LCOV - differential code coverage report
Current view: top level - src/backend/storage/ipc - latch.c (source / functions) Coverage Total Hit LBC UIC UBC GBC GIC GNC CBC EUB ECB
Current: Differential Code Coverage HEAD vs 15 Lines: 87.5 % 319 279 5 33 2 5 204 11 59 33 215
Current Date: 2023-04-08 15:15:32 Functions: 95.5 % 22 21 1 19 2 1 20
Baseline: 15
Baseline Date: 2023-04-08 15:09:40
Legend: Lines: hit not hit

           TLA  Line data    Source code
       1                 : /*-------------------------------------------------------------------------
       2                 :  *
       3                 :  * latch.c
       4                 :  *    Routines for inter-process latches
       5                 :  *
       6                 :  * The poll() implementation uses the so-called self-pipe trick to overcome the
       7                 :  * race condition involved with poll() and setting a global flag in the signal
       8                 :  * handler. When a latch is set and the current process is waiting for it, the
       9                 :  * signal handler wakes up the poll() in WaitLatch by writing a byte to a pipe.
      10                 :  * A signal by itself doesn't interrupt poll() on all platforms, and even on
      11                 :  * platforms where it does, a signal that arrives just before the poll() call
      12                 :  * does not prevent poll() from entering sleep. An incoming byte on a pipe
      13                 :  * however reliably interrupts the sleep, and causes poll() to return
      14                 :  * immediately even if the signal arrives before poll() begins.
      15                 :  *
      16                 :  * The epoll() implementation overcomes the race with a different technique: it
      17                 :  * keeps SIGURG blocked and consumes from a signalfd() descriptor instead.  We
      18                 :  * don't need to register a signal handler or create our own self-pipe.  We
      19                 :  * assume that any system that has Linux epoll() also has Linux signalfd().
      20                 :  *
      21                 :  * The kqueue() implementation waits for SIGURG with EVFILT_SIGNAL.
      22                 :  *
      23                 :  * The Windows implementation uses Windows events that are inherited by all
      24                 :  * postmaster child processes. There's no need for the self-pipe trick there.
      25                 :  *
      26                 :  * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
      27                 :  * Portions Copyright (c) 1994, Regents of the University of California
      28                 :  *
      29                 :  * IDENTIFICATION
      30                 :  *    src/backend/storage/ipc/latch.c
      31                 :  *
      32                 :  *-------------------------------------------------------------------------
      33                 :  */
      34                 : #include "postgres.h"
      35                 : 
      36                 : #include <fcntl.h>
      37                 : #include <limits.h>
      38                 : #include <signal.h>
      39                 : #include <unistd.h>
      40                 : #ifdef HAVE_SYS_EPOLL_H
      41                 : #include <sys/epoll.h>
      42                 : #endif
      43                 : #ifdef HAVE_SYS_EVENT_H
      44                 : #include <sys/event.h>
      45                 : #endif
      46                 : #ifdef HAVE_SYS_SIGNALFD_H
      47                 : #include <sys/signalfd.h>
      48                 : #endif
      49                 : #ifdef HAVE_POLL_H
      50                 : #include <poll.h>
      51                 : #endif
      52                 : 
      53                 : #include "libpq/pqsignal.h"
      54                 : #include "miscadmin.h"
      55                 : #include "pgstat.h"
      56                 : #include "port/atomics.h"
      57                 : #include "portability/instr_time.h"
      58                 : #include "postmaster/postmaster.h"
      59                 : #include "storage/fd.h"
      60                 : #include "storage/ipc.h"
      61                 : #include "storage/latch.h"
      62                 : #include "storage/pmsignal.h"
      63                 : #include "storage/shmem.h"
      64                 : #include "utils/memutils.h"
      65                 : 
      66                 : /*
      67                 :  * Select the fd readiness primitive to use. Normally the "most modern"
      68                 :  * primitive supported by the OS will be used, but for testing it can be
      69                 :  * useful to manually specify the used primitive.  If desired, just add a
      70                 :  * define somewhere before this block.
      71                 :  */
      72                 : #if defined(WAIT_USE_EPOLL) || defined(WAIT_USE_POLL) || \
      73                 :     defined(WAIT_USE_KQUEUE) || defined(WAIT_USE_WIN32)
      74                 : /* don't overwrite manual choice */
      75                 : #elif defined(HAVE_SYS_EPOLL_H)
      76                 : #define WAIT_USE_EPOLL
      77                 : #elif defined(HAVE_KQUEUE)
      78                 : #define WAIT_USE_KQUEUE
      79                 : #elif defined(HAVE_POLL)
      80                 : #define WAIT_USE_POLL
      81                 : #elif WIN32
      82                 : #define WAIT_USE_WIN32
      83                 : #else
      84                 : #error "no wait set implementation available"
      85                 : #endif
      86                 : 
      87                 : /*
      88                 :  * By default, we use a self-pipe with poll() and a signalfd with epoll(), if
      89                 :  * available.  We avoid signalfd on illumos for now based on problem reports.
      90                 :  * For testing the choice can also be manually specified.
      91                 :  */
      92                 : #if defined(WAIT_USE_POLL) || defined(WAIT_USE_EPOLL)
      93                 : #if defined(WAIT_USE_SELF_PIPE) || defined(WAIT_USE_SIGNALFD)
      94                 : /* don't overwrite manual choice */
      95                 : #elif defined(WAIT_USE_EPOLL) && defined(HAVE_SYS_SIGNALFD_H) && \
      96                 :     !defined(__illumos__)
      97                 : #define WAIT_USE_SIGNALFD
      98                 : #else
      99                 : #define WAIT_USE_SELF_PIPE
     100                 : #endif
     101                 : #endif
     102                 : 
     103                 : /* typedef in latch.h */
     104                 : struct WaitEventSet
     105                 : {
     106                 :     int         nevents;        /* number of registered events */
     107                 :     int         nevents_space;  /* maximum number of events in this set */
     108                 : 
     109                 :     /*
     110                 :      * Array, of nevents_space length, storing the definition of events this
     111                 :      * set is waiting for.
     112                 :      */
     113                 :     WaitEvent  *events;
     114                 : 
     115                 :     /*
     116                 :      * If WL_LATCH_SET is specified in any wait event, latch is a pointer to
     117                 :      * said latch, and latch_pos the offset in the ->events array. This is
     118                 :      * useful because we check the state of the latch before performing doing
     119                 :      * syscalls related to waiting.
     120                 :      */
     121                 :     Latch      *latch;
     122                 :     int         latch_pos;
     123                 : 
     124                 :     /*
     125                 :      * WL_EXIT_ON_PM_DEATH is converted to WL_POSTMASTER_DEATH, but this flag
     126                 :      * is set so that we'll exit immediately if postmaster death is detected,
     127                 :      * instead of returning.
     128                 :      */
     129                 :     bool        exit_on_postmaster_death;
     130                 : 
     131                 : #if defined(WAIT_USE_EPOLL)
     132                 :     int         epoll_fd;
     133                 :     /* epoll_wait returns events in a user provided arrays, allocate once */
     134                 :     struct epoll_event *epoll_ret_events;
     135                 : #elif defined(WAIT_USE_KQUEUE)
     136                 :     int         kqueue_fd;
     137                 :     /* kevent returns events in a user provided arrays, allocate once */
     138                 :     struct kevent *kqueue_ret_events;
     139                 :     bool        report_postmaster_not_running;
     140                 : #elif defined(WAIT_USE_POLL)
     141                 :     /* poll expects events to be waited on every poll() call, prepare once */
     142                 :     struct pollfd *pollfds;
     143                 : #elif defined(WAIT_USE_WIN32)
     144                 : 
     145                 :     /*
     146                 :      * Array of windows events. The first element always contains
     147                 :      * pgwin32_signal_event, so the remaining elements are offset by one (i.e.
     148                 :      * event->pos + 1).
     149                 :      */
     150                 :     HANDLE     *handles;
     151                 : #endif
     152                 : };
     153                 : 
     154                 : /* A common WaitEventSet used to implement WatchLatch() */
     155                 : static WaitEventSet *LatchWaitSet;
     156                 : 
     157                 : /* The position of the latch in LatchWaitSet. */
     158                 : #define LatchWaitSetLatchPos 0
     159                 : 
     160                 : #ifndef WIN32
     161                 : /* Are we currently in WaitLatch? The signal handler would like to know. */
     162                 : static volatile sig_atomic_t waiting = false;
     163                 : #endif
     164                 : 
     165                 : #ifdef WAIT_USE_SIGNALFD
     166                 : /* On Linux, we'll receive SIGURG via a signalfd file descriptor. */
     167                 : static int  signal_fd = -1;
     168                 : #endif
     169                 : 
     170                 : #ifdef WAIT_USE_SELF_PIPE
     171                 : /* Read and write ends of the self-pipe */
     172                 : static int  selfpipe_readfd = -1;
     173                 : static int  selfpipe_writefd = -1;
     174                 : 
     175                 : /* Process owning the self-pipe --- needed for checking purposes */
     176                 : static int  selfpipe_owner_pid = 0;
     177                 : 
     178                 : /* Private function prototypes */
     179                 : static void latch_sigurg_handler(SIGNAL_ARGS);
     180                 : static void sendSelfPipeByte(void);
     181                 : #endif
     182                 : 
     183                 : #if defined(WAIT_USE_SELF_PIPE) || defined(WAIT_USE_SIGNALFD)
     184                 : static void drain(void);
     185                 : #endif
     186                 : 
     187                 : #if defined(WAIT_USE_EPOLL)
     188                 : static void WaitEventAdjustEpoll(WaitEventSet *set, WaitEvent *event, int action);
     189                 : #elif defined(WAIT_USE_KQUEUE)
     190                 : static void WaitEventAdjustKqueue(WaitEventSet *set, WaitEvent *event, int old_events);
     191                 : #elif defined(WAIT_USE_POLL)
     192                 : static void WaitEventAdjustPoll(WaitEventSet *set, WaitEvent *event);
     193                 : #elif defined(WAIT_USE_WIN32)
     194                 : static void WaitEventAdjustWin32(WaitEventSet *set, WaitEvent *event);
     195                 : #endif
     196                 : 
     197                 : static inline int WaitEventSetWaitBlock(WaitEventSet *set, int cur_timeout,
     198                 :                                         WaitEvent *occurred_events, int nevents);
     199                 : 
     200                 : /*
     201                 :  * Initialize the process-local latch infrastructure.
     202                 :  *
     203                 :  * This must be called once during startup of any process that can wait on
     204                 :  * latches, before it issues any InitLatch() or OwnLatch() calls.
     205                 :  */
     206                 : void
     207 CBC       14589 : InitializeLatchSupport(void)
     208                 : {
     209                 : #if defined(WAIT_USE_SELF_PIPE)
     210                 :     int         pipefd[2];
     211                 : 
     212                 :     if (IsUnderPostmaster)
     213                 :     {
     214                 :         /*
     215                 :          * We might have inherited connections to a self-pipe created by the
     216                 :          * postmaster.  It's critical that child processes create their own
     217                 :          * self-pipes, of course, and we really want them to close the
     218                 :          * inherited FDs for safety's sake.
     219                 :          */
     220                 :         if (selfpipe_owner_pid != 0)
     221                 :         {
     222                 :             /* Assert we go through here but once in a child process */
     223                 :             Assert(selfpipe_owner_pid != MyProcPid);
     224                 :             /* Release postmaster's pipe FDs; ignore any error */
     225                 :             (void) close(selfpipe_readfd);
     226                 :             (void) close(selfpipe_writefd);
     227                 :             /* Clean up, just for safety's sake; we'll set these below */
     228                 :             selfpipe_readfd = selfpipe_writefd = -1;
     229                 :             selfpipe_owner_pid = 0;
     230                 :             /* Keep fd.c's accounting straight */
     231                 :             ReleaseExternalFD();
     232                 :             ReleaseExternalFD();
     233                 :         }
     234                 :         else
     235                 :         {
     236                 :             /*
     237                 :              * Postmaster didn't create a self-pipe ... or else we're in an
     238                 :              * EXEC_BACKEND build, in which case it doesn't matter since the
     239                 :              * postmaster's pipe FDs were closed by the action of FD_CLOEXEC.
     240                 :              * fd.c won't have state to clean up, either.
     241                 :              */
     242                 :             Assert(selfpipe_readfd == -1);
     243                 :         }
     244                 :     }
     245                 :     else
     246                 :     {
     247                 :         /* In postmaster or standalone backend, assert we do this but once */
     248                 :         Assert(selfpipe_readfd == -1);
     249                 :         Assert(selfpipe_owner_pid == 0);
     250                 :     }
     251                 : 
     252                 :     /*
     253                 :      * Set up the self-pipe that allows a signal handler to wake up the
     254                 :      * poll()/epoll_wait() in WaitLatch. Make the write-end non-blocking, so
     255                 :      * that SetLatch won't block if the event has already been set many times
     256                 :      * filling the kernel buffer. Make the read-end non-blocking too, so that
     257                 :      * we can easily clear the pipe by reading until EAGAIN or EWOULDBLOCK.
     258                 :      * Also, make both FDs close-on-exec, since we surely do not want any
     259                 :      * child processes messing with them.
