LCOV - differential code coverage report
Current view: top level - src/backend/optimizer/path - costsize.c (source / functions) Coverage Total Hit LBC UIC UBC GBC GIC GNC CBC EUB ECB DCB
Current: Differential Code Coverage HEAD vs 15 Lines: 97.9 % 1774 1737 7 28 2 13 1150 49 525 22 1181 24
Current Date: 2023-04-08 15:15:32 Functions: 100.0 % 72 72 71 1 71 1
Baseline: 15
Baseline Date: 2023-04-08 15:09:40
Legend: Lines: hit not hit

           TLA  Line data    Source code
       1                 : /*-------------------------------------------------------------------------
       2                 :  *
       3                 :  * costsize.c
       4                 :  *    Routines to compute (and set) relation sizes and path costs
       5                 :  *
       6                 :  * Path costs are measured in arbitrary units established by these basic
       7                 :  * parameters:
       8                 :  *
       9                 :  *  seq_page_cost       Cost of a sequential page fetch
      10                 :  *  random_page_cost    Cost of a non-sequential page fetch
      11                 :  *  cpu_tuple_cost      Cost of typical CPU time to process a tuple
      12                 :  *  cpu_index_tuple_cost  Cost of typical CPU time to process an index tuple
      13                 :  *  cpu_operator_cost   Cost of CPU time to execute an operator or function
      14                 :  *  parallel_tuple_cost Cost of CPU time to pass a tuple from worker to leader backend
      15                 :  *  parallel_setup_cost Cost of setting up shared memory for parallelism
      16                 :  *
      17                 :  * We expect that the kernel will typically do some amount of read-ahead
      18                 :  * optimization; this in conjunction with seek costs means that seq_page_cost
      19                 :  * is normally considerably less than random_page_cost.  (However, if the
      20                 :  * database is fully cached in RAM, it is reasonable to set them equal.)
      21                 :  *
      22                 :  * We also use a rough estimate "effective_cache_size" of the number of
      23                 :  * disk pages in Postgres + OS-level disk cache.  (We can't simply use
      24                 :  * NBuffers for this purpose because that would ignore the effects of
      25                 :  * the kernel's disk cache.)
      26                 :  *
      27                 :  * Obviously, taking constants for these values is an oversimplification,
      28                 :  * but it's tough enough to get any useful estimates even at this level of
      29                 :  * detail.  Note that all of these parameters are user-settable, in case
      30                 :  * the default values are drastically off for a particular platform.
      31                 :  *
      32                 :  * seq_page_cost and random_page_cost can also be overridden for an individual
      33                 :  * tablespace, in case some data is on a fast disk and other data is on a slow
      34                 :  * disk.  Per-tablespace overrides never apply to temporary work files such as
      35                 :  * an external sort or a materialize node that overflows work_mem.
      36                 :  *
      37                 :  * We compute two separate costs for each path:
      38                 :  *      total_cost: total estimated cost to fetch all tuples
      39                 :  *      startup_cost: cost that is expended before first tuple is fetched
      40                 :  * In some scenarios, such as when there is a LIMIT or we are implementing
      41                 :  * an EXISTS(...) sub-select, it is not necessary to fetch all tuples of the
      42                 :  * path's result.  A caller can estimate the cost of fetching a partial
      43                 :  * result by interpolating between startup_cost and total_cost.  In detail:
      44                 :  *      actual_cost = startup_cost +
      45                 :  *          (total_cost - startup_cost) * tuples_to_fetch / path->rows;
      46                 :  * Note that a base relation's rows count (and, by extension, plan_rows for
      47                 :  * plan nodes below the LIMIT node) are set without regard to any LIMIT, so
      48                 :  * that this equation works properly.  (Note: while path->rows is never zero
      49                 :  * for ordinary relations, it is zero for paths for provably-empty relations,
      50                 :  * so beware of division-by-zero.)  The LIMIT is applied as a top-level
      51                 :  * plan node.
      52                 :  *
      53                 :  * For largely historical reasons, most of the routines in this module use
      54                 :  * the passed result Path only to store their results (rows, startup_cost and
      55                 :  * total_cost) into.  All the input data they need is passed as separate
      56                 :  * parameters, even though much of it could be extracted from the Path.
