for
    3401                 :          * cleanup. This means it should not be considered when calculating
    3402                 :          * SxactGlobalXmin.
    3403                 :          */
    3404 CBC         321 :         MySerializableXact->flags |= SXACT_FLAG_DOOMED;
    3405 GIC         321 :         MySerializableXact->flags |= SXACT_FLAG_ROLLED_BACK;
    3406                 : 
    3407                 :         /*
    3408                 :          * If the transaction was previously prepared, but is now failing due
    3409                 :          * to a ROLLBACK PREPARED or (hopefully very rare) error after the
    3410                 :          * prepare, clear the prepared flag.  This simplifies conflict
    3411                 :          * checking.
    3412 ECB             :          */
    3413 GIC         321 :         MySerializableXact->flags &= ~SXACT_FLAG_PREPARED;
    3414 ECB             :     }
    3415                 : 
    3416 GIC        1531 :     if (!topLevelIsDeclaredReadOnly)
    3417 ECB             :     {
    3418 CBC        1423 :         Assert(PredXact->WritableSxactCount > 0);
    3419            1423 :         if (--(PredXact->WritableSxactCount) == 0)
    3420                 :         {
    3421                 :             /*
    3422 ECB             :              * Release predicate locks and rw-conflicts in for all committed
    3423                 :              * transactions.  There are no longer any transactions which might
    3424                 :              * conflict with the locks and no chance for new transactions to
    3425                 :              * overlap.  Similarly, existing conflicts in can't cause pivots,
    3426                 :              * and any conflicts in which could have completed a dangerous
    3427                 :              * structure would already have caused a rollback, so any
    3428                 :              * remaining ones must be benign.
    3429                 :              */
    3430 GIC         856 :             PredXact->CanPartialClearThrough = PredXact->LastSxactCommitSeqNo;
    3431                 :         }
    3432 ECB             :     }
    3433                 :     else
    3434                 :     {
    3435                 :         /*
    3436                 :          * Read-only transactions: clear the list of transactions that might
    3437                 :          * make us unsafe. Note that we use 'inLink' for the iteration as
    3438                 :          * opposed to 'outLink' for the r/w xacts.
    3439                 :          */
    3440 GNC         150 :         dlist_foreach_modify(iter, &MySerializableXact->possibleUnsafeConflicts)
    3441                 :         {
    3442              42 :             RWConflict  possibleUnsafeConflict =
    3443              42 :             dlist_container(RWConflictData, inLink, iter.cur);
    3444                 : 
    3445 CBC          42 :             Assert(!SxactIsReadOnly(possibleUnsafeConflict->sxactOut));
    3446              42 :             Assert(MySerializableXact == possibleUnsafeConflict->sxactIn);
    3447 ECB             : 
    3448 GIC          42 :             ReleaseRWConflict(possibleUnsafeConflict);
    3449                 :         }
    3450                 :     }
    3451                 : 
    3452                 :     /* Check for conflict out to old committed transactions. */
    3453            1531 :     if (isCommit
    3454            1210 :         && !SxactIsReadOnly(MySerializableXact)
    3455             977 :         && SxactHasSummaryConflictOut(MySerializableXact))
    3456                 :     {
    3457                 :         /*
    3458                 :          * we don't know which old committed transaction we conflicted with,
    3459 ECB             :          * so be conservative and use FirstNormalSerCommitSeqNo here
    3460                 :          */
    3461 LBC           0 :         MySerializableXact->SeqNo.earliestOutConflictCommit =
    3462 ECB             :             FirstNormalSerCommitSeqNo;
    3463 UIC           0 :         MySerializableXact->flags |= SXACT_FLAG_CONFLICT_OUT;
    3464                 :     }
    3465 ECB             : 
    3466                 :     /*
    3467                 :      * Release all outConflicts to committed transactions.  If we're rolling
    3468                 :      * back clear them all.  Set SXACT_FLAG_CONFLICT_OUT if any point to
    3469                 :      * previously committed transactions.
    3470                 :      */
    3471 GNC        2210 :     dlist_foreach_modify(iter, &MySerializableXact->outConflicts)
    3472                 :     {
    3473             679 :         RWConflict  conflict =
    3474             679 :         dlist_container(RWConflictData, outLink, iter.cur);
    3475                 : 
    3476 GIC         679 :         if (isCommit
    3477             451 :             && !SxactIsReadOnly(MySerializableXact)
    3478             343 :             && SxactIsCommitted(conflict->sxactIn))
    3479                 :         {
    3480              96 :             if ((MySerializableXact->flags & SXACT_FLAG_CONFLICT_OUT) == 0
    3481 UIC           0 :                 || conflict->sxactIn->prepareSeqNo < MySerializableXact->SeqNo.earliestOutConflictCommit)
    3482 CBC          96 :                 MySerializableXact->SeqNo.earliestOutConflictCommit = conflict->sxactIn->prepareSeqNo;
    3483              96 :             MySerializableXact->flags |= SXACT_FLAG_CONFLICT_OUT;
    3484 ECB             :         }
    3485                 : 
    3486 GIC         679 :         if (!isCommit
    3487 CBC         451 :             || SxactIsCommitted(conflict->sxactIn)
    3488 GIC         333 :             || (conflict->sxactIn->SeqNo.lastCommitBeforeSnapshot >= PredXact->LastSxactCommitSeqNo))
    3489 CBC         346 :             ReleaseRWConflict(conflict);
    3490 ECB             :     }
    3491                 : 
    3492                 :     /*
    3493                 :      * Release all inConflicts from committed and read-only transactions. If
    3494                 :      * we're rolling back, clear them all.
    3495                 :      */
    3496 GNC        2300 :     dlist_foreach_modify(iter, &MySerializableXact->inConflicts)
    3497                 :     {
    3498             769 :         RWConflict  conflict =
    3499             769 :         dlist_container(RWConflictData, inLink, iter.cur);
    3500                 : 
    3501 GIC         769 :         if (!isCommit
    3502             599 :             || SxactIsCommitted(conflict->sxactOut)
    3503             415 :             || SxactIsReadOnly(conflict->sxactOut))
    3504             434 :             ReleaseRWConflict(conflict);
    3505                 :     }
    3506                 : 
    3507            1531 :     if (!topLevelIsDeclaredReadOnly)
    3508                 :     {
    3509                 :         /*
    3510                 :          * Remove ourselves from the list of possible conflicts for concurrent
    3511                 :          * READ ONLY transactions, flagging them as unsafe if we have a
    3512 ECB             :          * conflict out. If any are waiting DEFERRABLE transactions, wake them
    3513                 :          * up if they are known safe or known unsafe.
    3514                 :          */
    3515 GNC        1513 :         dlist_foreach_modify(iter, &MySerializableXact->possibleUnsafeConflicts)
    3516 ECB             :         {
    3517 GNC          90 :             RWConflict  possibleUnsafeConflict =
    3518              90 :             dlist_container(RWConflictData, outLink, iter.cur);
    3519                 : 
    3520 GIC          90 :             roXact = possibleUnsafeConflict->sxactIn;
    3521 CBC          90 :             Assert(MySerializableXact == possibleUnsafeConflict->sxactOut);
    3522              90 :             Assert(SxactIsReadOnly(roXact));
    3523 ECB             : 
    3524                 :             /* Mark conflicted if necessary. */
    3525 GIC          90 :             if (isCommit
    3526 CBC          88 :                 && MyXactDidWrite
    3527              83 :                 && SxactHasConflictOut(MySerializableXact)
    3528 GIC          13 :                 && (MySerializableXact->SeqNo.earliestOutConflictCommit
    3529              13 :                     <= roXact->SeqNo.lastCommitBeforeSnapshot))
    3530                 :             {
    3531                 :                 /*
    3532                 :                  * This releases possibleUnsafeConflict (as well as all other
    3533                 :                  * possible conflicts for roXact)
    3534 ECB             :                  */
    3535 GIC           3 :                 FlagSxactUnsafe(roXact);
    3536 ECB             :             }
    3537                 :             else
    3538                 :             {
    3539 GBC          87 :                 ReleaseRWConflict(possibleUnsafeConflict);
    3540 EUB             : 
    3541                 :                 /*
    3542                 :                  * If we were the last possible conflict, flag it safe. The
    3543                 :                  * transaction can now safely release its predicate locks (but
    3544                 :                  * that transaction's backend has to do that itself).
    3545                 :                  */
    3546 GNC          87 :                 if (dlist_is_empty(&roXact->possibleUnsafeConflicts))
    3547 GIC          65 :                     roXact->flags |= SXACT_FLAG_RO_SAFE;
    3548                 :             }
    3549 ECB             : 
    3550                 :             /*
    3551                 :              * Wake up the process for a waiting DEFERRABLE transaction if we
    3552                 :              * now know it's either safe or conflicted.
    3553                 :              */
    3554 GIC          90 :             if (SxactIsDeferrableWaiting(roXact) &&
    3555               1 :                 (SxactIsROUnsafe(roXact) || SxactIsROSafe(roXact)))
    3556               1 :                 ProcSendSignal(roXact->pgprocno);
    3557                 :         }
    3558                 :     }
    3559 ECB             : 
    3560                 :     /*
    3561                 :      * Check whether it's time to clean up old transactions. This can only be
    3562                 :      * done when the last serializable transaction with the oldest xmin among
    3563                 :      * serializable transactions completes.  We then find the "new oldest"
    3564                 :      * xmin and purge any transactions which finished before this transaction
    3565                 :      * was launched.
    3566                 :      *
    3567 EUB             :      * For parallel queries in read-only transactions, it might run twice.
    3568                 :      * We only release the reference on the first call.
    3569                 :      */
    3570 GIC        1531 :     needToClear = false;
    3571 GBC        1531 :     if ((partiallyReleasing ||
    3572            1529 :          !SxactIsPartiallyReleased(MySerializableXact)) &&
    3573            1529 :         TransactionIdEquals(MySerializableXact->xmin,
    3574 EUB             :                             PredXact->SxactGlobalXmin))
    3575                 :     {
    3576 GIC        1513 :         Assert(PredXact->SxactGlobalXminCount > 0);
    3577            1513 :         if (--(PredXact->SxactGlobalXminCount) == 0)
    3578                 :         {
    3579             864 :             SetNewSxactGlobalXmin();
    3580             864 :             needToClear = true;
    3581 EUB             :         }
    3582                 :     }
    3583                 : 
    3584 GIC        1531 :     LWLockRelease(SerializableXactHashLock);
    3585                 : 
    3586            1531 :     LWLockAcquire(SerializableFinishedListLock, LW_EXCLUSIVE);
    3587                 : 
    3588                 :     /* Add this to the list of transactions to check for later cleanup. */
    3589 GBC        1531 :     if (isCommit)
    3590 GNC        1210 :         dlist_push_tail(FinishedSerializableTransactions,
    3591            1210 :                         &MySerializableXact->finishedLink);
    3592 EUB             : 
    3593                 :     /*
    3594                 :      * If we're releasing a RO_SAFE transaction in parallel mode, we'll only
    3595                 :      * partially release it.  That's necessary because other backends may have
    3596                 :      * a reference to it.  The leader will release the SERIALIZABLEXACT itself
    3597                 :      * at the end of the transaction after workers have stopped running.