     260                 :      */
     261                 :     if (pipe(pipefd) < 0)
     262                 :         elog(FATAL, "pipe() failed: %m");
     263                 :     if (fcntl(pipefd[0], F_SETFL, O_NONBLOCK) == -1)
     264                 :         elog(FATAL, "fcntl(F_SETFL) failed on read-end of self-pipe: %m");
     265                 :     if (fcntl(pipefd[1], F_SETFL, O_NONBLOCK) == -1)
     266                 :         elog(FATAL, "fcntl(F_SETFL) failed on write-end of self-pipe: %m");
     267                 :     if (fcntl(pipefd[0], F_SETFD, FD_CLOEXEC) == -1)
     268                 :         elog(FATAL, "fcntl(F_SETFD) failed on read-end of self-pipe: %m");
     269                 :     if (fcntl(pipefd[1], F_SETFD, FD_CLOEXEC) == -1)
     270                 :         elog(FATAL, "fcntl(F_SETFD) failed on write-end of self-pipe: %m");
     271                 : 
     272                 :     selfpipe_readfd = pipefd[0];
     273                 :     selfpipe_writefd = pipefd[1];
     274                 :     selfpipe_owner_pid = MyProcPid;
     275                 : 
     276                 :     /* Tell fd.c about these two long-lived FDs */
     277                 :     ReserveExternalFD();
     278                 :     ReserveExternalFD();
     279                 : 
     280                 :     pqsignal(SIGURG, latch_sigurg_handler);
     281                 : #endif
     282                 : 
     283                 : #ifdef WAIT_USE_SIGNALFD
     284                 :     sigset_t    signalfd_mask;
     285                 : 
     286 GNC       14589 :     if (IsUnderPostmaster)
     287                 :     {
     288                 :         /*
     289                 :          * It would probably be safe to re-use the inherited signalfd since
     290                 :          * signalfds only see the current process's pending signals, but it
     291                 :          * seems less surprising to close it and create our own.
     292                 :          */
     293           12732 :         if (signal_fd != -1)
     294                 :         {
     295                 :             /* Release postmaster's signal FD; ignore any error */
     296           12732 :             (void) close(signal_fd);
     297           12732 :             signal_fd = -1;
     298           12732 :             ReleaseExternalFD();
     299                 :         }
     300                 :     }
     301                 : 
     302 ECB             :     /* Block SIGURG, because we'll receive it through a signalfd. */
     303 GIC       14589 :     sigaddset(&UnBlockSig, SIGURG);
     304                 : 
     305                 :     /* Set up the signalfd to receive SIGURG notifications. */
     306           14589 :     sigemptyset(&signalfd_mask);
     307           14589 :     sigaddset(&signalfd_mask, SIGURG);
     308           14589 :     signal_fd = signalfd(-1, &signalfd_mask, SFD_NONBLOCK | SFD_CLOEXEC);
     309 CBC       14589 :     if (signal_fd < 0)
     310 UIC           0 :         elog(FATAL, "signalfd() failed");
     311 GIC       14589 :     ReserveExternalFD();
     312 ECB             : #endif
     313                 : 
     314                 : #ifdef WAIT_USE_KQUEUE
     315                 :     /* Ignore SIGURG, because we'll receive it via kqueue. */
     316                 :     pqsignal(SIGURG, SIG_IGN);
     317                 : #endif
     318 GIC       14589 : }
     319 ECB             : 
     320                 : void
     321 GIC       13988 : InitializeLatchWaitSet(void)
     322 ECB             : {
     323                 :     int         latch_pos PG_USED_FOR_ASSERTS_ONLY;
     324                 : 
     325 CBC       13988 :     Assert(LatchWaitSet == NULL);
     326 EUB             : 
     327 ECB             :     /* Set up the WaitEventSet used by WaitLatch(). */
     328 GIC       13988 :     LatchWaitSet = CreateWaitEventSet(TopMemoryContext, 2);
     329           13988 :     latch_pos = AddWaitEventToSet(LatchWaitSet, WL_LATCH_SET, PGINVALID_SOCKET,
     330                 :                                   MyLatch, NULL);
     331           13988 :     if (IsUnderPostmaster)
     332           12732 :         AddWaitEventToSet(LatchWaitSet, WL_EXIT_ON_PM_DEATH,
     333                 :                           PGINVALID_SOCKET, NULL, NULL);
     334 ECB             : 
     335 GIC       13988 :     Assert(latch_pos == LatchWaitSetLatchPos);
     336           13988 : }
     337 ECB             : 
     338                 : void
     339 UIC           0 : ShutdownLatchSupport(void)
     340                 : {
     341 ECB             : #if defined(WAIT_USE_POLL)
     342                 :     pqsignal(SIGURG, SIG_IGN);
     343                 : #endif
     344                 : 
     345 LBC           0 :     if (LatchWaitSet)
     346                 :     {
     347               0 :         FreeWaitEventSet(LatchWaitSet);
     348               0 :         LatchWaitSet = NULL;
     349                 :     }
     350                 : 
     351 ECB             : #if defined(WAIT_USE_SELF_PIPE)
     352                 :     close(selfpipe_readfd);
     353                 :     close(selfpipe_writefd);
     354                 :     selfpipe_readfd = -1;
     355 EUB             :     selfpipe_writefd = -1;
     356                 :     selfpipe_owner_pid = InvalidPid;
     357                 : #endif
     358                 : 
     359                 : #if defined(WAIT_USE_SIGNALFD)
     360 UIC           0 :     close(signal_fd);
     361 UBC           0 :     signal_fd = -1;
     362                 : #endif
     363               0 : }
     364 EUB             : 
     365                 : /*
     366                 :  * Initialize a process-local latch.
     367                 :  */
     368                 : void
     369 GIC       14589 : InitLatch(Latch *latch)
     370                 : {
     371           14589 :     latch->is_set = false;
     372           14589 :     latch->maybe_sleeping = false;
     373           14589 :     latch->owner_pid = MyProcPid;
     374           14589 :     latch->is_shared = false;
     375                 : 
     376 EUB             : #if defined(WAIT_USE_SELF_PIPE)
     377                 :     /* Assert InitializeLatchSupport has been called in this process */
     378                 :     Assert(selfpipe_readfd >= 0 && selfpipe_owner_pid == MyProcPid);
     379                 : #elif defined(WAIT_USE_SIGNALFD)
     380                 :     /* Assert InitializeLatchSupport has been called in this process */
     381 GIC       14589 :     Assert(signal_fd >= 0);
     382                 : #elif defined(WAIT_USE_WIN32)
     383                 :     latch->event = CreateEvent(NULL, TRUE, FALSE, NULL);
     384                 :     if (latch->event == NULL)
     385 ECB             :         elog(ERROR, "CreateEvent failed: error code %lu", GetLastError());
     386                 : #endif                          /* WIN32 */
     387 CBC       14589 : }
     388 ECB             : 
     389                 : /*
     390                 :  * Initialize a shared latch that can be set from other processes. The latch
     391                 :  * is initially owned by no-one; use OwnLatch to associate it with the
     392                 :  * current process.
     393                 :  *
     394                 :  * InitSharedLatch needs to be called in postmaster before forking child
     395                 :  * processes, usually right after allocating the shared memory block
     396                 :  * containing the latch with ShmemInitStruct. (The Unix implementation
     397                 :  * doesn't actually require that, but the Windows one does.) Because of
     398                 :  * this restriction, we have no concurrency issues to worry about here.
     399                 :  *
     400                 :  * Note that other handles created in this module are never marked as
     401                 :  * inheritable.  Thus we do not need to worry about cleaning up child
     402                 :  * process references to postmaster-private latches or WaitEventSets.
     403                 :  */
     404                 : void
     405 GIC      202333 : InitSharedLatch(Latch *latch)
     406                 : {
     407                 : #ifdef WIN32
     408                 :     SECURITY_ATTRIBUTES sa;
     409                 : 
     410                 :     /*
     411                 :      * Set up security attributes to specify that the events are inherited.
     412                 :      */
     413                 :     ZeroMemory(&sa, sizeof(sa));
     414                 :     sa.nLength = sizeof(sa);
     415                 :     sa.bInheritHandle = TRUE;
     416                 : 
     417                 :     latch->event = CreateEvent(&sa, TRUE, FALSE, NULL);
     418                 :     if (latch->event == NULL)
     419                 :         elog(ERROR, "CreateEvent failed: error code %lu", GetLastError());
     420                 : #endif
     421 ECB             : 
     422 GIC      202333 :     latch->is_set = false;
     423          202333 :     latch->maybe_sleeping = false;
     424          202333 :     latch->owner_pid = 0;
     425          202333 :     latch->is_shared = true;
     426          202333 : }
     427                 : 
     428                 : /*
     429                 :  * Associate a shared latch with the current process, allowing it to
     430                 :  * wait on the latch.
     431                 :  *
     432                 :  * Although there is a sanity check for latch-already-owned, we don't do
     433                 :  * any sort of locking here, meaning that we could fail to detect the error
     434                 :  * if two processes try to own the same latch at about the same time.  If
     435                 :  * there is any risk of that, caller must provide an interlock to prevent it.
     436                 :  */
     437                 : void
     438 CBC       13364 : OwnLatch(Latch *latch)
     439 ECB             : {
     440                 :     int         owner_pid;
     441                 : 
     442                 :     /* Sanity checks */
     443 GIC       13364 :     Assert(latch->is_shared);
     444                 : 
     445                 : #if defined(WAIT_USE_SELF_PIPE)
     446                 :     /* Assert InitializeLatchSupport has been called in this process */
     447                 :     Assert(selfpipe_readfd >= 0 && selfpipe_owner_pid == MyProcPid);
     448                 : #elif defined(WAIT_USE_SIGNALFD)
     449                 :     /* Assert InitializeLatchSupport has been called in this process */
     450           13364 :     Assert(signal_fd >= 0);
     451                 : #endif
     452                 : 
     453           13364 :     owner_pid = latch->owner_pid;
     454 CBC       13364 :     if (owner_pid != 0)
     455 UIC           0 :         elog(PANIC, "latch already owned by PID %d", owner_pid);
     456                 : 
     457 GIC       13364 :     latch->owner_pid = MyProcPid;
     458           13364 : }
     459 ECB             : 
     460                 : /*
     461                 :  * Disown a shared latch currently owned by the current process.
     462                 :  */
     463                 : void
     464 GIC       13330 : DisownLatch(Latch *latch)
     465                 : {
     466 CBC       13330 :     Assert(latch->is_shared);
     467 GIC       13330 :     Assert(latch->owner_pid == MyProcPid);
     468                 : 
     469 CBC       13330 :     latch->owner_pid = 0;
     470           13330 : }
     471 EUB             : 
     472                 : /*
     473 ECB             :  * Wait for a given latch to be set, or for postmaster death, or until timeout
     474                 :  * is exceeded. 'wakeEvents' is a bitmask that specifies which of those events
     475                 :  * to wait for. If the latch is already set (and WL_LATCH_SET is given), the
     476                 :  * function returns immediately.
     477                 :  *
     478                 :  * The "timeout" is given in milliseconds. It must be >= 0 if WL_TIMEOUT flag
     479                 :  * is given.  Although it is declared as "long", we don't actually support
     480                 :  * timeouts longer than INT_MAX milliseconds.  Note that some extra overhead
     481                 :  * is incurred when WL_TIMEOUT is given, so avoid using a timeout if possible.
     482                 :  *
     483                 :  * The latch must be owned by the current process, ie. it must be a
     484                 :  * process-local latch initialized with InitLatch, or a shared latch
     485                 :  * associated with the current process by calling OwnLatch.
     486                 :  *
     487                 :  * Returns bit mask indicating which condition(s) caused the wake-up. Note
     488                 :  * that if multiple wake-up conditions are true, there is no guarantee that
     489                 :  * we return all of them in one call, but we will return at least one.
     490                 :  */
     491                 : int
     492 GIC      327192 : WaitLatch(Latch *latch, int wakeEvents, long timeout,
     493                 :           uint32 wait_event_info)
     494                 : {
     495                 :     WaitEvent   event;
     496                 : 
     497                 :     /* Postmaster-managed callers must handle postmaster death somehow. */
     498          327192 :     Assert(!IsUnderPostmaster ||
     499                 :            (wakeEvents & WL_EXIT_ON_PM_DEATH) ||
     500                 :            (wakeEvents & WL_POSTMASTER_DEATH));
     501                 : 
     502                 :     /*
     503                 :      * Some callers may have a latch other than MyLatch, or no latch at all,
     504                 :      * or want to handle postmaster death differently.  It's cheap to assign
     505                 :      * those, so just do it every time.
     506                 :      */
     507          327192 :     if (!(wakeEvents & WL_LATCH_SET))
     508 CBC           8 :         latch = NULL;
     509 GIC      327192 :     ModifyWaitEvent(LatchWaitSet, LatchWaitSetLatchPos, WL_LATCH_SET, latch);
     510          327192 :     LatchWaitSet->exit_on_postmaster_death =
     511          327192 :         ((wakeEvents & WL_EXIT_ON_PM_DEATH) != 0);
     512                 : 
     513          327192 :     if (WaitEventSetWait(LatchWaitSet,
     514 CBC      327192 :                          (wakeEvents & WL_TIMEOUT) ? timeout : -1,
     515                 :                          &event, 1,
     516                 :                          wait_event_info) == 0)
     517 GIC       21058 :         return WL_TIMEOUT;
     518                 :     else
     519          306119 :         return event.events;
     520                 : }
     521                 : 
     522                 : /*
     523 ECB             :  * Like WaitLatch, but with an extra socket argument for WL_SOCKET_*
     524                 :  * conditions.
     525                 :  *
     526                 :  * When waiting on a socket, EOF and error conditions always cause the socket
     527                 :  * to be reported as readable/writable/connected, so that the caller can deal
     528                 :  * with the condition.
     529                 :  *
     530                 :  * wakeEvents must include either WL_EXIT_ON_PM_DEATH for automatic exit
     531                 :  * if the postmaster dies or WL_POSTMASTER_DEATH for a flag set in the
     532                 :  * return value if the postmaster dies.  The latter is useful for rare cases
     533                 :  * where some behavior other than immediate exit is needed.
     534                 :  *
     535                 :  * NB: These days this is just a wrapper around the WaitEventSet API. When
     536                 :  * using a latch very frequently, consider creating a longer living
     537                 :  * WaitEventSet instead; that's more efficient.