      57                 :  * An exception is made for the cost_XXXjoin() routines, which expect all
      58                 :  * the other fields of the passed XXXPath to be filled in, and similarly
      59                 :  * cost_index() assumes the passed IndexPath is valid except for its output
      60                 :  * values.
      61                 :  *
      62                 :  *
      63                 :  * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
      64                 :  * Portions Copyright (c) 1994, Regents of the University of California
      65                 :  *
      66                 :  * IDENTIFICATION
      67                 :  *    src/backend/optimizer/path/costsize.c
      68                 :  *
      69                 :  *-------------------------------------------------------------------------
      70                 :  */
      71                 : 
      72                 : #include "postgres.h"
      73                 : 
      74                 : #include <limits.h>
      75                 : #include <math.h>
      76                 : 
      77                 : #include "access/amapi.h"
      78                 : #include "access/htup_details.h"
      79                 : #include "access/tsmapi.h"
      80                 : #include "executor/executor.h"
      81                 : #include "executor/nodeAgg.h"
      82                 : #include "executor/nodeHash.h"
      83                 : #include "executor/nodeMemoize.h"
      84                 : #include "miscadmin.h"
      85                 : #include "nodes/makefuncs.h"
      86                 : #include "nodes/nodeFuncs.h"
      87                 : #include "optimizer/clauses.h"
      88                 : #include "optimizer/cost.h"
      89                 : #include "optimizer/optimizer.h"
      90                 : #include "optimizer/pathnode.h"
      91                 : #include "optimizer/paths.h"
      92                 : #include "optimizer/placeholder.h"
      93                 : #include "optimizer/plancat.h"
      94                 : #include "optimizer/planmain.h"
      95                 : #include "optimizer/restrictinfo.h"
      96                 : #include "parser/parsetree.h"
      97                 : #include "utils/lsyscache.h"
      98                 : #include "utils/selfuncs.h"
      99                 : #include "utils/spccache.h"
     100                 : #include "utils/tuplesort.h"
     101                 : 
     102                 : 
     103                 : #define LOG2(x)  (log(x) / 0.693147180559945)
     104                 : 
     105                 : /*
     106                 :  * Append and MergeAppend nodes are less expensive than some other operations
     107                 :  * which use cpu_tuple_cost; instead of adding a separate GUC, estimate the
     108                 :  * per-tuple cost as cpu_tuple_cost multiplied by this value.
     109                 :  */
     110                 : #define APPEND_CPU_COST_MULTIPLIER 0.5
     111                 : 
     112                 : /*
     113                 :  * Maximum value for row estimates.  We cap row estimates to this to help
     114                 :  * ensure that costs based on these estimates remain within the range of what
     115                 :  * double can represent.  add_path() wouldn't act sanely given infinite or NaN
     116                 :  * cost values.
     117                 :  */
     118                 : #define MAXIMUM_ROWCOUNT 1e100
     119                 : 
     120                 : double      seq_page_cost = DEFAULT_SEQ_PAGE_COST;
     121                 : double      random_page_cost = DEFAULT_RANDOM_PAGE_COST;
     122                 : double      cpu_tuple_cost = DEFAULT_CPU_TUPLE_COST;
     123                 : double      cpu_index_tuple_cost = DEFAULT_CPU_INDEX_TUPLE_COST;
     124                 : double      cpu_operator_cost = DEFAULT_CPU_OPERATOR_COST;
     125                 : double      parallel_tuple_cost = DEFAULT_PARALLEL_TUPLE_COST;
     126                 : double      parallel_setup_cost = DEFAULT_PARALLEL_SETUP_COST;
     127                 : double      recursive_worktable_factor = DEFAULT_RECURSIVE_WORKTABLE_FACTOR;
     128                 : 
     129                 : int         effective_cache_size = DEFAULT_EFFECTIVE_CACHE_SIZE;
     130                 : 
     131                 : Cost        disable_cost = 1.0e10;
     132                 : 
     133                 : int         max_parallel_workers_per_gather = 2;
     134                 : 
     135                 : bool        enable_seqscan = true;
     136                 : bool        enable_indexscan = true;
     137                 : bool        enable_indexonlyscan = true;
     138                 : bool        enable_bitmapscan = true;
     139                 : bool        enable_tidscan = true;
     140                 : bool        enable_sort = true;
     141                 : bool        enable_incremental_sort = true;
     142                 : bool        enable_hashagg = true;
     143                 : bool        enable_nestloop = true;
     144                 : bool        enable_material = true;
     145                 : bool        enable_memoize = true;
     146                 : bool        enable_mergejoin = true;