    3598                 :      */
    3599 GIC        1531 :     if (!isCommit)
    3600 GBC         321 :         ReleaseOneSerializableXact(MySerializableXact,
    3601             321 :                                    isReadOnlySafe && IsInParallelMode(),
    3602                 :                                    false);
    3603                 : 
    3604            1531 :     LWLockRelease(SerializableFinishedListLock);
    3605                 : 
    3606            1531 :     if (needToClear)
    3607 GIC         864 :         ClearOldPredicateLocks();
    3608                 : 
    3609            1531 :     ReleasePredicateLocksLocal();
    3610 ECB             : }
    3611                 : 
    3612                 : static void
    3613 GIC        5428 : ReleasePredicateLocksLocal(void)
    3614                 : {
    3615            5428 :     MySerializableXact = InvalidSerializableXact;
    3616            5428 :     MyXactDidWrite = false;
    3617                 : 
    3618                 :     /* Delete per-transaction lock table */
    3619            5428 :     if (LocalPredicateLockHash != NULL)
    3620                 :     {
    3621            1530 :         hash_destroy(LocalPredicateLockHash);
    3622            1530 :         LocalPredicateLockHash = NULL;
    3623                 :     }
    3624            5428 : }
    3625                 : 
    3626                 : /*
    3627                 :  * Clear old predicate locks, belonging to committed transactions that are no
    3628                 :  * longer interesting to any in-progress transaction.
    3629                 :  */
    3630                 : static void
    3631             864 : ClearOldPredicateLocks(void)
    3632                 : {
    3633                 :     dlist_mutable_iter iter;
    3634                 : 
    3635                 :     /*
    3636                 :      * Loop through finished transactions. They are in commit order, so we can
    3637                 :      * stop as soon as we find one that's still interesting.
    3638                 :      */
    3639 CBC         864 :     LWLockAcquire(SerializableFinishedListLock, LW_EXCLUSIVE);
    3640 GIC         864 :     LWLockAcquire(SerializableXactHashLock, LW_SHARED);
    3641 GNC        2082 :     dlist_foreach_modify(iter, FinishedSerializableTransactions)
    3642                 :     {
    3643            1227 :         SERIALIZABLEXACT *finishedSxact =
    3644            1227 :         dlist_container(SERIALIZABLEXACT, finishedLink, iter.cur);
    3645 ECB             : 
    3646 CBC        1227 :         if (!TransactionIdIsValid(PredXact->SxactGlobalXmin)
    3647              28 :             || TransactionIdPrecedesOrEquals(finishedSxact->finishedBefore,
    3648 GIC          28 :                                              PredXact->SxactGlobalXmin))
    3649                 :         {
    3650                 :             /*
    3651                 :              * This transaction committed before any in-progress transaction
    3652                 :              * took its snapshot. It's no longer interesting.
    3653                 :              */
    3654 CBC        1210 :             LWLockRelease(SerializableXactHashLock);
    3655 GNC        1210 :             dlist_delete_thoroughly(&finishedSxact->finishedLink);
    3656 CBC        1210 :             ReleaseOneSerializableXact(finishedSxact, false, false);
    3657            1210 :             LWLockAcquire(SerializableXactHashLock, LW_SHARED);
    3658 ECB             :         }
    3659 GIC          17 :         else if (finishedSxact->commitSeqNo > PredXact->HavePartialClearedThrough
    3660 CBC          17 :                  && finishedSxact->commitSeqNo <= PredXact->CanPartialClearThrough)
    3661                 :         {
    3662 ECB             :             /*
    3663                 :              * Any active transactions that took their snapshot before this
    3664                 :              * transaction committed are read-only, so we can clear part of
    3665                 :              * its state.
    3666                 :              */
    3667 GIC           8 :             LWLockRelease(SerializableXactHashLock);
    3668 ECB             : 
    3669 GIC           8 :             if (SxactIsReadOnly(finishedSxact))
    3670                 :             {
    3671                 :                 /* A read-only transaction can be removed entirely */
    3672 UNC           0 :                 dlist_delete_thoroughly(&(finishedSxact->finishedLink));
    3673 UBC           0 :                 ReleaseOneSerializableXact(finishedSxact, false, false);
    3674 EUB             :             }
    3675                 :             else
    3676                 :             {
    3677                 :                 /*
    3678                 :                  * A read-write transaction can only be partially cleared. We
    3679                 :                  * need to keep the SERIALIZABLEXACT but can release the
    3680                 :                  * SIREAD locks and conflicts in.
    3681                 :                  */
    3682 GIC           8 :                 ReleaseOneSerializableXact(finishedSxact, true, false);
    3683 EUB             :             }
    3684                 : 
    3685 GBC           8 :             PredXact->HavePartialClearedThrough = finishedSxact->commitSeqNo;
    3686               8 :             LWLockAcquire(SerializableXactHashLock, LW_SHARED);
    3687 EUB             :         }
    3688                 :         else
    3689                 :         {
    3690                 :             /* Still interesting. */
    3691                 :             break;
    3692                 :         }
    3693                 :     }
    3694 GIC         864 :     LWLockRelease(SerializableXactHashLock);
    3695 EUB             : 
    3696                 :     /*
    3697                 :      * Loop through predicate locks on dummy transaction for summarized data.
    3698                 :      */
    3699 CBC         864 :     LWLockAcquire(SerializablePredicateListLock, LW_SHARED);
    3700 GNC         864 :     dlist_foreach_modify(iter, &OldCommittedSxact->predicateLocks)
    3701                 :     {
    3702 UNC           0 :         PREDICATELOCK *predlock =
    3703               0 :         dlist_container(PREDICATELOCK, xactLink, iter.cur);
    3704                 :         bool        canDoPartialCleanup;
    3705 ECB             : 
    3706 LBC           0 :         LWLockAcquire(SerializableXactHashLock, LW_SHARED);
    3707               0 :         Assert(predlock->commitSeqNo != 0);
    3708 UIC           0 :         Assert(predlock->commitSeqNo != InvalidSerCommitSeqNo);
    3709               0 :         canDoPartialCleanup = (predlock->commitSeqNo <= PredXact->CanPartialClearThrough);
    3710 LBC           0 :         LWLockRelease(SerializableXactHashLock);
    3711                 : 
    3712 ECB             :         /*
    3713                 :          * If this lock originally belonged to an old enough transaction, we
    3714 EUB             :          * can release it.
    3715                 :          */
    3716 UIC           0 :         if (canDoPartialCleanup)
    3717 EUB             :         {
    3718                 :             PREDICATELOCKTAG tag;
    3719                 :             PREDICATELOCKTARGET *target;
    3720                 :             PREDICATELOCKTARGETTAG targettag;
    3721                 :             uint32      targettaghash;
    3722                 :             LWLock     *partitionLock;
    3723                 : 
    3724 LBC           0 :             tag = predlock->tag;
    3725 UIC           0 :             target = tag.myTarget;
    3726 UBC           0 :             targettag = target->tag;
    3727               0 :             targettaghash = PredicateLockTargetTagHashCode(&targettag);
    3728 UIC           0 :             partitionLock = PredicateLockHashPartitionLock(targettaghash);
    3729 EUB             : 
    3730 UBC           0 :             LWLockAcquire(partitionLock, LW_EXCLUSIVE);
    3731 EUB             : 
    3732 UNC           0 :             dlist_delete(&(predlock->targetLink));
    3733               0 :             dlist_delete(&(predlock->xactLink));
    3734                 : 
    3735 LBC           0 :             hash_search_with_hash_value(PredicateLockHash, &tag,
    3736 UIC           0 :                                         PredicateLockHashCodeFromTargetHashCode(&tag,
    3737 ECB             :                                                                                 targettaghash),
    3738                 :                                         HASH_REMOVE, NULL);
    3739 LBC           0 :             RemoveTargetIfNoLongerUsed(target, targettaghash);
    3740                 : 
    3741 UIC           0 :             LWLockRelease(partitionLock);
    3742 ECB             :         }
    3743                 :     }
    3744                 : 
    3745 GIC         864 :     LWLockRelease(SerializablePredicateListLock);
    3746             864 :     LWLockRelease(SerializableFinishedListLock);
    3747             864 : }
    3748                 : 
    3749                 : /*
    3750                 :  * This is the normal way to delete anything from any of the predicate
    3751                 :  * locking hash tables.  Given a transaction which we know can be deleted:
    3752 ECB             :  * delete all predicate locks held by that transaction and any predicate
    3753                 :  * lock targets which are now unreferenced by a lock; delete all conflicts
    3754                 :  * for the transaction; delete all xid values for the transaction; then
    3755                 :  * delete the transaction.
    3756                 :  *
    3757                 :  * When the partial flag is set, we can release all predicate locks and
    3758                 :  * in-conflict information -- we've established that there are no longer
    3759                 :  * any overlapping read write transactions for which this transaction could
    3760                 :  * matter -- but keep the transaction entry itself and any outConflicts.
    3761                 :  *
    3762 EUB             :  * When the summarize flag is set, we've run short of room for sxact data
    3763                 :  * and must summarize to the SLRU.  Predicate locks are transferred to a
    3764 ECB             :  * dummy "old" transaction, with duplicate locks on a single target
    3765                 :  * collapsing to a single lock with the "latest" commitSeqNo from among
    3766                 :  * the conflicting locks..