     538                 :  */
     539                 : int
     540 GIC      101617 : WaitLatchOrSocket(Latch *latch, int wakeEvents, pgsocket sock,
     541                 :                   long timeout, uint32 wait_event_info)
     542                 : {
     543          101617 :     int         ret = 0;
     544                 :     int         rc;
     545                 :     WaitEvent   event;
     546          101617 :     WaitEventSet *set = CreateWaitEventSet(CurrentMemoryContext, 3);
     547                 : 
     548          101617 :     if (wakeEvents & WL_TIMEOUT)
     549           89546 :         Assert(timeout >= 0);
     550                 :     else
     551           12071 :         timeout = -1;
     552                 : 
     553          101617 :     if (wakeEvents & WL_LATCH_SET)
     554          101406 :         AddWaitEventToSet(set, WL_LATCH_SET, PGINVALID_SOCKET,
     555                 :                           latch, NULL);
     556 ECB             : 
     557                 :     /* Postmaster-managed callers must handle postmaster death somehow. */
     558 GIC      101617 :     Assert(!IsUnderPostmaster ||
     559 ECB             :            (wakeEvents & WL_EXIT_ON_PM_DEATH) ||
     560                 :            (wakeEvents & WL_POSTMASTER_DEATH));
     561                 : 
     562 CBC      101617 :     if ((wakeEvents & WL_POSTMASTER_DEATH) && IsUnderPostmaster)
     563 UIC           0 :         AddWaitEventToSet(set, WL_POSTMASTER_DEATH, PGINVALID_SOCKET,
     564 ECB             :                           NULL, NULL);
     565                 : 
     566 GIC      101617 :     if ((wakeEvents & WL_EXIT_ON_PM_DEATH) && IsUnderPostmaster)
     567 CBC      101617 :         AddWaitEventToSet(set, WL_EXIT_ON_PM_DEATH, PGINVALID_SOCKET,
     568                 :                           NULL, NULL);
     569 ECB             : 
     570 CBC      101617 :     if (wakeEvents & WL_SOCKET_MASK)
     571                 :     {
     572                 :         int         ev;
     573                 : 
     574          101617 :         ev = wakeEvents & WL_SOCKET_MASK;
     575 GIC      101617 :         AddWaitEventToSet(set, ev, sock, NULL, NULL);
     576                 :     }
     577                 : 
     578 CBC      101617 :     rc = WaitEventSetWait(set, timeout, &event, 1, wait_event_info);
     579 EUB             : 
     580 GIC      101617 :     if (rc == 0)
     581             130 :         ret |= WL_TIMEOUT;
     582 ECB             :     else
     583                 :     {
     584 GIC      101487 :         ret |= event.events & (WL_LATCH_SET |
     585                 :                                WL_POSTMASTER_DEATH |
     586 ECB             :                                WL_SOCKET_MASK);
     587                 :     }
     588                 : 
     589 GIC      101617 :     FreeWaitEventSet(set);
     590 ECB             : 
     591 CBC      101617 :     return ret;
     592                 : }
     593                 : 
     594 ECB             : /*
     595                 :  * Sets a latch and wakes up anyone waiting on it.
     596                 :  *
     597                 :  * This is cheap if the latch is already set, otherwise not so much.
     598                 :  *
     599                 :  * NB: when calling this in a signal handler, be sure to save and restore
     600                 :  * errno around it.  (That's standard practice in most signal handlers, of
     601                 :  * course, but we used to omit it in handlers that only set a flag.)
     602                 :  *
     603                 :  * NB: this function is called from critical sections and signal handlers so
     604                 :  * throwing an error is not a good idea.
     605                 :  */
     606                 : void
     607 CBC      543810 : SetLatch(Latch *latch)
     608                 : {
     609                 : #ifndef WIN32
     610                 :     pid_t       owner_pid;
     611                 : #else
     612                 :     HANDLE      handle;
     613                 : #endif
     614                 : 
     615                 :     /*
     616                 :      * The memory barrier has to be placed here to ensure that any flag
     617                 :      * variables possibly changed by this process have been flushed to main
     618                 :      * memory, before we check/set is_set.
     619                 :      */
     620 GIC      543810 :     pg_memory_barrier();
     621                 : 
     622                 :     /* Quick exit if already set */
     623 CBC      543810 :     if (latch->is_set)
     624 GIC      158490 :         return;
     625                 : 
     626          385320 :     latch->is_set = true;
     627                 : 
     628          385320 :     pg_memory_barrier();
     629          385320 :     if (!latch->maybe_sleeping)
     630           59274 :         return;
     631                 : 
     632                 : #ifndef WIN32
     633                 : 
     634                 :     /*
     635                 :      * See if anyone's waiting for the latch. It can be the current process if
     636 ECB             :      * we're in a signal handler. We use the self-pipe or SIGURG to ourselves
     637                 :      * to wake up WaitEventSetWaitBlock() without races in that case. If it's
     638                 :      * another process, send a signal.
     639                 :      *
     640                 :      * Fetch owner_pid only once, in case the latch is concurrently getting
     641                 :      * owned or disowned. XXX: This assumes that pid_t is atomic, which isn't
     642                 :      * guaranteed to be true! In practice, the effective range of pid_t fits
     643                 :      * in a 32 bit integer, and so should be atomic. In the worst case, we
     644                 :      * might end up signaling the wrong process. Even then, you're very
     645                 :      * unlucky if a process with that bogus pid exists and belongs to
     646                 :      * Postgres; and PG database processes should handle excess SIGUSR1
     647                 :      * interrupts without a problem anyhow.
     648                 :      *
     649                 :      * Another sort of race condition that's possible here is for a new
     650                 :      * process to own the latch immediately after we look, so we don't signal
     651                 :      * it. This is okay so long as all callers of ResetLatch/WaitLatch follow
     652                 :      * the standard coding convention of waiting at the bottom of their loops,
     653                 :      * not the top, so that they'll correctly process latch-setting events
     654                 :      * that happen before they enter the loop.
     655                 :      */
     656 GIC      326046 :     owner_pid = latch->owner_pid;
     657          326046 :     if (owner_pid == 0)
     658 UIC           0 :         return;
     659 GIC      326046 :     else if (owner_pid == MyProcPid)
     660                 :     {
     661                 : #if defined(WAIT_USE_SELF_PIPE)
     662                 :         if (waiting)
     663                 :             sendSelfPipeByte();
     664                 : #else
     665           24232 :         if (waiting)
     666           24232 :             kill(MyProcPid, SIGURG);
     667                 : #endif
     668                 :     }
     669                 :     else
     670          301814 :         kill(owner_pid, SIGURG);
     671                 : 
     672 ECB             : #else
     673                 : 
     674 EUB             :     /*
     675 ECB             :      * See if anyone's waiting for the latch. It can be the current process if
     676                 :      * we're in a signal handler.
     677                 :      *
     678                 :      * Use a local variable here just in case somebody changes the event field
     679                 :      * concurrently (which really should not happen).
     680                 :      */
     681                 :     handle = latch->event;
     682                 :     if (handle)
     683                 :     {
     684                 :         SetEvent(handle);
     685                 : 
     686                 :         /*
     687                 :          * Note that we silently ignore any errors. We might be in a signal
     688                 :          * handler or other critical path where it's not safe to call elog().
     689                 :          */
     690                 :     }
     691                 : #endif
     692                 : }
     693                 : 
     694                 : /*
     695                 :  * Clear the latch. Calling WaitLatch after this will sleep, unless
     696                 :  * the latch is set again before the WaitLatch call.
     697                 :  */
     698                 : void
     699 GIC     1325035 : ResetLatch(Latch *latch)
     700                 : {
     701                 :     /* Only the owner should reset the latch */
     702         1325035 :     Assert(latch->owner_pid == MyProcPid);
     703         1325035 :     Assert(latch->maybe_sleeping == false);
     704                 : 
     705         1325035 :     latch->is_set = false;
     706                 : 
     707                 :     /*
     708                 :      * Ensure that the write to is_set gets flushed to main memory before we
     709                 :      * examine any flag variables.  Otherwise a concurrent SetLatch might
     710                 :      * falsely conclude that it needn't signal us, even though we have missed
     711                 :      * seeing some flag updates that SetLatch was supposed to inform us of.
     712                 :      */
     713         1325035 :     pg_memory_barrier();
     714         1325035 : }
     715 ECB             : 
     716                 : /*
     717                 :  * Create a WaitEventSet with space for nevents different events to wait for.
     718                 :  *
     719                 :  * These events can then be efficiently waited upon together, using
     720                 :  * WaitEventSetWait().
     721                 :  */
     722                 : WaitEventSet *
     723 GIC      125576 : CreateWaitEventSet(MemoryContext context, int nevents)
     724                 : {
     725                 :     WaitEventSet *set;
     726                 :     char       *data;
     727          125576 :     Size        sz = 0;
     728                 : 
     729 ECB             :     /*
     730                 :      * Use MAXALIGN size/alignment to guarantee that later uses of memory are
     731                 :      * aligned correctly. E.g. epoll_event might need 8 byte alignment on some
     732                 :      * platforms, but earlier allocations like WaitEventSet and WaitEvent
     733                 :      * might not be sized to guarantee that when purely using sizeof().
     734                 :      */
     735 GIC      125576 :     sz += MAXALIGN(sizeof(WaitEventSet));
     736          125576 :     sz += MAXALIGN(sizeof(WaitEvent) * nevents);
     737                 : 
     738                 : #if defined(WAIT_USE_EPOLL)
     739 CBC      125576 :     sz += MAXALIGN(sizeof(struct epoll_event) * nevents);
     740                 : #elif defined(WAIT_USE_KQUEUE)
     741                 :     sz += MAXALIGN(sizeof(struct kevent) * nevents);
     742                 : #elif defined(WAIT_USE_POLL)
     743 ECB             :     sz += MAXALIGN(sizeof(struct pollfd) * nevents);
     744                 : #elif defined(WAIT_USE_WIN32)
     745                 :     /* need space for the pgwin32_signal_event */
     746                 :     sz += MAXALIGN(sizeof(HANDLE) * (nevents + 1));
     747                 : #endif
     748                 : 
     749 GIC      125576 :     data = (char *) MemoryContextAllocZero(context, sz);
     750                 : 
     751 CBC      125576 :     set = (WaitEventSet *) data;
     752          125576 :     data += MAXALIGN(sizeof(WaitEventSet));
     753                 : 
     754 GIC      125576 :     set->events = (WaitEvent *) data;
     755 CBC      125576 :     data += MAXALIGN(sizeof(WaitEvent) * nevents);
     756                 : 
     757                 : #if defined(WAIT_USE_EPOLL)
     758 GIC      125576 :     set->epoll_ret_events = (struct epoll_event *) data;
     759          125576 :     data += MAXALIGN(sizeof(struct epoll_event) * nevents);
     760                 : #elif defined(WAIT_USE_KQUEUE)
     761                 :     set->kqueue_ret_events = (struct kevent *) data;
     762                 :     data += MAXALIGN(sizeof(struct kevent) * nevents);
     763                 : #elif defined(WAIT_USE_POLL)
     764                 :     set->pollfds = (struct pollfd *) data;
     765 ECB             :     data += MAXALIGN(sizeof(struct pollfd) * nevents);
     766                 : #elif defined(WAIT_USE_WIN32)
     767                 :     set->handles = (HANDLE) data;
     768                 :     data += MAXALIGN(sizeof(HANDLE) * nevents);
     769                 : #endif
     770                 : 
     771 CBC      125576 :     set->latch = NULL;
     772 GIC      125576 :     set->nevents_space = nevents;
     773          125576 :     set->exit_on_postmaster_death = false;
     774 ECB             : 
     775                 : #if defined(WAIT_USE_EPOLL)
     776 GIC      125576 :     if (!AcquireExternalFD())
     777                 :     {
     778                 :         /* treat this as though epoll_create1 itself returned EMFILE */
     779 UIC           0 :         elog(ERROR, "epoll_create1 failed: %m");
     780                 :     }
     781 GIC      125576 :     set->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
     782          125576 :     if (set->epoll_fd < 0)
     783                 :     {
     784 UIC           0 :         ReleaseExternalFD();
     785               0 :         elog(ERROR, "epoll_create1 failed: %m");
     786                 :     }
     787 ECB             : #elif defined(WAIT_USE_KQUEUE)
     788                 :     if (!AcquireExternalFD())
     789                 :     {
     790                 :         /* treat this as though kqueue itself returned EMFILE */
     791                 :         elog(ERROR, "kqueue failed: %m");
     792                 :     }
     793                 :     set->kqueue_fd = kqueue();
     794                 :     if (set->kqueue_fd < 0)
     795 EUB             :     {
     796                 :         ReleaseExternalFD();
     797 ECB             :         elog(ERROR, "kqueue failed: %m");
     798                 :     }
     799                 :     if (fcntl(set->kqueue_fd, F_SETFD, FD_CLOEXEC) == -1)
     800 EUB             :     {
     801                 :         int         save_errno = errno;
     802                 : 
     803                 :         close(set->kqueue_fd);
     804                 :         ReleaseExternalFD();
     805                 :         errno = save_errno;
     806                 :         elog(ERROR, "fcntl(F_SETFD) failed on kqueue descriptor: %m");
     807                 :     }
     808                 :     set->report_postmaster_not_running = false;
     809                 : #elif defined(WAIT_USE_WIN32)
     810                 : 
     811                 :     /*
     812                 :      * To handle signals while waiting, we need to add a win32 specific event.
     813                 :      * We accounted for the additional event at the top of this routine. See
     814                 :      * port/win32/signal.c for more details.
     815                 :      *
     816                 :      * Note: pgwin32_signal_event should be first to ensure that it will be
     817                 :      * reported when multiple events are set.  We want to guarantee that
     818                 :      * pending signals are serviced.
     819                 :      */
     820                 :     set->handles[0] = pgwin32_signal_event;
     821                 :     StaticAssertStmt(WSA_INVALID_EVENT == NULL, "");
     822                 : #endif
     823                 : 
     824 GIC      125576 :     return set;
     825                 : }
     826                 : 
     827                 : /*
     828                 :  * Free a previously created WaitEventSet.