     147                 : bool        enable_hashjoin = true;
     148                 : bool        enable_gathermerge = true;
     149                 : bool        enable_partitionwise_join = false;
     150                 : bool        enable_partitionwise_aggregate = false;
     151                 : bool        enable_parallel_append = true;
     152                 : bool        enable_parallel_hash = true;
     153                 : bool        enable_partition_pruning = true;
     154                 : bool        enable_presorted_aggregate = true;
     155                 : bool        enable_async_append = true;
     156                 : 
     157                 : typedef struct
     158                 : {
     159                 :     PlannerInfo *root;
     160                 :     QualCost    total;
     161                 : } cost_qual_eval_context;
     162                 : 
     163                 : static List *extract_nonindex_conditions(List *qual_clauses, List *indexclauses);
     164                 : static MergeScanSelCache *cached_scansel(PlannerInfo *root,
     165                 :                                          RestrictInfo *rinfo,
     166                 :                                          PathKey *pathkey);
     167                 : static void cost_rescan(PlannerInfo *root, Path *path,
     168                 :                         Cost *rescan_startup_cost, Cost *rescan_total_cost);
     169                 : static bool cost_qual_eval_walker(Node *node, cost_qual_eval_context *context);
     170                 : static void get_restriction_qual_cost(PlannerInfo *root, RelOptInfo *baserel,
     171                 :                                       ParamPathInfo *param_info,
     172                 :                                       QualCost *qpqual_cost);
     173                 : static bool has_indexed_join_quals(NestPath *path);
     174                 : static double approx_tuple_count(PlannerInfo *root, JoinPath *path,
     175                 :                                  List *quals);
     176                 : static double calc_joinrel_size_estimate(PlannerInfo *root,
     177                 :                                          RelOptInfo *joinrel,
     178                 :                                          RelOptInfo *outer_rel,
     179                 :                                          RelOptInfo *inner_rel,
     180                 :                                          double outer_rows,
     181                 :                                          double inner_rows,
     182                 :                                          SpecialJoinInfo *sjinfo,
     183                 :                                          List *restrictlist);
     184                 : static Selectivity get_foreign_key_join_selectivity(PlannerInfo *root,
     185                 :                                                     Relids outer_relids,
     186                 :                                                     Relids inner_relids,
     187                 :                                                     SpecialJoinInfo *sjinfo,
     188                 :                                                     List **restrictlist);
     189                 : static Cost append_nonpartial_cost(List *subpaths, int numpaths,
     190                 :                                    int parallel_workers);
     191                 : static void set_rel_width(PlannerInfo *root, RelOptInfo *rel);
     192                 : static int32 get_expr_width(PlannerInfo *root, const Node *expr);
     193                 : static double relation_byte_size(double tuples, int width);
     194                 : static double page_size(double tuples, int width);
     195                 : static double get_parallel_divisor(Path *path);
     196                 : 
     197                 : 
     198                 : /*
     199                 :  * clamp_row_est
     200                 :  *      Force a row-count estimate to a sane value.
     201                 :  */
     202                 : double
     203 GIC     2847745 : clamp_row_est(double nrows)
     204                 : {
     205 ECB             :     /*
     206                 :      * Avoid infinite and NaN row estimates.  Costs derived from such values
     207                 :      * are going to be useless.  Also force the estimate to be at least one
     208                 :      * row, to make explain output look better and to avoid possible
     209                 :      * divide-by-zero when interpolating costs.  Make it an integer, too.
     210                 :      */
     211 GIC     2847745 :     if (nrows > MAXIMUM_ROWCOUNT || isnan(nrows))
     212 UIC           0 :         nrows = MAXIMUM_ROWCOUNT;
     213 CBC     2847745 :     else if (nrows <= 1.0)
     214 GBC     1066282 :         nrows = 1.0;
     215 ECB             :     else
     216 CBC     1781463 :         nrows = rint(nrows);
     217                 : 
     218         2847745 :     return nrows;
     219                 : }
     220 ECB             : 
     221                 : /*
     222                 :  * clamp_cardinality_to_long
     223                 :  *      Cast a Cardinality value to a sane long value.