    3767                 :  */
    3768                 : static void
    3769 GIC        1539 : ReleaseOneSerializableXact(SERIALIZABLEXACT *sxact, bool partial,
    3770                 :                            bool summarize)
    3771 ECB             : {
    3772                 :     SERIALIZABLEXIDTAG sxidtag;
    3773                 :     dlist_mutable_iter iter;
    3774                 : 
    3775 CBC        1539 :     Assert(sxact != NULL);
    3776 GIC        1539 :     Assert(SxactIsRolledBack(sxact) || SxactIsCommitted(sxact));
    3777 GBC        1539 :     Assert(partial || !SxactIsOnFinishedList(sxact));
    3778 GIC        1539 :     Assert(LWLockHeldByMe(SerializableFinishedListLock));
    3779                 : 
    3780                 :     /*
    3781                 :      * First release all the predicate locks held by this xact (or transfer
    3782                 :      * them to OldCommittedSxact if summarize is true)
    3783                 :      */
    3784 CBC        1539 :     LWLockAcquire(SerializablePredicateListLock, LW_SHARED);
    3785 GIC        1539 :     if (IsInParallelMode())
    3786               3 :         LWLockAcquire(&sxact->perXactPredicateListLock, LW_EXCLUSIVE);
    3787 GNC        4363 :     dlist_foreach_modify(iter, &sxact->predicateLocks)
    3788                 :     {
    3789            2824 :         PREDICATELOCK *predlock =
    3790            2824 :         dlist_container(PREDICATELOCK, xactLink, iter.cur);
    3791                 :         PREDICATELOCKTAG tag;
    3792                 :         PREDICATELOCKTARGET *target;
    3793                 :         PREDICATELOCKTARGETTAG targettag;
    3794                 :         uint32      targettaghash;
    3795                 :         LWLock     *partitionLock;
    3796                 : 
    3797 GIC        2824 :         tag = predlock->tag;
    3798 CBC        2824 :         target = tag.myTarget;
    3799 GIC        2824 :         targettag = target->tag;
    3800            2824 :         targettaghash = PredicateLockTargetTagHashCode(&targettag);
    3801 CBC        2824 :         partitionLock = PredicateLockHashPartitionLock(targettaghash);
    3802                 : 
    3803 GBC        2824 :         LWLockAcquire(partitionLock, LW_EXCLUSIVE);
    3804                 : 
    3805 GNC        2824 :         dlist_delete(&predlock->targetLink);
    3806                 : 
    3807 GIC        2824 :         hash_search_with_hash_value(PredicateLockHash, &tag,
    3808            2824 :                                     PredicateLockHashCodeFromTargetHashCode(&tag,
    3809 ECB             :                                                                             targettaghash),
    3810                 :                                     HASH_REMOVE, NULL);
    3811 CBC        2824 :         if (summarize)
    3812 EUB             :         {
    3813                 :             bool        found;
    3814                 : 
    3815                 :             /* Fold into dummy transaction list. */
    3816 UIC           0 :             tag.myXact = OldCommittedSxact;
    3817 LBC           0 :             predlock = hash_search_with_hash_value(PredicateLockHash, &tag,
    3818               0 :                                                    PredicateLockHashCodeFromTargetHashCode(&tag,
    3819                 :                                                                                            targettaghash),
    3820 ECB             :                                                    HASH_ENTER_NULL, &found);
    3821 LBC           0 :             if (!predlock)
    3822 UIC           0 :                 ereport(ERROR,
    3823                 :                         (errcode(ERRCODE_OUT_OF_MEMORY),
    3824                 :                          errmsg("out of shared memory"),
    3825                 :                          errhint("You might need to increase max_pred_locks_per_transaction.")));
    3826               0 :             if (found)
    3827                 :             {
    3828               0 :                 Assert(predlock->commitSeqNo != 0);
    3829 LBC           0 :                 Assert(predlock->commitSeqNo != InvalidSerCommitSeqNo);
    3830               0 :                 if (predlock->commitSeqNo < sxact->commitSeqNo)
    3831 UIC           0 :                     predlock->commitSeqNo = sxact->commitSeqNo;
    3832 EUB             :             }
    3833                 :             else
    3834                 :             {
    3835 UNC           0 :                 dlist_push_tail(&target->predicateLocks,
    3836                 :                                 &predlock->targetLink);
    3837               0 :                 dlist_push_tail(&OldCommittedSxact->predicateLocks,
    3838                 :                                 &predlock->xactLink);
    3839 UIC           0 :                 predlock->commitSeqNo = sxact->commitSeqNo;
    3840                 :             }
    3841                 :         }
    3842 EUB             :         else
    3843 GBC        2824 :             RemoveTargetIfNoLongerUsed(target, targettaghash);
    3844 EUB             : 
    3845 GIC        2824 :         LWLockRelease(partitionLock);
    3846                 :     }
    3847                 : 
    3848 EUB             :     /*
    3849                 :      * Rather than retail removal, just re-init the head after we've run
    3850                 :      * through the list.
    3851                 :      */
    3852 GNC        1539 :     dlist_init(&sxact->predicateLocks);
    3853 ECB             : 
    3854 GIC        1539 :     if (IsInParallelMode())
    3855 CBC           3 :         LWLockRelease(&sxact->perXactPredicateListLock);
    3856            1539 :     LWLockRelease(SerializablePredicateListLock);
    3857 ECB             : 
    3858 GIC        1539 :     sxidtag.xid = sxact->topXid;
    3859            1539 :     LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
    3860 ECB             : 
    3861                 :     /* Release all outConflicts (unless 'partial' is true) */
    3862 GIC        1539 :     if (!partial)
    3863                 :     {
    3864 GNC        1529 :         dlist_foreach_modify(iter, &sxact->outConflicts)
    3865                 :         {
    3866 UNC           0 :             RWConflict  conflict =
    3867               0 :             dlist_container(RWConflictData, outLink, iter.cur);
    3868                 : 
    3869 UBC           0 :             if (summarize)
    3870               0 :                 conflict->sxactIn->flags |= SXACT_FLAG_SUMMARY_CONFLICT_IN;
    3871               0 :             ReleaseRWConflict(conflict);
    3872                 :         }
    3873                 :     }
    3874 EUB             : 
    3875                 :     /* Release all inConflicts. */
    3876 GNC        1539 :     dlist_foreach_modify(iter, &sxact->inConflicts)
    3877                 :     {
    3878 UNC           0 :         RWConflict  conflict =
    3879               0 :         dlist_container(RWConflictData, inLink, iter.cur);
    3880                 : 
    3881 UIC           0 :         if (summarize)
    3882               0 :             conflict->sxactOut->flags |= SXACT_FLAG_SUMMARY_CONFLICT_OUT;
    3883 LBC           0 :         ReleaseRWConflict(conflict);
    3884 ECB             :     }
    3885                 : 
    3886                 :     /* Finally, get rid of the xid and the record of the transaction itself. */
    3887 GIC        1539 :     if (!partial)
    3888                 :     {
    3889 CBC        1529 :         if (sxidtag.xid != InvalidTransactionId)
    3890            1263 :             hash_search(SerializableXidHash, &sxidtag, HASH_REMOVE, NULL);
    3891 GIC        1529 :         ReleasePredXact(sxact);
    3892                 :     }
    3893 ECB             : 
    3894 GIC        1539 :     LWLockRelease(SerializableXactHashLock);
    3895            1539 : }
    3896 EUB             : 
    3897                 : /*
    3898                 :  * Tests whether the given top level transaction is concurrent with
    3899                 :  * (overlaps) our current transaction.
    3900 ECB             :  *
    3901                 :  * We need to identify the top level transaction for SSI, anyway, so pass
    3902                 :  * that to this function to save the overhead of checking the snapshot's
    3903                 :  * subxip array.
    3904                 :  */
    3905                 : static bool
    3906 GIC         532 : XidIsConcurrent(TransactionId xid)
    3907                 : {
    3908                 :     Snapshot    snap;
    3909                 : 
    3910 CBC         532 :     Assert(TransactionIdIsValid(xid));
    3911             532 :     Assert(!TransactionIdEquals(xid, GetTopTransactionIdIfAny()));
    3912                 : 
    3913 GIC         532 :     snap = GetTransactionSnapshot();
    3914                 : 
    3915             532 :     if (TransactionIdPrecedes(xid, snap->xmin))
    3916 UIC           0 :         return false;
    3917                 : 
    3918 GIC         532 :     if (TransactionIdFollowsOrEquals(xid, snap->xmax))
    3919 CBC         522 :         return true;
    3920                 : 
    3921 GNC          10 :     return pg_lfind32(xid, snap->xip, snap->xcnt);
    3922 ECB             : }
    3923                 : 
    3924                 : bool
    3925 GIC   241421878 : CheckForSerializableConflictOutNeeded(Relation relation, Snapshot snapshot)
    3926                 : {
    3927 CBC   241421878 :     if (!SerializationNeededForRead(relation, snapshot))
    3928       241396543 :         return false;
    3929 ECB             : 
    3930                 :     /* Check if someone else has already decided that we need to die */
    3931 CBC       25335 :     if (SxactIsDoomed(MySerializableXact))
    3932                 :     {
    3933 UIC           0 :         ereport(ERROR,
    3934 ECB             :                 (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
    3935                 :                  errmsg("could not serialize access due to read/write dependencies among transactions"),
    3936                 :                  errdetail_internal("Reason code: Canceled on identification as a pivot, during conflict out checking."),
    3937                 :                  errhint("The transaction might succeed if retried.")));
    3938                 :     }
    3939                 : 
    3940 GIC       25335 :     return true;
    3941                 : }
    3942                 : 
    3943                 : /*
    3944                 :  * CheckForSerializableConflictOut
    3945 ECB             :  *      A table AM is reading a tuple that has been modified.  If it determines
    3946                 :  *      that the tuple version it is reading is not visible to us, it should
    3947                 :  *      pass in the top level xid of the transaction that created it.
    3948                 :  *      Otherwise, if it determines that it is visible to us but it has been
    3949                 :  *      deleted or there is a newer version available due to an update, it
    3950                 :  *      should pass in the top level xid of the modifying transaction.
    3951                 :  *
    3952                 :  * This function will check for overlap with our own transaction.  If the given
    3953                 :  * xid is also serializable and the transactions overlap (i.e., they cannot see
    3954                 :  * each other's writes), then we have a conflict out.
    3955                 :  */
    3956                 : void
    3957 GIC         567 : CheckForSerializableConflictOut(Relation relation, TransactionId xid, Snapshot snapshot)
    3958                 : {
    3959                 :     SERIALIZABLEXIDTAG sxidtag;
    3960                 :     SERIALIZABLEXID *sxid;
    3961                 :     SERIALIZABLEXACT *sxact;
    3962                 : 
    3963             567 :     if (!SerializationNeededForRead(relation, snapshot))
    3964             204 :         return;
    3965 ECB             : 
    3966                 :     /* Check if someone else has already decided that we need to die */
    3967 GIC         567 :     if (SxactIsDoomed(MySerializableXact))
    3968 ECB             :     {
    3969 LBC           0 :         ereport(ERROR,
    3970                 :                 (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
    3971                 :                  errmsg("could not serialize access due to read/write dependencies among transactions"),
    3972 ECB             :                  errdetail_internal("Reason code: Canceled on identification as a pivot, during conflict out checking."),
    3973                 :                  errhint("The transaction might succeed if retried.")));
    3974                 :     }
    3975 GIC         567 :     Assert(TransactionIdIsValid(xid));
    3976 ECB             : 
    3977 GIC         567 :     if (TransactionIdEquals(xid, GetTopTransactionIdIfAny()))
    3978 LBC           0 :         return;
    3979 ECB             : 
    3980                 :     /*
    3981                 :      * Find sxact or summarized info for the top level xid.