     829                 :  *
     830                 :  * Note: preferably, this shouldn't have to free any resources that could be
     831                 :  * inherited across an exec().  If it did, we'd likely leak those resources in
     832                 :  * many scenarios.  For the epoll case, we ensure that by setting EPOLL_CLOEXEC
     833                 :  * when the FD is created.  For the Windows case, we assume that the handles
     834                 :  * involved are non-inheritable.
     835                 :  */
     836                 : void
     837          102316 : FreeWaitEventSet(WaitEventSet *set)
     838                 : {
     839                 : #if defined(WAIT_USE_EPOLL)
     840 CBC      102316 :     close(set->epoll_fd);
     841 GIC      102316 :     ReleaseExternalFD();
     842                 : #elif defined(WAIT_USE_KQUEUE)
     843                 :     close(set->kqueue_fd);
     844                 :     ReleaseExternalFD();
     845                 : #elif defined(WAIT_USE_WIN32)
     846                 :     WaitEvent  *cur_event;
     847                 : 
     848                 :     for (cur_event = set->events;
     849                 :          cur_event < (set->events + set->nevents);
     850                 :          cur_event++)
     851                 :     {
     852                 :         if (cur_event->events & WL_LATCH_SET)
     853 ECB             :         {
     854                 :             /* uses the latch's HANDLE */
     855                 :         }
     856                 :         else if (cur_event->events & WL_POSTMASTER_DEATH)
     857                 :         {
     858                 :             /* uses PostmasterHandle */
     859                 :         }
     860                 :         else
     861                 :         {
     862                 :             /* Clean up the event object we created for the socket */
     863                 :             WSAEventSelect(cur_event->fd, NULL, 0);
     864                 :             WSACloseEvent(set->handles[cur_event->pos + 1]);
     865                 :         }
     866                 :     }
     867                 : #endif
     868                 : 
     869 GIC      102316 :     pfree(set);
     870          102316 : }
     871                 : 
     872                 : /*
     873                 :  * Free a previously created WaitEventSet in a child process after a fork().
     874                 :  */
     875                 : void
     876 GNC       11472 : FreeWaitEventSetAfterFork(WaitEventSet *set)
     877                 : {
     878                 : #if defined(WAIT_USE_EPOLL)
     879           11472 :     close(set->epoll_fd);
     880           11472 :     ReleaseExternalFD();
     881                 : #elif defined(WAIT_USE_KQUEUE)
     882                 :     /* kqueues are not normally inherited by child processes */
     883                 :     ReleaseExternalFD();
     884                 : #endif
     885                 : 
     886           11472 :     pfree(set);
     887           11472 : }
     888                 : 
     889                 : /* ---
     890                 :  * Add an event to the set. Possible events are:
     891                 :  * - WL_LATCH_SET: Wait for the latch to be set
     892                 :  * - WL_POSTMASTER_DEATH: Wait for postmaster to die
     893                 :  * - WL_SOCKET_READABLE: Wait for socket to become readable,
     894                 :  *   can be combined in one event with other WL_SOCKET_* events
     895                 :  * - WL_SOCKET_WRITEABLE: Wait for socket to become writeable,
     896                 :  *   can be combined with other WL_SOCKET_* events
     897                 :  * - WL_SOCKET_CONNECTED: Wait for socket connection to be established,
     898                 :  *   can be combined with other WL_SOCKET_* events (on non-Windows
     899                 :  *   platforms, this is the same as WL_SOCKET_WRITEABLE)
     900                 :  * - WL_SOCKET_ACCEPT: Wait for new connection to a server socket,
     901                 :  *   can be combined with other WL_SOCKET_* events (on non-Windows
     902                 :  *   platforms, this is the same as WL_SOCKET_READABLE)
     903                 :  * - WL_SOCKET_CLOSED: Wait for socket to be closed by remote peer.
     904                 :  * - WL_EXIT_ON_PM_DEATH: Exit immediately if the postmaster dies
     905 ECB             :  *
     906                 :  * Returns the offset in WaitEventSet->events (starting from 0), which can be
     907                 :  * used to modify previously added wait events using ModifyWaitEvent().
     908                 :  *
     909                 :  * In the WL_LATCH_SET case the latch must be owned by the current process,
     910                 :  * i.e. it must be a process-local latch initialized with InitLatch, or a
     911                 :  * shared latch associated with the current process by calling OwnLatch.
     912                 :  *
     913                 :  * In the WL_SOCKET_READABLE/WRITEABLE/CONNECTED/ACCEPT cases, EOF and error
     914                 :  * conditions cause the socket to be reported as readable/writable/connected,
     915                 :  * so that the caller can deal with the condition.
     916                 :  *
     917                 :  * The user_data pointer specified here will be set for the events returned
     918                 :  * by WaitEventSetWait(), allowing to easily associate additional data with
     919                 :  * events.
     920                 :  */
     921                 : int
     922 CBC      359466 : AddWaitEventToSet(WaitEventSet *set, uint32 events, pgsocket fd, Latch *latch,
     923 ECB             :                   void *user_data)
     924                 : {
     925                 :     WaitEvent  *event;
     926                 : 
     927                 :     /* not enough space */
     928 GIC      359466 :     Assert(set->nevents < set->nevents_space);
     929                 : 
     930          359466 :     if (events == WL_EXIT_ON_PM_DEATH)
     931                 :     {
     932          114438 :         events = WL_POSTMASTER_DEATH;
     933          114438 :         set->exit_on_postmaster_death = true;
     934                 :     }
     935                 : 
     936          359466 :     if (latch)
     937                 :     {
     938          125276 :         if (latch->owner_pid != MyProcPid)
     939 UIC           0 :             elog(ERROR, "cannot wait on a latch owned by another process");
     940 GIC      125276 :         if (set->latch)
     941 UIC           0 :             elog(ERROR, "cannot wait on more than one latch");
     942 GIC      125276 :         if ((events & WL_LATCH_SET) != WL_LATCH_SET)
     943 UIC           0 :             elog(ERROR, "latch events only support being set");
     944                 :     }
     945                 :     else
     946                 :     {
     947 GIC      234190 :         if (events & WL_LATCH_SET)
     948 UIC           0 :             elog(ERROR, "cannot wait on latch without a specified latch");
     949                 :     }
     950                 : 
     951                 :     /* waiting for socket readiness without a socket indicates a bug */
     952 GIC      359466 :     if (fd == PGINVALID_SOCKET && (events & WL_SOCKET_MASK))
     953 UIC           0 :         elog(ERROR, "cannot wait on socket event without a socket");
     954                 : 
     955 GIC      359466 :     event = &set->events[set->nevents];
     956          359466 :     event->pos = set->nevents++;
     957          359466 :     event->fd = fd;
     958 CBC      359466 :     event->events = events;
     959 GIC      359466 :     event->user_data = user_data;
     960                 : #ifdef WIN32
     961                 :     event->reset = false;
     962                 : #endif
     963                 : 
     964 CBC      359466 :     if (events == WL_LATCH_SET)
     965                 :     {
     966          125276 :         set->latch = latch;
     967 GIC      125276 :         set->latch_pos = event->pos;
     968 ECB             : #if defined(WAIT_USE_SELF_PIPE)
     969                 :         event->fd = selfpipe_readfd;
     970                 : #elif defined(WAIT_USE_SIGNALFD)
     971 GIC      125276 :         event->fd = signal_fd;
     972 ECB             : #else
     973                 :         event->fd = PGINVALID_SOCKET;
     974                 : #ifdef WAIT_USE_EPOLL
     975 EUB             :         return event->pos;
     976 ECB             : #endif
     977 EUB             : #endif
     978 ECB             :     }
     979 GBC      234190 :     else if (events == WL_POSTMASTER_DEATH)
     980                 :     {
     981                 : #ifndef WIN32
     982 GIC      123116 :         event->fd = postmaster_alive_fds[POSTMASTER_FD_WATCH];
     983 ECB             : #endif
     984 EUB             :     }
     985                 : 
     986                 :     /* perform wait primitive specific initialization, if needed */
     987                 : #if defined(WAIT_USE_EPOLL)
     988 CBC      359466 :     WaitEventAdjustEpoll(set, event, EPOLL_CTL_ADD);
     989 EUB             : #elif defined(WAIT_USE_KQUEUE)
     990                 :     WaitEventAdjustKqueue(set, event, 0);
     991 ECB             : #elif defined(WAIT_USE_POLL)
     992                 :     WaitEventAdjustPoll(set, event);
     993                 : #elif defined(WAIT_USE_WIN32)
     994                 :     WaitEventAdjustWin32(set, event);
     995                 : #endif
     996                 : 
     997 GIC      359466 :     return event->pos;
     998                 : }
     999                 : 
    1000 ECB             : /*
    1001                 :  * Change the event mask and, in the WL_LATCH_SET case, the latch associated
    1002                 :  * with the WaitEvent.  The latch may be changed to NULL to disable the latch
    1003                 :  * temporarily, and then set back to a latch later.
    1004                 :  *
    1005                 :  * 'pos' is the id returned by AddWaitEventToSet.
    1006                 :  */
    1007                 : void
    1008 GIC      506989 : ModifyWaitEvent(WaitEventSet *set, int pos, uint32 events, Latch *latch)
    1009                 : {
    1010                 :     WaitEvent  *event;
    1011                 : #if defined(WAIT_USE_KQUEUE)
    1012                 :     int         old_events;
    1013                 : #endif
    1014                 : 
    1015 CBC      506989 :     Assert(pos < set->nevents);
    1016                 : 
    1017 GIC      506989 :     event = &set->events[pos];
    1018 ECB             : #if defined(WAIT_USE_KQUEUE)
    1019                 :     old_events = event->events;
    1020                 : #endif
    1021                 : 
    1022                 :     /*
    1023                 :      * If neither the event mask nor the associated latch changes, return
    1024                 :      * early. That's an important optimization for some sockets, where
    1025                 :      * ModifyWaitEvent is frequently used to switch from waiting for reads to
    1026                 :      * waiting on writes.
    1027                 :      */
    1028 GIC      506989 :     if (events == event->events &&
    1029          500168 :         (!(event->events & WL_LATCH_SET) || set->latch == latch))
    1030          479981 :         return;
    1031                 : 
    1032           27008 :     if (event->events & WL_LATCH_SET &&
    1033 CBC       20187 :         events != event->events)
    1034                 :     {
    1035 UIC           0 :         elog(ERROR, "cannot modify latch event");
    1036                 :     }
    1037                 : 
    1038 GIC       27008 :     if (event->events & WL_POSTMASTER_DEATH)
    1039                 :     {
    1040 UIC           0 :         elog(ERROR, "cannot modify postmaster death event");
    1041                 :     }
    1042                 : 
    1043                 :     /* FIXME: validate event mask */
    1044 CBC       27008 :     event->events = events;
    1045                 : 
    1046 GIC       27008 :     if (events == WL_LATCH_SET)
    1047                 :     {
    1048           20187 :         if (latch && latch->owner_pid != MyProcPid)
    1049 UIC           0 :             elog(ERROR, "cannot wait on a latch owned by another process");
    1050 GIC       20187 :         set->latch = latch;
    1051 ECB             : 
    1052                 :         /*
    1053                 :          * On Unix, we don't need to modify the kernel object because the
    1054                 :          * underlying pipe (if there is one) is the same for all latches so we
    1055                 :          * can return immediately.  On Windows, we need to update our array of
    1056                 :          * handles, but we leave the old one in place and tolerate spurious
    1057                 :          * wakeups if the latch is disabled.
    1058                 :          */
    1059                 : #if defined(WAIT_USE_WIN32)
    1060                 :         if (!latch)
    1061                 :             return;
    1062                 : #else
    1063 GIC       20187 :         return;
    1064 ECB             : #endif
    1065                 :     }
    1066                 : 
    1067                 : #if defined(WAIT_USE_EPOLL)
    1068 CBC        6821 :     WaitEventAdjustEpoll(set, event, EPOLL_CTL_MOD);
    1069 ECB             : #elif defined(WAIT_USE_KQUEUE)
    1070                 :     WaitEventAdjustKqueue(set, event, old_events);
    1071 EUB             : #elif defined(WAIT_USE_POLL)
    1072                 :     WaitEventAdjustPoll(set, event);
    1073                 : #elif defined(WAIT_USE_WIN32)
    1074 ECB             :     WaitEventAdjustWin32(set, event);
    1075                 : #endif
    1076 EUB             : }
    1077                 : 
    1078                 : #if defined(WAIT_USE_EPOLL)
    1079                 : /*
    1080 ECB             :  * action can be one of EPOLL_CTL_ADD | EPOLL_CTL_MOD | EPOLL_CTL_DEL
    1081                 :  */
    1082                 : static void
    1083 GIC      366287 : WaitEventAdjustEpoll(WaitEventSet *set, WaitEvent *event, int action)
    1084 ECB             : {
    1085 EUB             :     struct epoll_event epoll_ev;
    1086 ECB             :     int         rc;
    1087                 : 
    1088                 :     /* pointer to our event, returned by epoll_wait */
    1089 GIC      366287 :     epoll_ev.data.ptr = event;
    1090                 :     /* always wait for errors */
    1091          366287 :     epoll_ev.events = EPOLLERR | EPOLLHUP;
    1092                 : 
    1093                 :     /* prepare pollfd entry once */
    1094          366287 :     if (event->events == WL_LATCH_SET)
    1095                 :     {
    1096          125276 :         Assert(set->latch != NULL);
    1097          125276 :         epoll_ev.events |= EPOLLIN;
    1098                 :     }
    1099 CBC      241011 :     else if (event->events == WL_POSTMASTER_DEATH)
    1100                 :     {
    1101 GIC      123116 :         epoll_ev.events |= EPOLLIN;
    1102                 :     }
    1103                 :     else
    1104 ECB             :     {
    1105 GIC      117895 :         Assert(event->fd != PGINVALID_SOCKET);
    1106          117895 :         Assert(event->events & (WL_SOCKET_READABLE |
    1107                 :                                 WL_SOCKET_WRITEABLE |
    1108                 :                                 WL_SOCKET_CLOSED));
    1109                 : 
    1110          117895 :         if (event->events & WL_SOCKET_READABLE)
    1111          108048 :             epoll_ev.events |= EPOLLIN;
    1112          117895 :         if (event->events & WL_SOCKET_WRITEABLE)
    1113           10126 :             epoll_ev.events |= EPOLLOUT;
    1114          117895 :         if (event->events & WL_SOCKET_CLOSED)
    1115 UIC           0 :             epoll_ev.events |= EPOLLRDHUP;
    1116                 :     }
    1117                 : 
    1118                 :     /*
    1119 ECB             :      * Even though unused, we also pass epoll_ev as the data argument if
    1120                 :      * EPOLL_CTL_DEL is passed as action.  There used to be an epoll bug
    1121                 :      * requiring that, and actually it makes the code simpler...