     224                 :  */
     225                 : long
     226 GIC       20482 : clamp_cardinality_to_long(Cardinality x)
     227                 : {
     228 ECB             :     /*
     229                 :      * Just for paranoia's sake, ensure we do something sane with negative or
     230                 :      * NaN values.
     231                 :      */
     232 GIC       20482 :     if (isnan(x))
     233 UIC           0 :         return LONG_MAX;
     234 CBC       20482 :     if (x <= 0)
     235 GBC         228 :         return 0;
     236 ECB             : 
     237                 :     /*
     238                 :      * If "long" is 64 bits, then LONG_MAX cannot be represented exactly as a
     239                 :      * double.  Casting it to double and back may well result in overflow due
     240                 :      * to rounding, so avoid doing that.  We trust that any double value that
     241                 :      * compares strictly less than "(double) LONG_MAX" will cast to a
     242                 :      * representable "long" value.
     243                 :      */
     244 GIC       20254 :     return (x < (double) LONG_MAX) ? (long) x : LONG_MAX;
     245                 : }
     246 ECB             : 
     247                 : 
     248                 : /*
     249                 :  * cost_seqscan
     250                 :  *    Determines and returns the cost of scanning a relation sequentially.
     251                 :  *
     252                 :  * 'baserel' is the relation to be scanned
     253                 :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
     254                 :  */
     255                 : void
     256 GIC      169562 : cost_seqscan(Path *path, PlannerInfo *root,
     257                 :              RelOptInfo *baserel, ParamPathInfo *param_info)
     258 ECB             : {
     259 GIC      169562 :     Cost        startup_cost = 0;
     260                 :     Cost        cpu_run_cost;
     261 ECB             :     Cost        disk_run_cost;
     262                 :     double      spc_seq_page_cost;
     263                 :     QualCost    qpqual_cost;
     264                 :     Cost        cpu_per_tuple;
     265                 : 
     266                 :     /* Should only be applied to base relations */
     267 GIC      169562 :     Assert(baserel->relid > 0);
     268          169562 :     Assert(baserel->rtekind == RTE_RELATION);
     269 ECB             : 
     270                 :     /* Mark the path with the correct row estimate */
     271 GIC      169562 :     if (param_info)
     272             291 :         path->rows = param_info->ppi_rows;
     273 ECB             :     else
     274 CBC      169271 :         path->rows = baserel->rows;
     275                 : 
     276          169562 :     if (!enable_seqscan)
     277 GIC        7393 :         startup_cost += disable_cost;
     278 ECB             : 
     279                 :     /* fetch estimated page cost for tablespace containing table */
     280 GIC      169562 :     get_tablespace_page_costs(baserel->reltablespace,
     281                 :                               NULL,
     282 ECB             :                               &spc_seq_page_cost);
     283                 : 
     284                 :     /*
     285                 :      * disk costs
     286                 :      */
     287 GIC      169562 :     disk_run_cost = spc_seq_page_cost * baserel->pages;
     288                 : 
     289 ECB             :     /* CPU costs */
     290 GIC      169562 :     get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
     291                 : 
     292 CBC      169562 :     startup_cost += qpqual_cost.startup;
     293 GIC      169562 :     cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
     294 CBC      169562 :     cpu_run_cost = cpu_per_tuple * baserel->tuples;
     295 ECB             :     /* tlist eval costs are paid per output row, not per tuple scanned */
     296 CBC      169562 :     startup_cost += path->pathtarget->cost.startup;
     297 GIC      169562 :     cpu_run_cost += path->pathtarget->cost.per_tuple * path->rows;
     298 ECB             : 
     299                 :     /* Adjust costing for parallelism, if used. */
     300 GIC      169562 :     if (path->parallel_workers > 0)
     301                 :     {
     302 CBC       12013 :         double      parallel_divisor = get_parallel_divisor(path);
     303                 : 
     304 ECB             :         /* The CPU cost is divided among all the workers. */
     305 GIC       12013 :         cpu_run_cost /= parallel_divisor;
     306                 : 
     307 ECB             :         /*
     308                 :          * It may be possible to amortize some of the I/O cost, but probably
     309                 :          * not very much, because most operating systems already do aggressive
     310                 :          * prefetching.  For now, we assume that the disk run cost can't be
     311                 :          * amortized at all.