    3982                 :      */
    3983 GIC         567 :     sxidtag.xid = xid;
    3984             567 :     LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
    3985 ECB             :     sxid = (SERIALIZABLEXID *)
    3986 CBC         567 :         hash_search(SerializableXidHash, &sxidtag, HASH_FIND, NULL);
    3987             567 :     if (!sxid)
    3988                 :     {
    3989 ECB             :         /*
    3990                 :          * Transaction not found in "normal" SSI structures.  Check whether it
    3991                 :          * got pushed out to SLRU storage for "old committed" transactions.
    3992                 :          */
    3993                 :         SerCommitSeqNo conflictCommitSeqNo;
    3994                 : 
    3995 CBC          25 :         conflictCommitSeqNo = SerialGetMinConflictCommitSeqNo(xid);
    3996 GIC          25 :         if (conflictCommitSeqNo != 0)
    3997                 :         {
    3998 LBC           0 :             if (conflictCommitSeqNo != InvalidSerCommitSeqNo
    3999               0 :                 && (!SxactIsReadOnly(MySerializableXact)
    4000 UIC           0 :                     || conflictCommitSeqNo
    4001               0 :                     <= MySerializableXact->SeqNo.lastCommitBeforeSnapshot))
    4002               0 :                 ereport(ERROR,
    4003                 :                         (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
    4004                 :                          errmsg("could not serialize access due to read/write dependencies among transactions"),
    4005                 :                          errdetail_internal("Reason code: Canceled on conflict out to old pivot %u.", xid),
    4006                 :                          errhint("The transaction might succeed if retried.")));
    4007                 : 
    4008               0 :             if (SxactHasSummaryConflictIn(MySerializableXact)
    4009 UNC           0 :                 || !dlist_is_empty(&MySerializableXact->inConflicts))
    4010 UIC           0 :                 ereport(ERROR,
    4011                 :                         (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
    4012                 :                          errmsg("could not serialize access due to read/write dependencies among transactions"),
    4013                 :                          errdetail_internal("Reason code: Canceled on identification as a pivot, with conflict out to old committed transaction %u.", xid),
    4014 ECB             :                          errhint("The transaction might succeed if retried.")));
    4015                 : 
    4016 UBC           0 :             MySerializableXact->flags |= SXACT_FLAG_SUMMARY_CONFLICT_OUT;
    4017 ECB             :         }
    4018                 : 
    4019                 :         /* It's not serializable or otherwise not important. */
    4020 GIC          25 :         LWLockRelease(SerializableXactHashLock);
    4021              25 :         return;
    4022                 :     }
    4023             542 :     sxact = sxid->myXact;
    4024             542 :     Assert(TransactionIdEquals(sxact->topXid, xid));
    4025 CBC         542 :     if (sxact == MySerializableXact || SxactIsDoomed(sxact))
    4026                 :     {
    4027                 :         /* Can't conflict with ourself or a transaction that will roll back. */
    4028               4 :         LWLockRelease(SerializableXactHashLock);
    4029 GIC           4 :         return;
    4030                 :     }
    4031                 : 
    4032 ECB             :     /*
    4033                 :      * We have a conflict out to a transaction which has a conflict out to a
    4034                 :      * summarized transaction.  That summarized transaction must have
    4035                 :      * committed first, and we can't tell when it committed in relation to our
    4036                 :      * snapshot acquisition, so something needs to be canceled.
    4037                 :      */
    4038 GIC         538 :     if (SxactHasSummaryConflictOut(sxact))
    4039                 :     {
    4040 LBC           0 :         if (!SxactIsPrepared(sxact))
    4041                 :         {
    4042 UIC           0 :             sxact->flags |= SXACT_FLAG_DOOMED;
    4043               0 :             LWLockRelease(SerializableXactHashLock);
    4044 LBC           0 :             return;
    4045                 :         }
    4046 ECB             :         else
    4047                 :         {
    4048 UIC           0 :             LWLockRelease(SerializableXactHashLock);
    4049 LBC           0 :             ereport(ERROR,
    4050 ECB             :                     (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
    4051                 :                      errmsg("could not serialize access due to read/write dependencies among transactions"),
    4052 EUB             :                      errdetail_internal("Reason code: Canceled on conflict out to old pivot."),
    4053 ECB             :                      errhint("The transaction might succeed if retried.")));
    4054                 :         }
    4055                 :     }
    4056                 : 
    4057                 :     /*
    4058                 :      * If this is a read-only transaction and the writing transaction has
    4059                 :      * committed, and it doesn't have a rw-conflict to a transaction which
    4060                 :      * committed before it, no conflict.
    4061                 :      */
    4062 CBC         538 :     if (SxactIsReadOnly(MySerializableXact)
    4063 GIC         119 :         && SxactIsCommitted(sxact)
    4064               8 :         && !SxactHasSummaryConflictOut(sxact)
    4065               8 :         && (!SxactHasConflictOut(sxact)
    4066 CBC           2 :             || MySerializableXact->SeqNo.lastCommitBeforeSnapshot < sxact->SeqNo.earliestOutConflictCommit))
    4067                 :     {
    4068                 :         /* Read-only transaction will appear to run first.  No conflict. */
    4069 GIC           6 :         LWLockRelease(SerializableXactHashLock);
    4070               6 :         return;
    4071                 :     }
    4072                 : 
    4073             532 :     if (!XidIsConcurrent(xid))
    4074                 :     {
    4075                 :         /* This write was already in our snapshot; no conflict. */
    4076 UIC           0 :         LWLockRelease(SerializableXactHashLock);
    4077               0 :         return;
    4078                 :     }
    4079                 : 
    4080 GIC         532 :     if (RWConflictExists(MySerializableXact, sxact))
    4081                 :     {
    4082                 :         /* We don't want duplicate conflict records in the list. */
    4083 CBC         169 :         LWLockRelease(SerializableXactHashLock);
    4084 GIC         169 :         return;
    4085                 :     }
    4086                 : 
    4087 ECB             :     /*
    4088                 :      * Flag the conflict.  But first, if this conflict creates a dangerous
    4089                 :      * structure, ereport an error.
    4090                 :      */
    4091 CBC         363 :     FlagRWConflict(MySerializableXact, sxact);
    4092             350 :     LWLockRelease(SerializableXactHashLock);
    4093                 : }
    4094                 : 
    4095                 : /*
    4096                 :  * Check a particular target for rw-dependency conflict in. A subroutine of
    4097                 :  * CheckForSerializableConflictIn().
    4098                 :  */
    4099                 : static void
    4100 GIC        7478 : CheckTargetForConflictsIn(PREDICATELOCKTARGETTAG *targettag)
    4101                 : {
    4102 ECB             :     uint32      targettaghash;
    4103                 :     LWLock     *partitionLock;
    4104                 :     PREDICATELOCKTARGET *target;
    4105 GIC        7478 :     PREDICATELOCK *mypredlock = NULL;
    4106                 :     PREDICATELOCKTAG mypredlocktag;
    4107                 :     dlist_mutable_iter iter;
    4108                 : 
    4109            7478 :     Assert(MySerializableXact != InvalidSerializableXact);
    4110                 : 
    4111                 :     /*
    4112                 :      * The same hash and LW lock apply to the lock target and the lock itself.
    4113 ECB             :      */
    4114 GIC        7478 :     targettaghash = PredicateLockTargetTagHashCode(targettag);
    4115 CBC        7478 :     partitionLock = PredicateLockHashPartitionLock(targettaghash);
    4116 GIC        7478 :     LWLockAcquire(partitionLock, LW_SHARED);
    4117                 :     target = (PREDICATELOCKTARGET *)
    4118            7478 :         hash_search_with_hash_value(PredicateLockTargetHash,
    4119                 :                                     targettag, targettaghash,
    4120 ECB             :                                     HASH_FIND, NULL);
    4121 GIC        7478 :     if (!target)
    4122                 :     {
    4123 ECB             :         /* Nothing has this target locked; we're done here. */
    4124 GIC        5607 :         LWLockRelease(partitionLock);
    4125 CBC        5607 :         return;
    4126                 :     }
    4127                 : 
    4128                 :     /*
    4129 ECB             :      * Each lock for an overlapping transaction represents a conflict: a
    4130                 :      * rw-dependency in to this transaction.
    4131                 :      */
    4132 GIC        1871 :     LWLockAcquire(SerializableXactHashLock, LW_SHARED);
    4133                 : 
    4134 GNC        4216 :     dlist_foreach_modify(iter, &target->predicateLocks)
    4135                 :     {
    4136            2412 :         PREDICATELOCK *predlock =
    4137            2412 :         dlist_container(PREDICATELOCK, targetLink, iter.cur);
    4138            2412 :         SERIALIZABLEXACT *sxact = predlock->tag.myXact;
    4139                 : 
    4140 GIC        2412 :         if (sxact == MySerializableXact)
    4141                 :         {
    4142                 :             /*
    4143                 :              * If we're getting a write lock on a tuple, we don't need a
    4144                 :              * predicate (SIREAD) lock on the same tuple. We can safely remove
    4145                 :              * our SIREAD lock, but we'll defer doing so until after the loop
    4146                 :              * because that requires upgrading to an exclusive partition lock.
    4147                 :              *
    4148                 :              * We can't use this optimization within a subtransaction because
    4149                 :              * the subtransaction could roll back, and we would be left
    4150                 :              * without any lock at the top level.
    4151                 :              */
    4152            1564 :             if (!IsSubTransaction()
    4153            1564 :                 && GET_PREDICATELOCKTARGETTAG_OFFSET(*targettag))
    4154                 :             {
    4155             388 :                 mypredlock = predlock;
    4156 CBC         388 :                 mypredlocktag = predlock->tag;
    4157                 :             }
    4158                 :         }
    4159 GIC         848 :         else if (!SxactIsDoomed(sxact)
    4160             848 :                  && (!SxactIsCommitted(sxact)
    4161              83 :                      || TransactionIdPrecedes(GetTransactionSnapshot()->xmin,
    4162                 :                                               sxact->finishedBefore))
    4163             839 :                  && !RWConflictExists(sxact, MySerializableXact))
    4164                 :         {
    4165             497 :             LWLockRelease(SerializableXactHashLock);
    4166             497 :             LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
    4167                 : 
    4168                 :             /*
    4169                 :              * Re-check after getting exclusive lock because the other
    4170 ECB             :              * transaction may have flagged a conflict.
    4171                 :              */
    4172 GIC         497 :             if (!SxactIsDoomed(sxact)
    4173 CBC         497 :                 && (!SxactIsCommitted(sxact)
    4174              74 :                     || TransactionIdPrecedes(GetTransactionSnapshot()->xmin,
    4175                 :                                              sxact->finishedBefore))
    4176 GIC         497 :                 && !RWConflictExists(sxact, MySerializableXact))
    4177                 :             {
    4178             497 :                 FlagRWConflict(sxact, MySerializableXact);
    4179                 :             }
    4180 ECB             : 
    4181 GIC         430 :             LWLockRelease(SerializableXactHashLock);
    4182 CBC         430 :             LWLockAcquire(SerializableXactHashLock, LW_SHARED);
    4183                 :         }
    4184                 :     }
    4185            1804 :     LWLockRelease(SerializableXactHashLock);
    4186            1804 :     LWLockRelease(partitionLock);
    4187 ECB             : 
    4188                 :     /*
    4189                 :      * If we found one of our own SIREAD locks to remove, remove it now.