    1122                 :      */
    1123 GIC      366287 :     rc = epoll_ctl(set->epoll_fd, action, event->fd, &epoll_ev);
    1124                 : 
    1125 CBC      366287 :     if (rc < 0)
    1126 UIC           0 :         ereport(ERROR,
    1127 ECB             :                 (errcode_for_socket_access(),
    1128                 :                  errmsg("%s() failed: %m",
    1129                 :                         "epoll_ctl")));
    1130 CBC      366287 : }
    1131                 : #endif
    1132 ECB             : 
    1133                 : #if defined(WAIT_USE_POLL)
    1134                 : static void
    1135                 : WaitEventAdjustPoll(WaitEventSet *set, WaitEvent *event)
    1136                 : {
    1137                 :     struct pollfd *pollfd = &set->pollfds[event->pos];
    1138                 : 
    1139                 :     pollfd->revents = 0;
    1140                 :     pollfd->fd = event->fd;
    1141                 : 
    1142                 :     /* prepare pollfd entry once */
    1143                 :     if (event->events == WL_LATCH_SET)
    1144                 :     {
    1145                 :         Assert(set->latch != NULL);
    1146                 :         pollfd->events = POLLIN;
    1147                 :     }
    1148                 :     else if (event->events == WL_POSTMASTER_DEATH)
    1149                 :     {
    1150                 :         pollfd->events = POLLIN;
    1151 EUB             :     }
    1152                 :     else
    1153                 :     {
    1154                 :         Assert(event->events & (WL_SOCKET_READABLE |
    1155                 :                                 WL_SOCKET_WRITEABLE |
    1156                 :                                 WL_SOCKET_CLOSED));
    1157                 :         pollfd->events = 0;
    1158                 :         if (event->events & WL_SOCKET_READABLE)
    1159 ECB             :             pollfd->events |= POLLIN;
    1160                 :         if (event->events & WL_SOCKET_WRITEABLE)
    1161                 :             pollfd->events |= POLLOUT;
    1162 EUB             : #ifdef POLLRDHUP
    1163                 :         if (event->events & WL_SOCKET_CLOSED)
    1164                 :             pollfd->events |= POLLRDHUP;
    1165                 : #endif
    1166 ECB             :     }
    1167                 : 
    1168                 :     Assert(event->fd != PGINVALID_SOCKET);
    1169                 : }
    1170                 : #endif
    1171                 : 
    1172                 : #if defined(WAIT_USE_KQUEUE)
    1173                 : 
    1174                 : /*
    1175                 :  * On most BSD family systems, the udata member of struct kevent is of type
    1176                 :  * void *, so we could directly convert to/from WaitEvent *.  Unfortunately,
    1177                 :  * NetBSD has it as intptr_t, so here we wallpaper over that difference with
    1178                 :  * an lvalue cast.
    1179                 :  */
    1180                 : #define AccessWaitEvent(k_ev) (*((WaitEvent **)(&(k_ev)->udata)))
    1181                 : 
    1182                 : static inline void
    1183                 : WaitEventAdjustKqueueAdd(struct kevent *k_ev, int filter, int action,
    1184                 :                          WaitEvent *event)
    1185                 : {
    1186                 :     k_ev->ident = event->fd;
    1187                 :     k_ev->filter = filter;
    1188                 :     k_ev->flags = action;
    1189                 :     k_ev->fflags = 0;
    1190                 :     k_ev->data = 0;
    1191                 :     AccessWaitEvent(k_ev) = event;
    1192                 : }
    1193                 : 
    1194                 : static inline void
    1195                 : WaitEventAdjustKqueueAddPostmaster(struct kevent *k_ev, WaitEvent *event)
    1196                 : {
    1197                 :     /* For now postmaster death can only be added, not removed. */
    1198                 :     k_ev->ident = PostmasterPid;
    1199                 :     k_ev->filter = EVFILT_PROC;
    1200                 :     k_ev->flags = EV_ADD;
    1201                 :     k_ev->fflags = NOTE_EXIT;
    1202                 :     k_ev->data = 0;
    1203                 :     AccessWaitEvent(k_ev) = event;
    1204                 : }
    1205                 : 
    1206                 : static inline void
    1207                 : WaitEventAdjustKqueueAddLatch(struct kevent *k_ev, WaitEvent *event)
    1208                 : {
    1209                 :     /* For now latch can only be added, not removed. */
    1210                 :     k_ev->ident = SIGURG;
    1211                 :     k_ev->filter = EVFILT_SIGNAL;
    1212                 :     k_ev->flags = EV_ADD;
    1213                 :     k_ev->fflags = 0;
    1214                 :     k_ev->data = 0;
    1215                 :     AccessWaitEvent(k_ev) = event;
    1216                 : }
    1217                 : 
    1218                 : /*
    1219                 :  * old_events is the previous event mask, used to compute what has changed.
    1220                 :  */
    1221                 : static void
    1222                 : WaitEventAdjustKqueue(WaitEventSet *set, WaitEvent *event, int old_events)
    1223                 : {
    1224                 :     int         rc;
    1225                 :     struct kevent k_ev[2];
    1226                 :     int         count = 0;
    1227                 :     bool        new_filt_read = false;
    1228                 :     bool        old_filt_read = false;
    1229                 :     bool        new_filt_write = false;
    1230                 :     bool        old_filt_write = false;
    1231                 : 
    1232                 :     if (old_events == event->events)
    1233                 :         return;
    1234                 : 
    1235                 :     Assert(event->events != WL_LATCH_SET || set->latch != NULL);
    1236                 :     Assert(event->events == WL_LATCH_SET ||
    1237                 :            event->events == WL_POSTMASTER_DEATH ||
    1238                 :            (event->events & (WL_SOCKET_READABLE |
    1239                 :                              WL_SOCKET_WRITEABLE |
    1240                 :                              WL_SOCKET_CLOSED)));
    1241                 : 
    1242                 :     if (event->events == WL_POSTMASTER_DEATH)
    1243                 :     {
    1244                 :         /*
    1245                 :          * Unlike all the other implementations, we detect postmaster death
    1246                 :          * using process notification instead of waiting on the postmaster
    1247                 :          * alive pipe.
    1248                 :          */
    1249                 :         WaitEventAdjustKqueueAddPostmaster(&k_ev[count++], event);
    1250                 :     }
    1251                 :     else if (event->events == WL_LATCH_SET)
    1252                 :     {
    1253                 :         /* We detect latch wakeup using a signal event. */
    1254                 :         WaitEventAdjustKqueueAddLatch(&k_ev[count++], event);
    1255                 :     }
    1256                 :     else
    1257                 :     {
    1258                 :         /*
    1259                 :          * We need to compute the adds and deletes required to get from the
    1260                 :          * old event mask to the new event mask, since kevent treats readable
    1261                 :          * and writable as separate events.
    1262                 :          */
    1263                 :         if (old_events & (WL_SOCKET_READABLE | WL_SOCKET_CLOSED))
    1264                 :             old_filt_read = true;
    1265                 :         if (event->events & (WL_SOCKET_READABLE | WL_SOCKET_CLOSED))
    1266                 :             new_filt_read = true;
    1267                 :         if (old_events & WL_SOCKET_WRITEABLE)
    1268                 :             old_filt_write = true;
    1269                 :         if (event->events & WL_SOCKET_WRITEABLE)
    1270                 :             new_filt_write = true;
    1271                 :         if (old_filt_read && !new_filt_read)
    1272                 :             WaitEventAdjustKqueueAdd(&k_ev[count++], EVFILT_READ, EV_DELETE,
    1273                 :                                      event);
    1274                 :         else if (!old_filt_read && new_filt_read)
    1275                 :             WaitEventAdjustKqueueAdd(&k_ev[count++], EVFILT_READ, EV_ADD,
    1276                 :                                      event);
    1277                 :         if (old_filt_write && !new_filt_write)
    1278                 :             WaitEventAdjustKqueueAdd(&k_ev[count++], EVFILT_WRITE, EV_DELETE,
    1279                 :                                      event);
    1280                 :         else if (!old_filt_write && new_filt_write)
    1281                 :             WaitEventAdjustKqueueAdd(&k_ev[count++], EVFILT_WRITE, EV_ADD,
    1282                 :                                      event);
    1283                 :     }
    1284                 : 
    1285                 :     /* For WL_SOCKET_READ -> WL_SOCKET_CLOSED, no change needed. */
    1286                 :     if (count == 0)
    1287                 :         return;
    1288                 : 
    1289                 :     Assert(count <= 2);
    1290                 : 
    1291                 :     rc = kevent(set->kqueue_fd, &k_ev[0], count, NULL, 0, NULL);
    1292                 : 
    1293                 :     /*
    1294                 :      * When adding the postmaster's pid, we have to consider that it might
    1295                 :      * already have exited and perhaps even been replaced by another process
    1296                 :      * with the same pid.  If so, we have to defer reporting this as an event
    1297                 :      * until the next call to WaitEventSetWaitBlock().
    1298                 :      */
    1299                 : 
    1300                 :     if (rc < 0)
    1301                 :     {
    1302                 :         if (event->events == WL_POSTMASTER_DEATH &&
    1303                 :             (errno == ESRCH || errno == EACCES))
    1304                 :             set->report_postmaster_not_running = true;
    1305                 :         else
    1306                 :             ereport(ERROR,
    1307                 :                     (errcode_for_socket_access(),
    1308                 :                      errmsg("%s() failed: %m",
    1309                 :                             "kevent")));
    1310                 :     }
    1311                 :     else if (event->events == WL_POSTMASTER_DEATH &&
    1312                 :              PostmasterPid != getppid() &&
    1313                 :              !PostmasterIsAlive())
    1314                 :     {
    1315                 :         /*
    1316                 :          * The extra PostmasterIsAliveInternal() check prevents false alarms
    1317                 :          * on systems that give a different value for getppid() while being
    1318                 :          * traced by a debugger.
    1319                 :          */
    1320                 :         set->report_postmaster_not_running = true;
    1321                 :     }
    1322                 : }
    1323                 : 
    1324                 : #endif
    1325                 : 
    1326                 : #if defined(WAIT_USE_WIN32)
    1327                 : static void
    1328                 : WaitEventAdjustWin32(WaitEventSet *set, WaitEvent *event)
    1329                 : {
    1330                 :     HANDLE     *handle = &set->handles[event->pos + 1];
    1331                 : 
    1332                 :     if (event->events == WL_LATCH_SET)
    1333                 :     {
    1334                 :         Assert(set->latch != NULL);
    1335                 :         *handle = set->latch->event;
    1336                 :     }
    1337                 :     else if (event->events == WL_POSTMASTER_DEATH)
    1338                 :     {
    1339                 :         *handle = PostmasterHandle;
    1340                 :     }
    1341                 :     else
    1342                 :     {
    1343                 :         int         flags = FD_CLOSE;   /* always check for errors/EOF */
    1344                 : 
    1345                 :         if (event->events & WL_SOCKET_READABLE)
    1346                 :             flags |= FD_READ;
    1347                 :         if (event->events & WL_SOCKET_WRITEABLE)
    1348                 :             flags |= FD_WRITE;
    1349                 :         if (event->events & WL_SOCKET_CONNECTED)
    1350                 :             flags |= FD_CONNECT;
    1351                 :         if (event->events & WL_SOCKET_ACCEPT)
    1352                 :             flags |= FD_ACCEPT;
    1353                 : 
    1354                 :         if (*handle == WSA_INVALID_EVENT)
    1355                 :         {
    1356                 :             *handle = WSACreateEvent();
    1357                 :             if (*handle == WSA_INVALID_EVENT)
    1358                 :                 elog(ERROR, "failed to create event for socket: error code %d",
    1359                 :                      WSAGetLastError());
    1360                 :         }
    1361                 :         if (WSAEventSelect(event->fd, *handle, flags) != 0)
    1362                 :             elog(ERROR, "failed to set up event for socket: error code %d",
    1363                 :                  WSAGetLastError());
    1364                 : 
    1365                 :         Assert(event->fd != PGINVALID_SOCKET);
    1366                 :     }
    1367                 : }
    1368                 : #endif
    1369                 : 
    1370                 : /*
    1371                 :  * Wait for events added to the set to happen, or until the timeout is
    1372                 :  * reached.  At most nevents occurred events are returned.
    1373                 :  *
    1374                 :  * If timeout = -1, block until an event occurs; if 0, check sockets for
    1375                 :  * readiness, but don't block; if > 0, block for at most timeout milliseconds.
    1376                 :  *
    1377                 :  * Returns the number of events occurred, or 0 if the timeout was reached.
    1378                 :  *
    1379                 :  * Returned events will have the fd, pos, user_data fields set to the
    1380                 :  * values associated with the registered event.