     312                 :          */
     313                 : 
     314                 :         /*
     315                 :          * In the case of a parallel plan, the row count needs to represent
     316                 :          * the number of tuples processed per worker.
     317                 :          */
     318 GIC       12013 :         path->rows = clamp_row_est(path->rows / parallel_divisor);
     319                 :     }
     320 ECB             : 
     321 GIC      169562 :     path->startup_cost = startup_cost;
     322          169562 :     path->total_cost = startup_cost + cpu_run_cost + disk_run_cost;
     323 CBC      169562 : }
     324 ECB             : 
     325                 : /*
     326                 :  * cost_samplescan
     327                 :  *    Determines and returns the cost of scanning a relation using sampling.
     328                 :  *
     329                 :  * 'baserel' is the relation to be scanned
     330                 :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
     331                 :  */
     332                 : void
     333 GIC         126 : cost_samplescan(Path *path, PlannerInfo *root,
     334                 :                 RelOptInfo *baserel, ParamPathInfo *param_info)
     335 ECB             : {
     336 GIC         126 :     Cost        startup_cost = 0;
     337             126 :     Cost        run_cost = 0;
     338 ECB             :     RangeTblEntry *rte;
     339                 :     TableSampleClause *tsc;
     340                 :     TsmRoutine *tsm;
     341                 :     double      spc_seq_page_cost,
     342                 :                 spc_random_page_cost,
     343                 :                 spc_page_cost;
     344                 :     QualCost    qpqual_cost;
     345                 :     Cost        cpu_per_tuple;
     346                 : 
     347                 :     /* Should only be applied to base relations with tablesample clauses */
     348 GIC         126 :     Assert(baserel->relid > 0);
     349             126 :     rte = planner_rt_fetch(baserel->relid, root);
     350 CBC         126 :     Assert(rte->rtekind == RTE_RELATION);
     351             126 :     tsc = rte->tablesample;
     352             126 :     Assert(tsc != NULL);
     353             126 :     tsm = GetTsmRoutine(tsc->tsmhandler);
     354 ECB             : 
     355                 :     /* Mark the path with the correct row estimate */
     356 GIC         126 :     if (param_info)
     357               9 :         path->rows = param_info->ppi_rows;
     358 ECB             :     else
     359 CBC         117 :         path->rows = baserel->rows;
     360                 : 
     361 ECB             :     /* fetch estimated page cost for tablespace containing table */
     362 GIC         126 :     get_tablespace_page_costs(baserel->reltablespace,
     363                 :                               &spc_random_page_cost,
     364 ECB             :                               &spc_seq_page_cost);
     365                 : 
     366                 :     /* if NextSampleBlock is used, assume random access, else sequential */
     367 GIC         252 :     spc_page_cost = (tsm->NextSampleBlock != NULL) ?
     368             126 :         spc_random_page_cost : spc_seq_page_cost;
     369 ECB             : 
     370                 :     /*
     371                 :      * disk costs (recall that baserel->pages has already been set to the
     372                 :      * number of pages the sampling method will visit)
     373                 :      */
     374 GIC         126 :     run_cost += spc_page_cost * baserel->pages;
     375                 : 
     376 ECB             :     /*
     377                 :      * CPU costs (recall that baserel->tuples has already been set to the
     378                 :      * number of tuples the sampling method will select).  Note that we ignore
     379                 :      * execution cost of the TABLESAMPLE parameter expressions; they will be
     380                 :      * evaluated only once per scan, and in most usages they'll likely be
     381                 :      * simple constants anyway.  We also don't charge anything for the
     382                 :      * calculations the sampling method might do internally.