    4190                 :      *
    4191                 :      * At this point our transaction already has a RowExclusiveLock on the
    4192                 :      * relation, so we are OK to drop the predicate lock on the tuple, if
    4193                 :      * found, without fearing that another write against the tuple will occur
    4194                 :      * before the MVCC information makes it to the buffer.
    4195                 :      */
    4196 GIC        1804 :     if (mypredlock != NULL)
    4197                 :     {
    4198                 :         uint32      predlockhashcode;
    4199                 :         PREDICATELOCK *rmpredlock;
    4200 ECB             : 
    4201 CBC         381 :         LWLockAcquire(SerializablePredicateListLock, LW_SHARED);
    4202 GBC         381 :         if (IsInParallelMode())
    4203 UBC           0 :             LWLockAcquire(&MySerializableXact->perXactPredicateListLock, LW_EXCLUSIVE);
    4204 GIC         381 :         LWLockAcquire(partitionLock, LW_EXCLUSIVE);
    4205             381 :         LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
    4206                 : 
    4207                 :         /*
    4208 EUB             :          * Remove the predicate lock from shared memory, if it wasn't removed
    4209                 :          * while the locks were released.  One way that could happen is from
    4210                 :          * autovacuum cleaning up an index.
    4211                 :          */
    4212 GIC         381 :         predlockhashcode = PredicateLockHashCodeFromTargetHashCode
    4213 EUB             :             (&mypredlocktag, targettaghash);
    4214                 :         rmpredlock = (PREDICATELOCK *)
    4215 GIC         381 :             hash_search_with_hash_value(PredicateLockHash,
    4216 EUB             :                                         &mypredlocktag,
    4217                 :                                         predlockhashcode,
    4218                 :                                         HASH_FIND, NULL);
    4219 GIC         381 :         if (rmpredlock != NULL)
    4220                 :         {
    4221             381 :             Assert(rmpredlock == mypredlock);
    4222 ECB             : 
    4223 GNC         381 :             dlist_delete(&(mypredlock->targetLink));
    4224             381 :             dlist_delete(&(mypredlock->xactLink));
    4225 ECB             : 
    4226                 :             rmpredlock = (PREDICATELOCK *)
    4227 GIC         381 :                 hash_search_with_hash_value(PredicateLockHash,
    4228                 :                                             &mypredlocktag,
    4229                 :                                             predlockhashcode,
    4230                 :                                             HASH_REMOVE, NULL);
    4231             381 :             Assert(rmpredlock == mypredlock);
    4232                 : 
    4233             381 :             RemoveTargetIfNoLongerUsed(target, targettaghash);
    4234                 :         }
    4235                 : 
    4236 CBC         381 :         LWLockRelease(SerializableXactHashLock);
    4237 GIC         381 :         LWLockRelease(partitionLock);
    4238 CBC         381 :         if (IsInParallelMode())
    4239 UIC           0 :             LWLockRelease(&MySerializableXact->perXactPredicateListLock);
    4240 GIC         381 :         LWLockRelease(SerializablePredicateListLock);
    4241 ECB             : 
    4242 GIC         381 :         if (rmpredlock != NULL)
    4243                 :         {
    4244 ECB             :             /*
    4245 EUB             :              * Remove entry in local lock table if it exists. It's OK if it
    4246 ECB             :              * doesn't exist; that means the lock was transferred to a new
    4247 EUB             :              * target by a different backend.
    4248                 :              */
    4249 CBC         381 :             hash_search_with_hash_value(LocalPredicateLockHash,
    4250 ECB             :                                         targettag, targettaghash,
    4251                 :                                         HASH_REMOVE, NULL);
    4252                 : 
    4253 GIC         381 :             DecrementParentLocks(targettag);
    4254                 :         }
    4255                 :     }
    4256                 : }
    4257                 : 
    4258                 : /*
    4259                 :  * CheckForSerializableConflictIn
    4260                 :  *      We are writing the given tuple.  If that indicates a rw-conflict
    4261                 :  *      in from another serializable transaction, take appropriate action.
    4262                 :  *
    4263                 :  * Skip checking for any granularity for which a parameter is missing.
    4264                 :  *
    4265                 :  * A tuple update or delete is in conflict if we have a predicate lock
    4266                 :  * against the relation or page in which the tuple exists, or against the
    4267                 :  * tuple itself.
    4268                 :  */
    4269                 : void
    4270        24294998 : CheckForSerializableConflictIn(Relation relation, ItemPointer tid, BlockNumber blkno)
    4271 ECB             : {
    4272                 :     PREDICATELOCKTARGETTAG targettag;
    4273                 : 
    4274 GIC    24294998 :     if (!SerializationNeededForWrite(relation))
    4275        24290573 :         return;
    4276 ECB             : 
    4277                 :     /* Check if someone else has already decided that we need to die */
    4278 CBC        4425 :     if (SxactIsDoomed(MySerializableXact))
    4279 GIC           1 :         ereport(ERROR,
    4280                 :                 (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
    4281                 :                  errmsg("could not serialize access due to read/write dependencies among transactions"),
    4282                 :                  errdetail_internal("Reason code: Canceled on identification as a pivot, during conflict in checking."),
    4283                 :                  errhint("The transaction might succeed if retried.")));
    4284                 : 
    4285                 :     /*
    4286                 :      * We're doing a write which might cause rw-conflicts now or later.
    4287                 :      * Memorize that fact.
    4288                 :      */
    4289            4424 :     MyXactDidWrite = true;
    4290                 : 
    4291 ECB             :     /*
    4292                 :      * It is important that we check for locks from the finest granularity to
    4293                 :      * the coarsest granularity, so that granularity promotion doesn't cause
    4294                 :      * us to miss a lock.  The new (coarser) lock will be acquired before the
    4295                 :      * old (finer) locks are released.
    4296                 :      *
    4297                 :      * It is not possible to take and hold a lock across the checks for all
    4298                 :      * granularities because each target could be in a separate partition.
    4299                 :      */
    4300 GIC        4424 :     if (tid != NULL)
    4301                 :     {
    4302             643 :         SET_PREDICATELOCKTARGETTAG_TUPLE(targettag,
    4303                 :                                          relation->rd_locator.dbOid,
    4304                 :                                          relation->rd_id,
    4305                 :                                          ItemPointerGetBlockNumber(tid),
    4306                 :                                          ItemPointerGetOffsetNumber(tid));
    4307             643 :         CheckTargetForConflictsIn(&targettag);
    4308                 :     }
    4309                 : 
    4310            4401 :     if (blkno != InvalidBlockNumber)
    4311                 :     {
    4312            2464 :         SET_PREDICATELOCKTARGETTAG_PAGE(targettag,
    4313                 :                                         relation->rd_locator.dbOid,
    4314 ECB             :                                         relation->rd_id,
    4315 EUB             :                                         blkno);
    4316 CBC        2464 :         CheckTargetForConflictsIn(&targettag);
    4317                 :     }
    4318                 : 
    4319 GIC        4371 :     SET_PREDICATELOCKTARGETTAG_RELATION(targettag,
    4320                 :                                         relation->rd_locator.dbOid,
    4321                 :                                         relation->rd_id);
    4322 CBC        4371 :     CheckTargetForConflictsIn(&targettag);
    4323 ECB             : }
    4324                 : 
    4325                 : /*
    4326                 :  * CheckTableForSerializableConflictIn
    4327                 :  *      The entire table is going through a DDL-style logical mass delete
    4328                 :  *      like TRUNCATE or DROP TABLE.  If that causes a rw-conflict in from
    4329                 :  *      another serializable transaction, take appropriate action.
    4330 EUB             :  *
    4331 ECB             :  * While these operations do not operate entirely within the bounds of
    4332                 :  * snapshot isolation, they can occur inside a serializable transaction, and
    4333                 :  * will logically occur after any reads which saw rows which were destroyed
    4334                 :  * by these operations, so we do what we can to serialize properly under
    4335                 :  * SSI.
    4336                 :  *
    4337                 :  * The relation passed in must be a heap relation. Any predicate lock of any
    4338                 :  * granularity on the heap will cause a rw-conflict in to this transaction.
    4339                 :  * Predicate locks on indexes do not matter because they only exist to guard
    4340                 :  * against conflicting inserts into the index, and this is a mass *delete*.
    4341                 :  * When a table is truncated or dropped, the index will also be truncated
    4342                 :  * or dropped, and we'll deal with locks on the index when that happens.
    4343                 :  *
    4344                 :  * Dropping or truncating a table also needs to drop any existing predicate
    4345                 :  * locks on heap tuples or pages, because they're about to go away. This
    4346                 :  * should be done before altering the predicate locks because the transaction
    4347                 :  * could be rolled back because of a conflict, in which case the lock changes
    4348                 :  * are not needed. (At the moment, we don't actually bother to drop the
    4349                 :  * existing locks on a dropped or truncated table at the moment. That might
    4350                 :  * lead to some false positives, but it doesn't seem worth the trouble.)
    4351                 :  */
    4352                 : void
    4353 CBC       20343 : CheckTableForSerializableConflictIn(Relation relation)
    4354                 : {
    4355 ECB             :     HASH_SEQ_STATUS seqstat;
    4356                 :     PREDICATELOCKTARGET *target;
    4357 EUB             :     Oid         dbId;
    4358                 :     Oid         heapId;
    4359                 :     int         i;
    4360                 : 
    4361                 :     /*
    4362                 :      * Bail out quickly if there are no serializable transactions running.
    4363                 :      * It's safe to check this without taking locks because the caller is
    4364                 :      * holding an ACCESS EXCLUSIVE lock on the relation.  No new locks which
    4365                 :      * would matter here can be acquired while that is held.
    4366                 :      */
    4367 CBC       20343 :     if (!TransactionIdIsValid(PredXact->SxactGlobalXmin))
    4368 GIC       20340 :         return;
    4369 ECB             : 
    4370 CBC          85 :     if (!SerializationNeededForWrite(relation))
    4371              82 :         return;
    4372                 : 
    4373 ECB             :     /*
    4374                 :      * We're doing a write which might cause rw-conflicts now or later.
    4375                 :      * Memorize that fact.