    1381                 :  */
    1382                 : int
    1383 GIC      616882 : WaitEventSetWait(WaitEventSet *set, long timeout,
    1384                 :                  WaitEvent *occurred_events, int nevents,
    1385                 :                  uint32 wait_event_info)
    1386                 : {
    1387          616882 :     int         returned_events = 0;
    1388                 :     instr_time  start_time;
    1389                 :     instr_time  cur_time;
    1390          616882 :     long        cur_timeout = -1;
    1391                 : 
    1392          616882 :     Assert(nevents > 0);
    1393                 : 
    1394                 :     /*
    1395                 :      * Initialize timeout if requested.  We must record the current time so
    1396                 :      * that we can determine the remaining timeout if interrupted.
    1397                 :      */
    1398          616882 :     if (timeout >= 0)
    1399                 :     {
    1400          208710 :         INSTR_TIME_SET_CURRENT(start_time);
    1401          208710 :         Assert(timeout >= 0 && timeout <= INT_MAX);
    1402          208710 :         cur_timeout = timeout;
    1403                 :     }
    1404                 :     else
    1405 GNC      408172 :         INSTR_TIME_SET_ZERO(start_time);
    1406                 : 
    1407 GIC      616882 :     pgstat_report_wait_start(wait_event_info);
    1408                 : 
    1409                 : #ifndef WIN32
    1410          616882 :     waiting = true;
    1411                 : #else
    1412                 :     /* Ensure that signals are serviced even if latch is already set */
    1413                 :     pgwin32_dispatch_queued_signals();
    1414                 : #endif
    1415         1194546 :     while (returned_events == 0)
    1416                 :     {
    1417                 :         int         rc;
    1418                 : 
    1419                 :         /*
    1420                 :          * Check if the latch is set already. If so, leave the loop
    1421                 :          * immediately, avoid blocking again. We don't attempt to report any
    1422                 :          * other events that might also be satisfied.
    1423 ECB             :          *
    1424                 :          * If someone sets the latch between this and the
    1425                 :          * WaitEventSetWaitBlock() below, the setter will write a byte to the
    1426                 :          * pipe (or signal us and the signal handler will do that), and the
    1427                 :          * readiness routine will return immediately.
    1428                 :          *
    1429                 :          * On unix, If there's a pending byte in the self pipe, we'll notice
    1430                 :          * whenever blocking. Only clearing the pipe in that case avoids
    1431                 :          * having to drain it every time WaitLatchOrSocket() is used. Should
    1432                 :          * the pipe-buffer fill up we're still ok, because the pipe is in
    1433                 :          * nonblocking mode. It's unlikely for that to happen, because the
    1434                 :          * self pipe isn't filled unless we're blocking (waiting = true), or
    1435                 :          * from inside a signal handler in latch_sigurg_handler().
    1436                 :          *
    1437                 :          * On windows, we'll also notice if there's a pending event for the
    1438                 :          * latch when blocking, but there's no danger of anything filling up,
    1439                 :          * as "Setting an event that is already set has no effect.".
    1440                 :          *
    1441                 :          * Note: we assume that the kernel calls involved in latch management
    1442                 :          * will provide adequate synchronization on machines with weak memory
    1443                 :          * ordering, so that we cannot miss seeing is_set if a notification
    1444                 :          * has already been queued.
    1445                 :          */
    1446 GIC      663329 :         if (set->latch && !set->latch->is_set)
    1447 ECB             :         {
    1448                 :             /* about to sleep on a latch */
    1449 GIC      598578 :             set->latch->maybe_sleeping = true;
    1450 CBC      598578 :             pg_memory_barrier();
    1451                 :             /* and recheck */
    1452                 :         }
    1453                 : 
    1454 GIC      663329 :         if (set->latch && set->latch->is_set)
    1455 ECB             :         {
    1456 GIC       64461 :             occurred_events->fd = PGINVALID_SOCKET;
    1457           64461 :             occurred_events->pos = set->latch_pos;
    1458           64461 :             occurred_events->user_data =
    1459           64461 :                 set->events[set->latch_pos].user_data;
    1460           64461 :             occurred_events->events = WL_LATCH_SET;
    1461           64461 :             occurred_events++;
    1462           64461 :             returned_events++;
    1463                 : 
    1464                 :             /* could have been set above */
    1465           64461 :             set->latch->maybe_sleeping = false;
    1466                 : 
    1467           64461 :             break;
    1468                 :         }
    1469                 : 
    1470                 :         /*
    1471                 :          * Wait for events using the readiness primitive chosen at the top of
    1472                 :          * this file. If -1 is returned, a timeout has occurred, if 0 we have
    1473                 :          * to retry, everything >= 1 is the number of returned events.
    1474                 :          */
    1475          598868 :         rc = WaitEventSetWaitBlock(set, cur_timeout,
    1476                 :                                    occurred_events, nevents);
    1477                 : 
    1478          598853 :         if (set->latch)
    1479                 :         {
    1480          598546 :             Assert(set->latch->maybe_sleeping);
    1481          598546 :             set->latch->maybe_sleeping = false;
    1482                 :         }
    1483                 : 
    1484          598853 :         if (rc == -1)
    1485           21189 :             break;              /* timeout occurred */
    1486 ECB             :         else
    1487 GIC      577664 :             returned_events = rc;
    1488                 : 
    1489 ECB             :         /* If we're not done, update cur_timeout for next iteration */
    1490 CBC      577664 :         if (returned_events == 0 && timeout >= 0)
    1491                 :         {
    1492 GIC       41122 :             INSTR_TIME_SET_CURRENT(cur_time);
    1493           41122 :             INSTR_TIME_SUBTRACT(cur_time, start_time);
    1494 CBC       41122 :             cur_timeout = timeout - (long) INSTR_TIME_GET_MILLISEC(cur_time);
    1495 GIC       41122 :             if (cur_timeout <= 0)
    1496 LBC           0 :                 break;
    1497 ECB             :         }
    1498                 :     }
    1499                 : #ifndef WIN32
    1500 CBC      616867 :     waiting = false;
    1501 ECB             : #endif
    1502                 : 
    1503 GIC      616867 :     pgstat_report_wait_end();
    1504                 : 
    1505 CBC      616867 :     return returned_events;
    1506                 : }
    1507 ECB             : 
    1508                 : 
    1509                 : #if defined(WAIT_USE_EPOLL)
    1510                 : 
    1511                 : /*
    1512                 :  * Wait using linux's epoll_wait(2).
    1513                 :  *
    1514                 :  * This is the preferable wait method, as several readiness notifications are
    1515                 :  * delivered, without having to iterate through all of set->events. The return
    1516                 :  * epoll_event struct contain a pointer to our events, making association
    1517                 :  * easy.
    1518                 :  */
    1519                 : static inline int
    1520 CBC      598868 : WaitEventSetWaitBlock(WaitEventSet *set, int cur_timeout,
    1521 ECB             :                       WaitEvent *occurred_events, int nevents)
    1522                 : {
    1523 GIC      598868 :     int         returned_events = 0;
    1524 ECB             :     int         rc;
    1525                 :     WaitEvent  *cur_event;
    1526                 :     struct epoll_event *cur_epoll_event;
    1527                 : 
    1528                 :     /* Sleep */
    1529 GIC      598868 :     rc = epoll_wait(set->epoll_fd, set->epoll_ret_events,
    1530 CBC      598868 :                     Min(nevents, set->nevents_space), cur_timeout);
    1531                 : 
    1532 ECB             :     /* Check return code */
    1533 CBC      598868 :     if (rc < 0)
    1534 ECB             :     {
    1535                 :         /* EINTR is okay, otherwise complain */
    1536 GBC       24189 :         if (errno != EINTR)
    1537                 :         {
    1538 UIC           0 :             waiting = false;
    1539               0 :             ereport(ERROR,
    1540 ECB             :                     (errcode_for_socket_access(),
    1541                 :                      errmsg("%s() failed: %m",
    1542                 :                             "epoll_wait")));
    1543                 :         }
    1544 GIC       24189 :         return 0;
    1545 ECB             :     }
    1546 GIC      574679 :     else if (rc == 0)
    1547                 :     {
    1548                 :         /* timeout exceeded */
    1549           21189 :         return -1;
    1550                 :     }
    1551                 : 
    1552                 :     /*
    1553                 :      * At least one event occurred, iterate over the returned epoll events
    1554                 :      * until they're either all processed, or we've returned all the events
    1555                 :      * the caller desired.
    1556                 :      */
    1557          553490 :     for (cur_epoll_event = set->epoll_ret_events;
    1558         1107028 :          cur_epoll_event < (set->epoll_ret_events + rc) &&
    1559                 :          returned_events < nevents;
    1560 CBC      553538 :          cur_epoll_event++)
    1561                 :     {
    1562                 :         /* epoll's data pointer is set to the associated WaitEvent */
    1563          553553 :         cur_event = (WaitEvent *) cur_epoll_event->data.ptr;
    1564                 : 
    1565 GIC      553553 :         occurred_events->pos = cur_event->pos;
    1566          553553 :         occurred_events->user_data = cur_event->user_data;
    1567          553553 :         occurred_events->events = 0;
    1568                 : 
    1569 CBC      553553 :         if (cur_event->events == WL_LATCH_SET &&
    1570          319069 :             cur_epoll_event->events & (EPOLLIN | EPOLLERR | EPOLLHUP))
    1571                 :         {
    1572                 :             /* Drain the signalfd. */
    1573          319069 :             drain();
    1574                 : 
    1575 GIC      319069 :             if (set->latch && set->latch->is_set)
    1576 ECB             :             {
    1577 GIC      296805 :                 occurred_events->fd = PGINVALID_SOCKET;
    1578 GBC      296805 :                 occurred_events->events = WL_LATCH_SET;
    1579          296805 :                 occurred_events++;
    1580 GIC      296805 :                 returned_events++;
    1581                 :             }
    1582                 :         }
    1583          234484 :         else if (cur_event->events == WL_POSTMASTER_DEATH &&
    1584 CBC          15 :                  cur_epoll_event->events & (EPOLLIN | EPOLLERR | EPOLLHUP))
    1585                 :         {
    1586 ECB             :             /*
    1587                 :              * We expect an EPOLLHUP when the remote end is closed, but
    1588                 :              * because we don't expect the pipe to become readable or to have
    1589                 :              * any errors either, treat those cases as postmaster death, too.
    1590                 :              *
    1591                 :              * Be paranoid about a spurious event signaling the postmaster as
    1592                 :              * being dead.  There have been reports about that happening with
    1593                 :              * older primitives (select(2) to be specific), and a spurious
    1594                 :              * WL_POSTMASTER_DEATH event would be painful. Re-checking doesn't
    1595                 :              * cost much.
    1596                 :              */
    1597 CBC          15 :             if (!PostmasterIsAliveInternal())
    1598 ECB             :             {
    1599 GIC          15 :                 if (set->exit_on_postmaster_death)
    1600 CBC          15 :                     proc_exit(1);
    1601 UIC           0 :                 occurred_events->fd = PGINVALID_SOCKET;
    1602               0 :                 occurred_events->events = WL_POSTMASTER_DEATH;
    1603 LBC           0 :                 occurred_events++;
    1604 UIC           0 :                 returned_events++;
    1605 ECB             :             }
    1606                 :         }
    1607 CBC      234469 :         else if (cur_event->events & (WL_SOCKET_READABLE |
    1608                 :                                       WL_SOCKET_WRITEABLE |
    1609 ECB             :                                       WL_SOCKET_CLOSED))
    1610                 :         {
    1611 GIC      234469 :             Assert(cur_event->fd != PGINVALID_SOCKET);
    1612                 : 
    1613 CBC      234469 :             if ((cur_event->events & WL_SOCKET_READABLE) &&
    1614 GIC      221570 :                 (cur_epoll_event->events & (EPOLLIN | EPOLLERR | EPOLLHUP)))
    1615 ECB             :             {
    1616                 :                 /* data available in socket, or EOF */
    1617 CBC      217770 :                 occurred_events->events |= WL_SOCKET_READABLE;
    1618 ECB             :             }
    1619                 : 
    1620 CBC      234469 :             if ((cur_event->events & WL_SOCKET_WRITEABLE) &&
    1621 GIC       17015 :                 (cur_epoll_event->events & (EPOLLOUT | EPOLLERR | EPOLLHUP)))
    1622                 :             {
    1623 ECB             :                 /* writable, or EOF */
    1624 CBC       16980 :                 occurred_events->events |= WL_SOCKET_WRITEABLE;
    1625                 :             }
    1626                 : 
    1627 GIC      234469 :             if ((cur_event->events & WL_SOCKET_CLOSED) &&
    1628 UIC           0 :                 (cur_epoll_event->events & (EPOLLRDHUP | EPOLLERR | EPOLLHUP)))
    1629                 :             {
    1630                 :                 /* remote peer shut down, or error */
    1631               0 :                 occurred_events->events |= WL_SOCKET_CLOSED;
    1632                 :             }
    1633                 : 
    1634 GIC      234469 :             if (occurred_events->events != 0)
    1635                 :             {
    1636          234469 :                 occurred_events->fd = cur_event->fd;
    1637 CBC      234469 :                 occurred_events++;
    1638 GIC      234469 :                 returned_events++;
    1639 ECB             :             }
    1640                 :         }
    1641 EUB             :     }
    1642                 : 
    1643 GBC      553475 :     return returned_events;
    1644 EUB             : }
    1645                 : 
    1646                 : #elif defined(WAIT_USE_KQUEUE)
    1647 ECB             : 
    1648                 : /*
    1649                 :  * Wait using kevent(2) on BSD-family systems and macOS.
    1650                 :  *
    1651                 :  * For now this mirrors the epoll code, but in future it could modify the fd
    1652                 :  * set in the same call to kevent as it uses for waiting instead of doing that
    1653                 :  * with separate system calls.