    4376                 :      */
    4377 GBC           3 :     MyXactDidWrite = true;
    4378                 : 
    4379 CBC           3 :     Assert(relation->rd_index == NULL); /* not an index relation */
    4380 ECB             : 
    4381 GNC           3 :     dbId = relation->rd_locator.dbOid;
    4382 GIC           3 :     heapId = relation->rd_id;
    4383                 : 
    4384               3 :     LWLockAcquire(SerializablePredicateListLock, LW_EXCLUSIVE);
    4385              51 :     for (i = 0; i < NUM_PREDICATELOCK_PARTITIONS; i++)
    4386 CBC          48 :         LWLockAcquire(PredicateLockHashPartitionLockByIndex(i), LW_SHARED);
    4387 GIC           3 :     LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
    4388                 : 
    4389                 :     /* Scan through target list */
    4390               3 :     hash_seq_init(&seqstat, PredicateLockTargetHash);
    4391                 : 
    4392               6 :     while ((target = (PREDICATELOCKTARGET *) hash_seq_search(&seqstat)))
    4393                 :     {
    4394                 :         dlist_mutable_iter iter;
    4395                 : 
    4396 ECB             :         /*
    4397                 :          * Check whether this is a target which needs attention.
    4398                 :          */
    4399 CBC           3 :         if (GET_PREDICATELOCKTARGETTAG_RELATION(target->tag) != heapId)
    4400 GIC           3 :             continue;           /* wrong relation id */
    4401 UIC           0 :         if (GET_PREDICATELOCKTARGETTAG_DB(target->tag) != dbId)
    4402               0 :             continue;           /* wrong database id */
    4403                 : 
    4404                 :         /*
    4405 ECB             :          * Loop through locks for this target and flag conflicts.
    4406                 :          */
    4407 UNC           0 :         dlist_foreach_modify(iter, &target->predicateLocks)
    4408                 :         {
    4409               0 :             PREDICATELOCK *predlock =
    4410               0 :             dlist_container(PREDICATELOCK, targetLink, iter.cur);
    4411 ECB             : 
    4412 UIC           0 :             if (predlock->tag.myXact != MySerializableXact
    4413               0 :                 && !RWConflictExists(predlock->tag.myXact, MySerializableXact))
    4414                 :             {
    4415               0 :                 FlagRWConflict(predlock->tag.myXact, MySerializableXact);
    4416                 :             }
    4417                 :         }
    4418                 :     }
    4419                 : 
    4420                 :     /* Release locks in reverse order */
    4421 GIC           3 :     LWLockRelease(SerializableXactHashLock);
    4422              51 :     for (i = NUM_PREDICATELOCK_PARTITIONS - 1; i >= 0; i--)
    4423              48 :         LWLockRelease(PredicateLockHashPartitionLockByIndex(i));
    4424               3 :     LWLockRelease(SerializablePredicateListLock);
    4425                 : }
    4426                 : 
    4427                 : 
    4428 ECB             : /*
    4429                 :  * Flag a rw-dependency between two serializable transactions.
    4430                 :  *
    4431                 :  * The caller is responsible for ensuring that we have a LW lock on
    4432                 :  * the transaction hash table.
    4433                 :  */
    4434                 : static void
    4435 CBC         860 : FlagRWConflict(SERIALIZABLEXACT *reader, SERIALIZABLEXACT *writer)
    4436                 : {
    4437             860 :     Assert(reader != writer);
    4438                 : 
    4439                 :     /* First, see if this conflict causes failure. */
    4440 GIC         860 :     OnConflict_CheckForSerializationFailure(reader, writer);
    4441                 : 
    4442                 :     /* Actually do the conflict flagging. */
    4443             780 :     if (reader == OldCommittedSxact)
    4444 LBC           0 :         writer->flags |= SXACT_FLAG_SUMMARY_CONFLICT_IN;
    4445 CBC         780 :     else if (writer == OldCommittedSxact)
    4446 UIC           0 :         reader->flags |= SXACT_FLAG_SUMMARY_CONFLICT_OUT;
    4447 ECB             :     else
    4448 CBC         780 :         SetRWConflict(reader, writer);
    4449 GIC         780 : }
    4450                 : 
    4451                 : /*----------------------------------------------------------------------------
    4452                 :  * We are about to add a RW-edge to the dependency graph - check that we don't
    4453                 :  * introduce a dangerous structure by doing so, and abort one of the
    4454                 :  * transactions if so.
    4455 ECB             :  *
    4456                 :  * A serialization failure can only occur if there is a dangerous structure
    4457                 :  * in the dependency graph:
    4458                 :  *
    4459                 :  *      Tin ------> Tpivot ------> Tout
    4460                 :  *            rw             rw
    4461                 :  *
    4462                 :  * Furthermore, Tout must commit first.
    4463                 :  *
    4464                 :  * One more optimization is that if Tin is declared READ ONLY (or commits
    4465                 :  * without writing), we can only have a problem if Tout committed before Tin
    4466                 :  * acquired its snapshot.
    4467                 :  *----------------------------------------------------------------------------
    4468                 :  */
    4469                 : static void
    4470 CBC         860 : OnConflict_CheckForSerializationFailure(const SERIALIZABLEXACT *reader,
    4471 ECB             :                                         SERIALIZABLEXACT *writer)
    4472                 : {
    4473                 :     bool        failure;
    4474                 : 
    4475 GIC         860 :     Assert(LWLockHeldByMe(SerializableXactHashLock));
    4476                 : 
    4477             860 :     failure = false;
    4478                 : 
    4479                 :     /*------------------------------------------------------------------------
    4480 ECB             :      * Check for already-committed writer with rw-conflict out flagged
    4481                 :      * (conflict-flag on W means that T2 committed before W):
    4482 EUB             :      *
    4483                 :      *      R ------> W ------> T2
    4484                 :      *          rw        rw
    4485                 :      *
    4486                 :      * That is a dangerous structure, so we must abort. (Since the writer
    4487                 :      * has already committed, we must be the reader)
    4488                 :      *------------------------------------------------------------------------
    4489 ECB             :      */
    4490 CBC         860 :     if (SxactIsCommitted(writer)
    4491 GIC          18 :         && (SxactHasConflictOut(writer) || SxactHasSummaryConflictOut(writer)))
    4492               2 :         failure = true;
    4493                 : 
    4494                 :     /*------------------------------------------------------------------------
    4495                 :      * Check whether the writer has become a pivot with an out-conflict
    4496 ECB             :      * committed transaction (T2), and T2 committed first:
    4497                 :      *
    4498                 :      *      R ------> W ------> T2
    4499                 :      *          rw        rw
    4500                 :      *
    4501                 :      * Because T2 must've committed first, there is no anomaly if:
    4502                 :      * - the reader committed before T2
    4503                 :      * - the writer committed before T2
    4504                 :      * - the reader is a READ ONLY transaction and the reader was concurrent
    4505                 :      *   with T2 (= reader acquired its snapshot before T2 committed)
    4506                 :      *
    4507                 :      * We also handle the case that T2 is prepared but not yet committed
    4508                 :      * here. In that case T2 has already checked for conflicts, so if it
    4509                 :      * commits first, making the above conflict real, it's too late for it
    4510                 :      * to abort.
    4511                 :      *------------------------------------------------------------------------
    4512                 :      */
    4513 GNC         860 :     if (!failure && SxactHasSummaryConflictOut(writer))
    4514 UNC           0 :         failure = true;
    4515 GNC         860 :     else if (!failure)
    4516 ECB             :     {
    4517                 :         dlist_iter  iter;
    4518                 : 
    4519 GNC        1071 :         dlist_foreach(iter, &writer->outConflicts)
    4520 ECB             :         {
    4521 GNC         288 :             RWConflict  conflict =
    4522             288 :             dlist_container(RWConflictData, outLink, iter.cur);
    4523 CBC         288 :             SERIALIZABLEXACT *t2 = conflict->sxactIn;
    4524                 : 
    4525 GIC         288 :             if (SxactIsPrepared(t2)
    4526 CBC          81 :                 && (!SxactIsCommitted(reader)
    4527              65 :                     || t2->prepareSeqNo <= reader->commitSeqNo)
    4528              81 :                 && (!SxactIsCommitted(writer)
    4529 UIC           0 :                     || t2->prepareSeqNo <= writer->commitSeqNo)
    4530 GIC          81 :                 && (!SxactIsReadOnly(reader)
    4531              12 :                     || t2->prepareSeqNo <= reader->SeqNo.lastCommitBeforeSnapshot))
    4532                 :             {
    4533              75 :                 failure = true;
    4534              75 :                 break;
    4535                 :             }
    4536                 :         }
    4537                 :     }
    4538                 : 
    4539                 :     /*------------------------------------------------------------------------
    4540                 :      * Check whether the reader has become a pivot with a writer
    4541                 :      * that's committed (or prepared):
    4542                 :      *
    4543 ECB             :      *      T0 ------> R ------> W
    4544                 :      *           rw        rw
    4545                 :      *
    4546                 :      * Because W must've committed first for an anomaly to occur, there is no
    4547                 :      * anomaly if:
    4548                 :      * - T0 committed before the writer
    4549                 :      * - T0 is READ ONLY, and overlaps the writer
    4550                 :      *------------------------------------------------------------------------
    4551                 :      */
    4552 CBC         860 :     if (!failure && SxactIsPrepared(writer) && !SxactIsReadOnly(reader))
    4553                 :     {
    4554              18 :         if (SxactHasSummaryConflictIn(reader))
    4555 ECB             :         {
    4556 UIC           0 :             failure = true;
    4557 ECB             :         }
    4558                 :         else
    4559                 :         {
    4560                 :             dlist_iter  iter;
    4561                 : 
    4562                 :             /*
    4563                 :              * The unconstify is needed as we have no const version of
    4564                 :              * dlist_foreach().
    4565                 :              */
    4566 GNC          18 :             dlist_foreach(iter, &unconstify(SERIALIZABLEXACT *, reader)->inConflicts)
    4567                 :             {
    4568              11 :                 const RWConflict conflict =
    4569              11 :                 dlist_container(RWConflictData, inLink, iter.cur);
    4570              11 :                 const SERIALIZABLEXACT *t0 = conflict->sxactOut;
    4571                 : 
    4572              11 :                 if (!SxactIsDoomed(t0)
    4573              11 :                     && (!SxactIsCommitted(t0)
    4574              11 :                         || t0->commitSeqNo >= writer->prepareSeqNo)
    4575              11 :                     && (!SxactIsReadOnly(t0)
    4576 UNC           0 :                         || t0->SeqNo.lastCommitBeforeSnapshot >= writer->prepareSeqNo))
    4577                 :                 {
    4578 GNC          11 :                     failure = true;
    4579              11 :                     break;
    4580                 :                 }
    4581                 :             }
    4582                 :         }
    4583 ECB             :     }
    4584                 : 
    4585 GIC         860 :     if (failure)
    4586 ECB             :     {
    4587                 :         /*
    4588                 :          * We have to kill a transaction to avoid a possible anomaly from
    4589                 :          * occurring. If the writer is us, we can just ereport() to cause a
    4590                 :          * transaction abort. Otherwise we flag the writer for termination,
    4591                 :          * causing it to abort when it tries to commit. However, if the writer
    4592                 :          * is a prepared transaction, already prepared, we can't abort it
    4593                 :          * anymore, so we have to kill the reader instead.