    1654                 :  */
    1655                 : static int
    1656                 : WaitEventSetWaitBlock(WaitEventSet *set, int cur_timeout,
    1657                 :                       WaitEvent *occurred_events, int nevents)
    1658                 : {
    1659                 :     int         returned_events = 0;
    1660                 :     int         rc;
    1661                 :     WaitEvent  *cur_event;
    1662                 :     struct kevent *cur_kqueue_event;
    1663                 :     struct timespec timeout;
    1664                 :     struct timespec *timeout_p;
    1665                 : 
    1666                 :     if (cur_timeout < 0)
    1667                 :         timeout_p = NULL;
    1668 EUB             :     else
    1669                 :     {
    1670                 :         timeout.tv_sec = cur_timeout / 1000;
    1671                 :         timeout.tv_nsec = (cur_timeout % 1000) * 1000000;
    1672                 :         timeout_p = &timeout;
    1673                 :     }
    1674 ECB             : 
    1675                 :     /*
    1676                 :      * Report postmaster events discovered by WaitEventAdjustKqueue() or an
    1677                 :      * earlier call to WaitEventSetWait().
    1678                 :      */
    1679                 :     if (unlikely(set->report_postmaster_not_running))
    1680                 :     {
    1681                 :         if (set->exit_on_postmaster_death)
    1682                 :             proc_exit(1);
    1683                 :         occurred_events->fd = PGINVALID_SOCKET;
    1684                 :         occurred_events->events = WL_POSTMASTER_DEATH;
    1685                 :         return 1;
    1686                 :     }
    1687                 : 
    1688                 :     /* Sleep */
    1689                 :     rc = kevent(set->kqueue_fd, NULL, 0,
    1690                 :                 set->kqueue_ret_events,
    1691                 :                 Min(nevents, set->nevents_space),
    1692                 :                 timeout_p);
    1693                 : 
    1694                 :     /* Check return code */
    1695                 :     if (rc < 0)
    1696                 :     {
    1697                 :         /* EINTR is okay, otherwise complain */
    1698                 :         if (errno != EINTR)
    1699                 :         {
    1700                 :             waiting = false;
    1701                 :             ereport(ERROR,
    1702                 :                     (errcode_for_socket_access(),
    1703                 :                      errmsg("%s() failed: %m",
    1704                 :                             "kevent")));
    1705                 :         }
    1706                 :         return 0;
    1707                 :     }
    1708                 :     else if (rc == 0)
    1709                 :     {
    1710                 :         /* timeout exceeded */
    1711                 :         return -1;
    1712                 :     }
    1713                 : 
    1714                 :     /*
    1715                 :      * At least one event occurred, iterate over the returned kqueue events
    1716                 :      * until they're either all processed, or we've returned all the events
    1717                 :      * the caller desired.
    1718                 :      */
    1719                 :     for (cur_kqueue_event = set->kqueue_ret_events;
    1720                 :          cur_kqueue_event < (set->kqueue_ret_events + rc) &&
    1721                 :          returned_events < nevents;
    1722                 :          cur_kqueue_event++)
    1723                 :     {
    1724                 :         /* kevent's udata points to the associated WaitEvent */
    1725                 :         cur_event = AccessWaitEvent(cur_kqueue_event);
    1726                 : 
    1727                 :         occurred_events->pos = cur_event->pos;
    1728                 :         occurred_events->user_data = cur_event->user_data;
    1729                 :         occurred_events->events = 0;
    1730                 : 
    1731                 :         if (cur_event->events == WL_LATCH_SET &&
    1732                 :             cur_kqueue_event->filter == EVFILT_SIGNAL)
    1733                 :         {
    1734                 :             if (set->latch && set->latch->is_set)
    1735                 :             {
    1736                 :                 occurred_events->fd = PGINVALID_SOCKET;
    1737                 :                 occurred_events->events = WL_LATCH_SET;
    1738                 :                 occurred_events++;
    1739                 :                 returned_events++;
    1740                 :             }
    1741                 :         }
    1742                 :         else if (cur_event->events == WL_POSTMASTER_DEATH &&
    1743                 :                  cur_kqueue_event->filter == EVFILT_PROC &&
    1744                 :                  (cur_kqueue_event->fflags & NOTE_EXIT) != 0)
    1745                 :         {
    1746                 :             /*
    1747                 :              * The kernel will tell this kqueue object only once about the
    1748                 :              * exit of the postmaster, so let's remember that for next time so
    1749                 :              * that we provide level-triggered semantics.
    1750                 :              */
    1751                 :             set->report_postmaster_not_running = true;
    1752                 : 
    1753                 :             if (set->exit_on_postmaster_death)
    1754                 :                 proc_exit(1);
    1755                 :             occurred_events->fd = PGINVALID_SOCKET;
    1756                 :             occurred_events->events = WL_POSTMASTER_DEATH;
    1757                 :             occurred_events++;
    1758                 :             returned_events++;
    1759                 :         }
    1760                 :         else if (cur_event->events & (WL_SOCKET_READABLE |
    1761                 :                                       WL_SOCKET_WRITEABLE |
    1762                 :                                       WL_SOCKET_CLOSED))
    1763                 :         {
    1764                 :             Assert(cur_event->fd >= 0);
    1765                 : 
    1766                 :             if ((cur_event->events & WL_SOCKET_READABLE) &&
    1767                 :                 (cur_kqueue_event->filter == EVFILT_READ))
    1768                 :             {
    1769                 :                 /* readable, or EOF */
    1770                 :                 occurred_events->events |= WL_SOCKET_READABLE;
    1771                 :             }
    1772                 : 
    1773                 :             if ((cur_event->events & WL_SOCKET_CLOSED) &&
    1774                 :                 (cur_kqueue_event->filter == EVFILT_READ) &&
    1775                 :                 (cur_kqueue_event->flags & EV_EOF))
    1776                 :             {
    1777                 :                 /* the remote peer has shut down */
    1778                 :                 occurred_events->events |= WL_SOCKET_CLOSED;
    1779                 :             }
    1780                 : 
    1781                 :             if ((cur_event->events & WL_SOCKET_WRITEABLE) &&
    1782                 :                 (cur_kqueue_event->filter == EVFILT_WRITE))
    1783                 :             {
    1784                 :                 /* writable, or EOF */
    1785                 :                 occurred_events->events |= WL_SOCKET_WRITEABLE;
    1786                 :             }
    1787                 : 
    1788                 :             if (occurred_events->events != 0)
    1789                 :             {
    1790                 :                 occurred_events->fd = cur_event->fd;
    1791                 :                 occurred_events++;
    1792                 :                 returned_events++;
    1793                 :             }
    1794                 :         }
    1795                 :     }
    1796                 : 
    1797                 :     return returned_events;
    1798                 : }
    1799                 : 
    1800                 : #elif defined(WAIT_USE_POLL)
    1801                 : 
    1802                 : /*
    1803                 :  * Wait using poll(2).
    1804                 :  *
    1805                 :  * This allows to receive readiness notifications for several events at once,
    1806                 :  * but requires iterating through all of set->pollfds.
    1807                 :  */
    1808                 : static inline int
    1809                 : WaitEventSetWaitBlock(WaitEventSet *set, int cur_timeout,
    1810                 :                       WaitEvent *occurred_events, int nevents)
    1811                 : {
    1812                 :     int         returned_events = 0;
    1813                 :     int         rc;
    1814                 :     WaitEvent  *cur_event;
    1815                 :     struct pollfd *cur_pollfd;
    1816                 : 
    1817                 :     /* Sleep */
    1818                 :     rc = poll(set->pollfds, set->nevents, (int) cur_timeout);
    1819                 : 
    1820                 :     /* Check return code */
    1821                 :     if (rc < 0)
    1822                 :     {
    1823                 :         /* EINTR is okay, otherwise complain */
    1824                 :         if (errno != EINTR)
    1825                 :         {
    1826                 :             waiting = false;
    1827                 :             ereport(ERROR,
    1828                 :                     (errcode_for_socket_access(),
    1829                 :                      errmsg("%s() failed: %m",
    1830                 :                             "poll")));
    1831                 :         }
    1832                 :         return 0;
    1833                 :     }
    1834                 :     else if (rc == 0)
    1835                 :     {
    1836                 :         /* timeout exceeded */
    1837                 :         return -1;
    1838                 :     }
    1839                 : 
    1840                 :     for (cur_event = set->events, cur_pollfd = set->pollfds;
    1841                 :          cur_event < (set->events + set->nevents) &&
    1842                 :          returned_events < nevents;
    1843                 :          cur_event++, cur_pollfd++)
    1844                 :     {
    1845                 :         /* no activity on this FD, skip */
    1846                 :         if (cur_pollfd->revents == 0)
    1847                 :             continue;
    1848                 : 
    1849                 :         occurred_events->pos = cur_event->pos;
    1850                 :         occurred_events->user_data = cur_event->user_data;
    1851                 :         occurred_events->events = 0;
    1852                 : 
    1853                 :         if (cur_event->events == WL_LATCH_SET &&
    1854                 :             (cur_pollfd->revents & (POLLIN | POLLHUP | POLLERR | POLLNVAL)))
    1855                 :         {
    1856                 :             /* There's data in the self-pipe, clear it. */
    1857                 :             drain();
    1858                 : 
    1859                 :             if (set->latch && set->latch->is_set)
    1860                 :             {
    1861                 :                 occurred_events->fd = PGINVALID_SOCKET;
    1862                 :                 occurred_events->events = WL_LATCH_SET;
    1863                 :                 occurred_events++;
    1864                 :                 returned_events++;
    1865                 :             }
    1866                 :         }
    1867                 :         else if (cur_event->events == WL_POSTMASTER_DEATH &&
    1868                 :                  (cur_pollfd->revents & (POLLIN | POLLHUP | POLLERR | POLLNVAL)))
    1869                 :         {
    1870                 :             /*
    1871                 :              * We expect an POLLHUP when the remote end is closed, but because
    1872                 :              * we don't expect the pipe to become readable or to have any
    1873                 :              * errors either, treat those cases as postmaster death, too.
    1874                 :              *
    1875                 :              * Be paranoid about a spurious event signaling the postmaster as
    1876                 :              * being dead.  There have been reports about that happening with
    1877                 :              * older primitives (select(2) to be specific), and a spurious
    1878                 :              * WL_POSTMASTER_DEATH event would be painful. Re-checking doesn't
    1879                 :              * cost much.
    1880                 :              */
    1881                 :             if (!PostmasterIsAliveInternal())
    1882                 :             {
    1883                 :                 if (set->exit_on_postmaster_death)
    1884                 :                     proc_exit(1);
    1885                 :                 occurred_events->fd = PGINVALID_SOCKET;
    1886                 :                 occurred_events->events = WL_POSTMASTER_DEATH;
    1887                 :                 occurred_events++;
    1888                 :                 returned_events++;
    1889                 :             }
    1890                 :         }
    1891                 :         else if (cur_event->events & (WL_SOCKET_READABLE |
    1892                 :                                       WL_SOCKET_WRITEABLE |
    1893                 :                                       WL_SOCKET_CLOSED))
    1894                 :         {
    1895                 :             int         errflags = POLLHUP | POLLERR | POLLNVAL;
    1896                 : 
    1897                 :             Assert(cur_event->fd >= PGINVALID_SOCKET);
    1898                 : 
    1899                 :             if ((cur_event->events & WL_SOCKET_READABLE) &&
    1900                 :                 (cur_pollfd->revents & (POLLIN | errflags)))
    1901                 :             {
    1902                 :                 /* data available in socket, or EOF */
    1903                 :                 occurred_events->events |= WL_SOCKET_READABLE;
    1904                 :             }
    1905                 : 
    1906                 :             if ((cur_event->events & WL_SOCKET_WRITEABLE) &&
    1907                 :                 (cur_pollfd->revents & (POLLOUT | errflags)))
    1908                 :             {
    1909                 :                 /* writeable, or EOF */
    1910                 :                 occurred_events->events |= WL_SOCKET_WRITEABLE;
    1911                 :             }
    1912                 : 
    1913                 : #ifdef POLLRDHUP
    1914                 :             if ((cur_event->events & WL_SOCKET_CLOSED) &&
    1915                 :                 (cur_pollfd->revents & (POLLRDHUP | errflags)))
    1916                 :             {
    1917                 :                 /* remote peer closed, or error */
    1918                 :                 occurred_events->events |= WL_SOCKET_CLOSED;
    1919                 :             }
    1920                 : #endif
    1921                 : 
    1922                 :             if (occurred_events->events != 0)
    1923                 :             {
    1924                 :                 occurred_events->fd = cur_event->fd;
    1925                 :                 occurred_events++;
    1926                 :                 returned_events++;
    1927                 :             }
    1928                 :         }
    1929                 :     }
    1930                 :     return returned_events;
    1931                 : }
    1932                 : 
    1933                 : #elif defined(WAIT_USE_WIN32)
    1934                 : 
    1935                 : /*
    1936                 :  * Wait using Windows' WaitForMultipleObjects().
    1937                 :  *
    1938                 :  * Unfortunately this will only ever return a single readiness notification at
    1939                 :  * a time.  Note that while the official documentation for
    1940                 :  * WaitForMultipleObjects is ambiguous about multiple events being "consumed"
    1941                 :  * with a single bWaitAll = FALSE call,
    1942                 :  * https://blogs.msdn.microsoft.com/oldnewthing/20150409-00/?p=44273 confirms
    1943                 :  * that only one event is "consumed".