    4594                 :          */
    4595 GIC          88 :         if (MySerializableXact == writer)
    4596                 :         {
    4597              67 :             LWLockRelease(SerializableXactHashLock);
    4598              67 :             ereport(ERROR,
    4599 ECB             :                     (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
    4600                 :                      errmsg("could not serialize access due to read/write dependencies among transactions"),
    4601                 :                      errdetail_internal("Reason code: Canceled on identification as a pivot, during write."),
    4602                 :                      errhint("The transaction might succeed if retried.")));
    4603                 :         }
    4604 CBC          21 :         else if (SxactIsPrepared(writer))
    4605                 :         {
    4606              13 :             LWLockRelease(SerializableXactHashLock);
    4607                 : 
    4608 ECB             :             /* if we're not the writer, we have to be the reader */
    4609 CBC          13 :             Assert(MySerializableXact == reader);
    4610 GIC          13 :             ereport(ERROR,
    4611                 :                     (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
    4612 ECB             :                      errmsg("could not serialize access due to read/write dependencies among transactions"),
    4613                 :                      errdetail_internal("Reason code: Canceled on conflict out to pivot %u, during read.", writer->topXid),
    4614                 :                      errhint("The transaction might succeed if retried.")));
    4615                 :         }
    4616 CBC           8 :         writer->flags |= SXACT_FLAG_DOOMED;
    4617 ECB             :     }
    4618 GIC         780 : }
    4619 ECB             : 
    4620                 : /*
    4621                 :  * PreCommit_CheckForSerializationFailure
    4622                 :  *      Check for dangerous structures in a serializable transaction
    4623                 :  *      at commit.
    4624                 :  *
    4625                 :  * We're checking for a dangerous structure as each conflict is recorded.
    4626 EUB             :  * The only way we could have a problem at commit is if this is the "out"
    4627                 :  * side of a pivot, and neither the "in" side nor the pivot has yet
    4628                 :  * committed.
    4629                 :  *
    4630                 :  * If a dangerous structure is found, the pivot (the near conflict) is
    4631                 :  * marked for death, because rolling back another transaction might mean
    4632                 :  * that we fail without ever making progress.  This transaction is
    4633                 :  * committing writes, so letting it commit ensures progress.  If we
    4634                 :  * canceled the far conflict, it might immediately fail again on retry.
    4635                 :  */
    4636                 : void
    4637 GIC      464952 : PreCommit_CheckForSerializationFailure(void)
    4638 EUB             : {
    4639                 :     dlist_iter  near_iter;
    4640                 : 
    4641 GIC      464952 :     if (MySerializableXact == InvalidSerializableXact)
    4642          463570 :         return;
    4643                 : 
    4644            1382 :     Assert(IsolationIsSerializable());
    4645                 : 
    4646            1382 :     LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
    4647 EUB             : 
    4648                 :     /*
    4649                 :      * Check if someone else has already decided that we need to die.  Since
    4650                 :      * we set our own DOOMED flag when partially releasing, ignore in that
    4651                 :      * case.
    4652                 :      */
    4653 GIC        1382 :     if (SxactIsDoomed(MySerializableXact) &&
    4654             156 :         !SxactIsPartiallyReleased(MySerializableXact))
    4655                 :     {
    4656             155 :         LWLockRelease(SerializableXactHashLock);
    4657 GBC         155 :         ereport(ERROR,
    4658 EUB             :                 (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
    4659                 :                  errmsg("could not serialize access due to read/write dependencies among transactions"),
    4660                 :                  errdetail_internal("Reason code: Canceled on identification as a pivot, during commit attempt."),
    4661                 :                  errhint("The transaction might succeed if retried.")));
    4662                 :     }
    4663                 : 
    4664 GNC        1828 :     dlist_foreach(near_iter, &MySerializableXact->inConflicts)
    4665                 :     {
    4666             601 :         RWConflict  nearConflict =
    4667             601 :         dlist_container(RWConflictData, inLink, near_iter.cur);
    4668                 : 
    4669 GIC         601 :         if (!SxactIsCommitted(nearConflict->sxactOut)
    4670             417 :             && !SxactIsDoomed(nearConflict->sxactOut))
    4671                 :         {
    4672                 :             dlist_iter  far_iter;
    4673 EUB             : 
    4674 GNC         447 :             dlist_foreach(far_iter, &nearConflict->sxactOut->inConflicts)
    4675 EUB             :             {
    4676 GNC         178 :                 RWConflict  farConflict =
    4677             178 :                 dlist_container(RWConflictData, inLink, far_iter.cur);
    4678                 : 
    4679 GBC         178 :                 if (farConflict->sxactOut == MySerializableXact
    4680              42 :                     || (!SxactIsCommitted(farConflict->sxactOut)
    4681              24 :                         && !SxactIsReadOnly(farConflict->sxactOut)
    4682 GIC          12 :                         && !SxactIsDoomed(farConflict->sxactOut)))
    4683 EUB             :                 {
    4684                 :                     /*
    4685                 :                      * Normally, we kill the pivot transaction to make sure we
    4686                 :                      * make progress if the failing transaction is retried.
    4687                 :                      * However, we can't kill it if it's already prepared, so
    4688                 :                      * in that case we commit suicide instead.
    4689                 :                      */
    4690 GIC         148 :                     if (SxactIsPrepared(nearConflict->sxactOut))
    4691                 :                     {
    4692 UIC           0 :                         LWLockRelease(SerializableXactHashLock);
    4693 UBC           0 :                         ereport(ERROR,
    4694 EUB             :                                 (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
    4695                 :                                  errmsg("could not serialize access due to read/write dependencies among transactions"),
    4696                 :                                  errdetail_internal("Reason code: Canceled on commit attempt with conflict in from prepared pivot."),
    4697                 :                                  errhint("The transaction might succeed if retried.")));
    4698                 :                     }
    4699 GBC         148 :                     nearConflict->sxactOut->flags |= SXACT_FLAG_DOOMED;
    4700             148 :                     break;
    4701                 :                 }
    4702                 :             }
    4703                 :         }
    4704                 :     }
    4705 EUB             : 
    4706 GBC        1227 :     MySerializableXact->prepareSeqNo = ++(PredXact->LastSxactCommitSeqNo);
    4707 GIC        1227 :     MySerializableXact->flags |= SXACT_FLAG_PREPARED;
    4708 EUB             : 
    4709 GBC        1227 :     LWLockRelease(SerializableXactHashLock);
    4710 EUB             : }
    4711                 : 
    4712                 : /*------------------------------------------------------------------------*/
    4713                 : 
    4714                 : /*
    4715                 :  * Two-phase commit support
    4716                 :  */
    4717                 : 
    4718                 : /*
    4719                 :  * AtPrepare_Locks
    4720                 :  *      Do the preparatory work for a PREPARE: make 2PC state file
    4721                 :  *      records for all predicate locks currently held.
    4722                 :  */
    4723                 : void
    4724 GIC         361 : AtPrepare_PredicateLocks(void)
    4725                 : {
    4726                 :     SERIALIZABLEXACT *sxact;
    4727                 :     TwoPhasePredicateRecord record;
    4728 EUB             :     TwoPhasePredicateXactRecord *xactRecord;
    4729                 :     TwoPhasePredicateLockRecord *lockRecord;
    4730                 :     dlist_iter  iter;
    4731                 : 
    4732 GBC         361 :     sxact = MySerializableXact;
    4733             361 :     xactRecord = &(record.data.xactRecord);
    4734 GIC         361 :     lockRecord = &(record.data.lockRecord);
    4735 EUB             : 
    4736 GBC         361 :     if (MySerializableXact == InvalidSerializableXact)
    4737 GIC         349 :         return;
    4738 EUB             : 
    4739                 :     /* Generate an xact record for our SERIALIZABLEXACT */
    4740 GBC          12 :     record.type = TWOPHASEPREDICATERECORD_XACT;
    4741 GIC          12 :     xactRecord->xmin = MySerializableXact->xmin;
    4742 GBC          12 :     xactRecord->flags = MySerializableXact->flags;
    4743                 : 
    4744 EUB             :     /*
    4745                 :      * Note that we don't include the list of conflicts in our out in the
    4746                 :      * statefile, because new conflicts can be added even after the
    4747                 :      * transaction prepares. We'll just make a conservative assumption during
    4748                 :      * recovery instead.
    4749                 :      */
    4750                 : 
    4751 GIC          12 :     RegisterTwoPhaseRecord(TWOPHASE_RM_PREDICATELOCK_ID, 0,
    4752 ECB             :                            &record, sizeof(record));
    4753                 : 
    4754                 :     /*
    4755                 :      * Generate a lock record for each lock.
    4756                 :      *
    4757                 :      * To do this, we need to walk the predicate lock list in our sxact rather
    4758                 :      * than using the local predicate lock table because the latter is not
    4759                 :      * guaranteed to be accurate.
    4760                 :      */
    4761 CBC          12 :     LWLockAcquire(SerializablePredicateListLock, LW_SHARED);
    4762                 : 
    4763                 :     /*
    4764 ECB             :      * No need to take sxact->perXactPredicateListLock in parallel mode
    4765                 :      * because there cannot be any parallel workers running while we are
    4766                 :      * preparing a transaction.
    4767                 :      */
    4768 CBC          12 :     Assert(!IsParallelWorker() && !ParallelContextActive());
    4769 ECB             : 
    4770 GNC          22 :     dlist_foreach(iter, &sxact->predicateLocks)
    4771                 :     {
    4772              10 :         PREDICATELOCK *predlock =
    4773              10 :         dlist_container(PREDICATELOCK, xactLink, iter.cur);
    4774                 : 
    4775 GIC          10 :         record.type = TWOPHASEPREDICATERECORD_LOCK;
    4776              10 :         lockRecord->target = predlock->tag.myTarget->tag;
    4777                 : 
    4778              10 :         RegisterTwoPhaseRecord(TWOPHASE_RM_PREDICATELOCK_ID, 0,
    4779                 :                                &record, sizeof(record));
    4780                 :     }
    4781                 : 
    4782              12 :     LWLockRelease(SerializablePredicateListLock);
    4783                 : }
    4784                 : 
    4785                 : /*
    4786                 :  * PostPrepare_Locks
    4787                 :  *      Clean up after successful PREPARE. Unlike the non-predicate
    4788                 :  *      lock manager, we do not need to transfer locks to a dummy
    4789                 :  *      PGPROC because our SERIALIZABLEXACT will stay around
    4790                 :  *      anyway. We only need to clean up our local state.
    4791                 :  */
    4792                 : void
    4793             361 : PostPrepare_PredicateLocks(TransactionId xid)
    4794                 : {
    4795             361 :     if (MySerializableXact == InvalidSerializableXact)
    4796             349 :         return;
    4797                 : 
    4798              12 :     Assert(SxactIsPrepared(MySerializableXact));
    4799                 : 
    4800              12 :     MySerializableXact->pid = 0;
    4801              12 :     MySerializableXact->pgprocno = INVALID_PGPROCNO;
    4802                 : 
    4803              12 :     hash_destroy(LocalPredicateLockHash);
    4804              12 :     LocalPredicateLockHash = NULL;
    4805                 : 
    4806              12 :     MySerializableXact = InvalidSerializableXact;
    4807              12 :     MyXactDidWrite = false;
    4808                 : }
    4809                 : 
    4810                 : /*
    4811                 :  * PredicateLockTwoPhaseFinish
    4812                 :  *      Release a prepared transaction's predicate locks once it
    4813                 :  *      commits or aborts.
    4814                 :  */
    4815                 : void
    4816             365 : PredicateLockTwoPhaseFinish(TransactionId xid, bool isCommit)
    4817                 : {
    4818                 :     SERIALIZABLEXID *sxid;
    4819                 :     SERIALIZABLEXIDTAG sxidtag;
    4820                 : 
    4821             365 :     sxidtag.xid = xid;
    4822                 : 
    4823             365 :     LWLockAcquire(SerializableXactHashLock, LW_SHARED);
    4824                 :     sxid = (SERIALIZABLEXID *)
    4825             365 :         hash_search(SerializableXidHash, &sxidtag, HASH_FIND, NULL);
    4826             365 :     LWLockRelease(SerializableXactHashLock);
    4827                 : 
    4828                 :     /* xid will not be found if it wasn't a serializable transaction */
    4829             365 :     if (sxid == NULL)
    4830             353 :         return;
    4831                 : 
    4832                 :     /* Release its locks */
    4833              12 :     MySerializableXact = sxid->myXact;
    4834              12 :     MyXactDidWrite = true;      /* conservatively assume that we wrote
    4835                 :                                  * something */
    4836              12 :     ReleasePredicateLocks(isCommit, false);
    4837                 : }
    4838                 : 
    4839                 : /*
    4840                 :  * Re-acquire a predicate lock belonging to a transaction that was prepared.
    4841                 :  */
    4842                 : void
    4843 UIC           0 : predicatelock_twophase_recover(TransactionId xid, uint16 info,
    4844                 :                                void *recdata, uint32 len)
    4845                 : {
    4846                 :     TwoPhasePredicateRecord *record;
    4847                 : 
    4848               0 :     Assert(len == sizeof(TwoPhasePredicateRecord));
    4849                 : 
    4850               0 :     record = (TwoPhasePredicateRecord *) recdata;
    4851                 : 
    4852               0 :     Assert((record->type == TWOPHASEPREDICATERECORD_XACT) ||
    4853                 :            (record->type == TWOPHASEPREDICATERECORD_LOCK));
    4854                 : 
    4855               0 :     if (record->type == TWOPHASEPREDICATERECORD_XACT)
    4856                 :     {
    4857                 :         /* Per-transaction record. Set up a SERIALIZABLEXACT. */
    4858                 :         TwoPhasePredicateXactRecord *xactRecord;
    4859                 :         SERIALIZABLEXACT *sxact;
    4860                 :         SERIALIZABLEXID *sxid;
    4861                 :         SERIALIZABLEXIDTAG sxidtag;
    4862                 :         bool        found;
    4863                 : 
    4864               0 :         xactRecord = (TwoPhasePredicateXactRecord *) &record->data.xactRecord;
    4865                 : 
    4866               0 :         LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
    4867               0 :         sxact = CreatePredXact();
    4868               0 :         if (!sxact)
    4869               0 :             ereport(ERROR,
    4870                 :                     (errcode(ERRCODE_OUT_OF_MEMORY),
    4871                 :                      errmsg("out of shared memory")));
    4872                 : 
    4873                 :         /* vxid for a prepared xact is InvalidBackendId/xid; no pid */
    4874               0 :         sxact->vxid.backendId = InvalidBackendId;
    4875               0 :         sxact->vxid.localTransactionId = (LocalTransactionId) xid;
    4876               0 :         sxact->pid = 0;
    4877               0 :         sxact->pgprocno = INVALID_PGPROCNO;
    4878                 : 
    4879                 :         /* a prepared xact hasn't committed yet */
    4880               0 :         sxact->prepareSeqNo = RecoverySerCommitSeqNo;
    4881               0 :         sxact->commitSeqNo = InvalidSerCommitSeqNo;
    4882               0 :         sxact->finishedBefore = InvalidTransactionId;
    4883                 : 
    4884               0 :         sxact->SeqNo.lastCommitBeforeSnapshot = RecoverySerCommitSeqNo;
    4885                 : 
    4886                 :         /*
    4887                 :          * Don't need to track this; no transactions running at the time the
    4888                 :          * recovered xact started are still active, except possibly other
    4889                 :          * prepared xacts and we don't care whether those are RO_SAFE or not.
    4890                 :          */
    4891 UNC           0 :         dlist_init(&(sxact->possibleUnsafeConflicts));
    4892                 : 
    4893               0 :         dlist_init(&(sxact->predicateLocks));
    4894               0 :         dlist_node_init(&sxact->finishedLink);
    4895                 : 
    4896 UIC           0 :         sxact->topXid = xid;
    4897               0 :         sxact->xmin = xactRecord->xmin;
    4898               0 :         sxact->flags = xactRecord->flags;
    4899               0 :         Assert(SxactIsPrepared(sxact));
    4900               0 :         if (!SxactIsReadOnly(sxact))
    4901                 :         {
    4902               0 :             ++(PredXact->WritableSxactCount);
    4903               0 :             Assert(PredXact->WritableSxactCount <=
    4904                 :                    (MaxBackends + max_prepared_xacts));
    4905                 :         }
    4906                 : 
    4907                 :         /*
    4908                 :          * We don't know whether the transaction had any conflicts or not, so
    4909                 :          * we'll conservatively assume that it had both a conflict in and a
    4910                 :          * conflict out, and represent that with the summary conflict flags.
    4911                 :          */
    4912 UNC           0 :         dlist_init(&(sxact->outConflicts));
    4913               0 :         dlist_init(&(sxact->inConflicts));
    4914 UIC           0 :         sxact->flags |= SXACT_FLAG_SUMMARY_CONFLICT_IN;
    4915               0 :         sxact->flags |= SXACT_FLAG_SUMMARY_CONFLICT_OUT;
    4916                 : 
    4917                 :         /* Register the transaction's xid */
    4918               0 :         sxidtag.xid = xid;
    4919               0 :         sxid = (SERIALIZABLEXID *) hash_search(SerializableXidHash,
    4920                 :                                                &sxidtag,
    4921                 :                                                HASH_ENTER, &found);
    4922               0 :         Assert(sxid != NULL);
    4923               0 :         Assert(!found);
    4924               0 :         sxid->myXact = (SERIALIZABLEXACT *) sxact;
    4925                 : 
    4926                 :         /*
    4927                 :          * Update global xmin. Note that this is a special case compared to
    4928                 :          * registering a normal transaction, because the global xmin might go
    4929                 :          * backwards. That's OK, because until recovery is over we're not
    4930                 :          * going to complete any transactions or create any non-prepared
    4931                 :          * transactions, so there's no danger of throwing away.
    4932                 :          */
    4933               0 :         if ((!TransactionIdIsValid(PredXact->SxactGlobalXmin)) ||
    4934               0 :             (TransactionIdFollows(PredXact->SxactGlobalXmin, sxact->xmin)))
    4935                 :         {
    4936               0 :             PredXact->SxactGlobalXmin = sxact->xmin;
    4937               0 :             PredXact->SxactGlobalXminCount = 1;
    4938               0 :             SerialSetActiveSerXmin(sxact->xmin);
    4939                 :         }
    4940               0 :         else if (TransactionIdEquals(sxact->xmin, PredXact->SxactGlobalXmin))
    4941                 :         {
    4942               0 :             Assert(PredXact->SxactGlobalXminCount > 0);
    4943               0 :             PredXact->SxactGlobalXminCount++;
    4944                 :         }
    4945                 : 
    4946               0 :         LWLockRelease(SerializableXactHashLock);
    4947                 :     }
    4948               0 :     else if (record->type == TWOPHASEPREDICATERECORD_LOCK)
    4949                 :     {
    4950                 :         /* Lock record. Recreate the PREDICATELOCK */
    4951                 :         TwoPhasePredicateLockRecord *lockRecord;
    4952                 :         SERIALIZABLEXID *sxid;
    4953                 :         SERIALIZABLEXACT *sxact;
    4954                 :         SERIALIZABLEXIDTAG sxidtag;
    4955                 :         uint32      targettaghash;
    4956                 : 
    4957               0 :         lockRecord = (TwoPhasePredicateLockRecord *) &record->data.lockRecord;
    4958               0 :         targettaghash = PredicateLockTargetTagHashCode(&lockRecord->target);
    4959                 : 
    4960               0 :         LWLockAcquire(SerializableXactHashLock, LW_SHARED);
    4961               0 :         sxidtag.xid = xid;
    4962                 :         sxid = (SERIALIZABLEXID *)
    4963               0 :             hash_search(SerializableXidHash, &sxidtag, HASH_FIND, NULL);
    4964               0 :         LWLockRelease(SerializableXactHashLock);
    4965                 : 
    4966               0 :         Assert(sxid != NULL);
    4967               0 :         sxact = sxid->myXact;
    4968               0 :         Assert(sxact != InvalidSerializableXact);
    4969                 : 
    4970               0 :         CreatePredicateLock(&lockRecord->target, targettaghash, sxact);
    4971                 :     }
    4972               0 : }
    4973                 : 
    4974                 : /*
    4975                 :  * Prepare to share the current SERIALIZABLEXACT with parallel workers.
    4976                 :  * Return a handle object that can be used by AttachSerializableXact() in a
    4977                 :  * parallel worker.
    4978                 :  */
    4979                 : SerializableXactHandle
    4980 GIC         403 : ShareSerializableXact(void)
    4981                 : {
    4982             403 :     return MySerializableXact;
    4983                 : }
    4984                 : 
    4985                 : /*
    4986                 :  * Allow parallel workers to import the leader's SERIALIZABLEXACT.
    4987                 :  */
    4988                 : void
    4989            1298 : AttachSerializableXact(SerializableXactHandle handle)
    4990                 : {
    4991                 : 
    4992            1298 :     Assert(MySerializableXact == InvalidSerializableXact);
    4993                 : 
    4994            1298 :     MySerializableXact = (SERIALIZABLEXACT *) handle;
    4995            1298 :     if (MySerializableXact != InvalidSerializableXact)
    4996              13 :         CreateLocalPredicateLockHash();
    4997            1298 : }
        

Generated by: LCOV version v1.16-55-g56c0a2a