    1944                 :  */
    1945                 : static inline int
    1946                 : WaitEventSetWaitBlock(WaitEventSet *set, int cur_timeout,
    1947                 :                       WaitEvent *occurred_events, int nevents)
    1948                 : {
    1949                 :     int         returned_events = 0;
    1950                 :     DWORD       rc;
    1951                 :     WaitEvent  *cur_event;
    1952                 : 
    1953                 :     /* Reset any wait events that need it */
    1954                 :     for (cur_event = set->events;
    1955                 :          cur_event < (set->events + set->nevents);
    1956                 :          cur_event++)
    1957                 :     {
    1958                 :         if (cur_event->reset)
    1959                 :         {
    1960                 :             WaitEventAdjustWin32(set, cur_event);
    1961                 :             cur_event->reset = false;
    1962                 :         }
    1963                 : 
    1964                 :         /*
    1965                 :          * Windows does not guarantee to log an FD_WRITE network event
    1966                 :          * indicating that more data can be sent unless the previous send()
    1967                 :          * failed with WSAEWOULDBLOCK.  While our caller might well have made
    1968                 :          * such a call, we cannot assume that here.  Therefore, if waiting for
    1969                 :          * write-ready, force the issue by doing a dummy send().  If the dummy
    1970                 :          * send() succeeds, assume that the socket is in fact write-ready, and
    1971                 :          * return immediately.  Also, if it fails with something other than
    1972                 :          * WSAEWOULDBLOCK, return a write-ready indication to let our caller
    1973                 :          * deal with the error condition.
    1974                 :          */
    1975                 :         if (cur_event->events & WL_SOCKET_WRITEABLE)
    1976                 :         {
    1977                 :             char        c;
    1978                 :             WSABUF      buf;
    1979                 :             DWORD       sent;
    1980                 :             int         r;
    1981                 : 
    1982                 :             buf.buf = &c;
    1983                 :             buf.len = 0;
    1984                 : 
    1985                 :             r = WSASend(cur_event->fd, &buf, 1, &sent, 0, NULL, NULL);
    1986                 :             if (r == 0 || WSAGetLastError() != WSAEWOULDBLOCK)
    1987                 :             {
    1988                 :                 occurred_events->pos = cur_event->pos;
    1989                 :                 occurred_events->user_data = cur_event->user_data;
    1990                 :                 occurred_events->events = WL_SOCKET_WRITEABLE;
    1991                 :                 occurred_events->fd = cur_event->fd;
    1992                 :                 return 1;
    1993                 :             }
    1994                 :         }
    1995                 :     }
    1996                 : 
    1997                 :     /*
    1998                 :      * Sleep.
    1999                 :      *
    2000                 :      * Need to wait for ->nevents + 1, because signal handle is in [0].
    2001                 :      */
    2002                 :     rc = WaitForMultipleObjects(set->nevents + 1, set->handles, FALSE,
    2003                 :                                 cur_timeout);
    2004                 : 
    2005                 :     /* Check return code */
    2006                 :     if (rc == WAIT_FAILED)
    2007                 :         elog(ERROR, "WaitForMultipleObjects() failed: error code %lu",
    2008                 :              GetLastError());
    2009                 :     else if (rc == WAIT_TIMEOUT)
    2010                 :     {
    2011                 :         /* timeout exceeded */
    2012                 :         return -1;
    2013                 :     }
    2014                 : 
    2015                 :     if (rc == WAIT_OBJECT_0)
    2016                 :     {
    2017                 :         /* Service newly-arrived signals */
    2018                 :         pgwin32_dispatch_queued_signals();
    2019                 :         return 0;               /* retry */
    2020                 :     }
    2021                 : 
    2022                 :     /*
    2023                 :      * With an offset of one, due to the always present pgwin32_signal_event,
    2024                 :      * the handle offset directly corresponds to a wait event.
    2025                 :      */
    2026                 :     cur_event = (WaitEvent *) &set->events[rc - WAIT_OBJECT_0 - 1];
    2027                 : 
    2028                 :     occurred_events->pos = cur_event->pos;
    2029                 :     occurred_events->user_data = cur_event->user_data;
    2030                 :     occurred_events->events = 0;
    2031                 : 
    2032                 :     if (cur_event->events == WL_LATCH_SET)
    2033                 :     {
    2034                 :         /*
    2035                 :          * We cannot use set->latch->event to reset the fired event if we
    2036                 :          * aren't waiting on this latch now.
    2037                 :          */
    2038                 :         if (!ResetEvent(set->handles[cur_event->pos + 1]))
    2039                 :             elog(ERROR, "ResetEvent failed: error code %lu", GetLastError());
    2040                 : 
    2041                 :         if (set->latch && set->latch->is_set)
    2042                 :         {
    2043                 :             occurred_events->fd = PGINVALID_SOCKET;
    2044                 :             occurred_events->events = WL_LATCH_SET;
    2045                 :             occurred_events++;
    2046                 :             returned_events++;
    2047                 :         }
    2048                 :     }
    2049                 :     else if (cur_event->events == WL_POSTMASTER_DEATH)
    2050                 :     {
    2051                 :         /*
    2052                 :          * Postmaster apparently died.  Since the consequences of falsely
    2053                 :          * returning WL_POSTMASTER_DEATH could be pretty unpleasant, we take
    2054                 :          * the trouble to positively verify this with PostmasterIsAlive(),
    2055                 :          * even though there is no known reason to think that the event could
    2056                 :          * be falsely set on Windows.
    2057                 :          */
    2058                 :         if (!PostmasterIsAliveInternal())
    2059                 :         {
    2060                 :             if (set->exit_on_postmaster_death)
    2061                 :                 proc_exit(1);
    2062                 :             occurred_events->fd = PGINVALID_SOCKET;
    2063                 :             occurred_events->events = WL_POSTMASTER_DEATH;
    2064                 :             occurred_events++;
    2065                 :             returned_events++;
    2066                 :         }
    2067                 :     }
    2068                 :     else if (cur_event->events & WL_SOCKET_MASK)
    2069                 :     {
    2070                 :         WSANETWORKEVENTS resEvents;
    2071                 :         HANDLE      handle = set->handles[cur_event->pos + 1];
    2072                 : 
    2073                 :         Assert(cur_event->fd);
    2074                 : 
    2075                 :         occurred_events->fd = cur_event->fd;
    2076                 : 
    2077                 :         ZeroMemory(&resEvents, sizeof(resEvents));
    2078                 :         if (WSAEnumNetworkEvents(cur_event->fd, handle, &resEvents) != 0)
    2079                 :             elog(ERROR, "failed to enumerate network events: error code %d",
    2080                 :                  WSAGetLastError());
    2081                 :         if ((cur_event->events & WL_SOCKET_READABLE) &&
    2082                 :             (resEvents.lNetworkEvents & FD_READ))
    2083                 :         {
    2084                 :             /* data available in socket */
    2085                 :             occurred_events->events |= WL_SOCKET_READABLE;
    2086                 : 
    2087                 :             /*------
    2088                 :              * WaitForMultipleObjects doesn't guarantee that a read event will
    2089                 :              * be returned if the latch is set at the same time.  Even if it
    2090                 :              * did, the caller might drop that event expecting it to reoccur
    2091                 :              * on next call.  So, we must force the event to be reset if this
    2092                 :              * WaitEventSet is used again in order to avoid an indefinite
    2093                 :              * hang.  Refer https://msdn.microsoft.com/en-us/library/windows/desktop/ms741576(v=vs.85).aspx
    2094                 :              * for the behavior of socket events.
    2095                 :              *------
    2096                 :              */
    2097                 :             cur_event->reset = true;
    2098                 :         }
    2099                 :         if ((cur_event->events & WL_SOCKET_WRITEABLE) &&
    2100                 :             (resEvents.lNetworkEvents & FD_WRITE))
    2101                 :         {
    2102                 :             /* writeable */
    2103                 :             occurred_events->events |= WL_SOCKET_WRITEABLE;
    2104                 :         }
    2105                 :         if ((cur_event->events & WL_SOCKET_CONNECTED) &&
    2106                 :             (resEvents.lNetworkEvents & FD_CONNECT))
    2107                 :         {
    2108                 :             /* connected */
    2109                 :             occurred_events->events |= WL_SOCKET_CONNECTED;
    2110                 :         }
    2111                 :         if ((cur_event->events & WL_SOCKET_ACCEPT) &&
    2112                 :             (resEvents.lNetworkEvents & FD_ACCEPT))
    2113                 :         {
    2114                 :             /* incoming connection could be accepted */
    2115                 :             occurred_events->events |= WL_SOCKET_ACCEPT;
    2116                 :         }
    2117                 :         if (resEvents.lNetworkEvents & FD_CLOSE)
    2118                 :         {
    2119                 :             /* EOF/error, so signal all caller-requested socket flags */
    2120                 :             occurred_events->events |= (cur_event->events & WL_SOCKET_MASK);
    2121                 :         }
    2122                 : 
    2123                 :         if (occurred_events->events != 0)
    2124                 :         {
    2125                 :             occurred_events++;
    2126                 :             returned_events++;
    2127                 :         }
    2128                 :     }
    2129                 : 
    2130                 :     return returned_events;
    2131                 : }
    2132                 : #endif
    2133                 : 
    2134                 : /*
    2135                 :  * Return whether the current build options can report WL_SOCKET_CLOSED.
    2136                 :  */
    2137                 : bool
    2138 GIC        1857 : WaitEventSetCanReportClosed(void)
    2139                 : {
    2140                 : #if (defined(WAIT_USE_POLL) && defined(POLLRDHUP)) || \
    2141                 :     defined(WAIT_USE_EPOLL) || \
    2142                 :     defined(WAIT_USE_KQUEUE)
    2143            1857 :     return true;
    2144                 : #else
    2145                 :     return false;
    2146                 : #endif
    2147                 : }
    2148                 : 
    2149                 : /*
    2150                 :  * Get the number of wait events registered in a given WaitEventSet.
    2151                 :  */
    2152                 : int
    2153             259 : GetNumRegisteredWaitEvents(WaitEventSet *set)
    2154                 : {
    2155             259 :     return set->nevents;
    2156                 : }
    2157                 : 
    2158                 : #if defined(WAIT_USE_SELF_PIPE)
    2159                 : 
    2160                 : /*
    2161                 :  * SetLatch uses SIGURG to wake up the process waiting on the latch.
    2162                 :  *
    2163                 :  * Wake up WaitLatch, if we're waiting.
    2164                 :  */
    2165                 : static void
    2166                 : latch_sigurg_handler(SIGNAL_ARGS)
    2167                 : {
    2168                 :     int         save_errno = errno;
    2169                 : 
    2170                 :     if (waiting)
    2171                 :         sendSelfPipeByte();
    2172                 : 
    2173                 :     errno = save_errno;
    2174                 : }
    2175                 : 
    2176                 : /* Send one byte to the self-pipe, to wake up WaitLatch */
    2177                 : static void
    2178                 : sendSelfPipeByte(void)
    2179                 : {
    2180                 :     int         rc;
    2181                 :     char        dummy = 0;
    2182                 : 
    2183                 : retry:
    2184 ECB             :     rc = write(selfpipe_writefd, &dummy, 1);
    2185                 :     if (rc < 0)
    2186                 :     {
    2187                 :         /* If interrupted by signal, just retry */
    2188                 :         if (errno == EINTR)
    2189                 :             goto retry;
    2190                 : 
    2191                 :         /*
    2192                 :          * If the pipe is full, we don't need to retry, the data that's there
    2193                 :          * already is enough to wake up WaitLatch.
    2194                 :          */
    2195                 :         if (errno == EAGAIN || errno == EWOULDBLOCK)
    2196                 :             return;
    2197                 : 
    2198                 :         /*
    2199                 :          * Oops, the write() failed for some other reason. We might be in a
    2200                 :          * signal handler, so it's not safe to elog(). We have no choice but
    2201                 :          * silently ignore the error.
    2202                 :          */
    2203                 :         return;
    2204                 :     }
    2205                 : }
    2206                 : 
    2207                 : #endif
    2208                 : 
    2209                 : #if defined(WAIT_USE_SELF_PIPE) || defined(WAIT_USE_SIGNALFD)
    2210                 : 
    2211                 : /*
    2212                 :  * Read all available data from self-pipe or signalfd.
    2213                 :  *
    2214                 :  * Note: this is only called when waiting = true.  If it fails and doesn't
    2215                 :  * return, it must reset that flag first (though ideally, this will never
    2216                 :  * happen).
    2217                 :  */
    2218                 : static void
    2219 GIC      319069 : drain(void)
    2220                 : {
    2221                 :     char        buf[1024];
    2222                 :     int         rc;
    2223                 :     int         fd;
    2224                 : 
    2225                 : #ifdef WAIT_USE_SELF_PIPE
    2226                 :     fd = selfpipe_readfd;
    2227                 : #else
    2228          319069 :     fd = signal_fd;
    2229                 : #endif
    2230                 : 
    2231                 :     for (;;)
    2232                 :     {
    2233          319069 :         rc = read(fd, buf, sizeof(buf));
    2234          319069 :         if (rc < 0)
    2235                 :         {
    2236 UIC           0 :             if (errno == EAGAIN || errno == EWOULDBLOCK)
    2237                 :                 break;          /* the descriptor is empty */
    2238               0 :             else if (errno == EINTR)
    2239               0 :                 continue;       /* retry */
    2240                 :             else
    2241                 :             {
    2242               0 :                 waiting = false;
    2243                 : #ifdef WAIT_USE_SELF_PIPE
    2244                 :                 elog(ERROR, "read() on self-pipe failed: %m");
    2245                 : #else
    2246               0 :                 elog(ERROR, "read() on signalfd failed: %m");
    2247                 : #endif
    2248                 :             }
    2249                 :         }
    2250 GIC      319069 :         else if (rc == 0)
    2251                 :         {
    2252 UIC           0 :             waiting = false;
    2253                 : #ifdef WAIT_USE_SELF_PIPE
    2254                 :             elog(ERROR, "unexpected EOF on self-pipe");
    2255                 : #else
    2256               0 :             elog(ERROR, "unexpected EOF on signalfd");
    2257                 : #endif
    2258                 :         }
    2259 GIC      319069 :         else if (rc < sizeof(buf))
    2260                 :         {
    2261                 :             /* we successfully drained the pipe; no need to read() again */
    2262          319069 :             break;
    2263                 :         }
    2264                 :         /* else buffer wasn't big enough, so read again */
    2265 ECB             :     }
    2266 GIC      319069 : }
    2267                 : 
    2268                 : #endif
        

Generated by: LCOV version v1.16-55-g56c0a2a