     383                 :      */
     384 GIC         126 :     get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
     385                 : 
     386 CBC         126 :     startup_cost += qpqual_cost.startup;
     387 GIC         126 :     cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
     388 CBC         126 :     run_cost += cpu_per_tuple * baserel->tuples;
     389 ECB             :     /* tlist eval costs are paid per output row, not per tuple scanned */
     390 CBC         126 :     startup_cost += path->pathtarget->cost.startup;
     391 GIC         126 :     run_cost += path->pathtarget->cost.per_tuple * path->rows;
     392 ECB             : 
     393 CBC         126 :     path->startup_cost = startup_cost;
     394 GIC         126 :     path->total_cost = startup_cost + run_cost;
     395 CBC         126 : }
     396 ECB             : 
     397                 : /*
     398                 :  * cost_gather
     399                 :  *    Determines and returns the cost of gather path.
     400                 :  *
     401                 :  * 'rel' is the relation to be operated upon
     402                 :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
     403                 :  * 'rows' may be used to point to a row estimate; if non-NULL, it overrides
     404                 :  * both 'rel' and 'param_info'.  This is useful when the path doesn't exactly
     405                 :  * correspond to any particular RelOptInfo.
     406                 :  */
     407                 : void
     408 GIC        7238 : cost_gather(GatherPath *path, PlannerInfo *root,
     409                 :             RelOptInfo *rel, ParamPathInfo *param_info,
     410 ECB             :             double *rows)
     411                 : {
     412 GIC        7238 :     Cost        startup_cost = 0;
     413            7238 :     Cost        run_cost = 0;
     414 ECB             : 
     415                 :     /* Mark the path with the correct row estimate */
     416 GIC        7238 :     if (rows)
     417             826 :         path->path.rows = *rows;
     418 CBC        6412 :     else if (param_info)
     419 LBC           0 :         path->path.rows = param_info->ppi_rows;
     420 ECB             :     else
     421 GBC        6412 :         path->path.rows = rel->rows;
     422                 : 
     423 CBC        7238 :     startup_cost = path->subpath->startup_cost;
     424                 : 
     425            7238 :     run_cost = path->subpath->total_cost - path->subpath->startup_cost;
     426                 : 
     427 ECB             :     /* Parallel setup and communication cost. */
     428 GIC        7238 :     startup_cost += parallel_setup_cost;
     429            7238 :     run_cost += parallel_tuple_cost * path->path.rows;
     430 ECB             : 
     431 CBC        7238 :     path->path.startup_cost = startup_cost;
     432 GIC        7238 :     path->path.total_cost = (startup_cost + run_cost);
     433 CBC        7238 : }
     434 ECB             : 
     435                 : /*
     436                 :  * cost_gather_merge
     437                 :  *    Determines and returns the cost of gather merge path.
     438                 :  *
     439                 :  * GatherMerge merges several pre-sorted input streams, using a heap that at
     440                 :  * any given instant holds the next tuple from each stream. If there are N
     441                 :  * streams, we need about N*log2(N) tuple comparisons to construct the heap at
     442                 :  * startup, and then for each output tuple, about log2(N) comparisons to
     443                 :  * replace the top heap entry with the next tuple from the same stream.
     444                 :  */
     445                 : void
     446 GIC        4712 : cost_gather_merge(GatherMergePath *path, PlannerInfo *root,
     447                 :                   RelOptInfo *rel, ParamPathInfo *param_info,
     448 ECB             :                   Cost input_startup_cost, Cost input_total_cost,
     449                 :                   double *rows)
     450                 : {
     451 GIC        4712 :     Cost        startup_cost = 0;
     452            4712 :     Cost        run_cost = 0;
     453 ECB             :     Cost        comparison_cost;
     454                 :     double      N;
     455                 :     double      logN;
     456                 : 
     457                 :     /* Mark the path with the correct row estimate */
     458 GIC        4712 :     if (rows)
     459            2160 :         path->path.rows = *rows;
     460 CBC        2552 :     else if (param_info)
     461 LBC           0 :         path->path.rows = param_info->ppi_rows;
     462 ECB             :     else
     463 GBC        2552 :         path->path.rows = rel->rows;
     464                 : 
     465 CBC        4712 :     if (!enable_gathermerge)
     466 UIC           0 :         startup_cost += disable_cost;
     467 ECB             : 
     468 EUB             :     /*
     469                 :      * Add one to the number of workers to account for the leader.  This might
     470                 :      * be overgenerous since the leader will do less work than other workers
     471                 :      * in typical cases, but we'll go with it for now.
     472                 :      */
     473 GIC        4712 :     Assert(path->num_workers > 0);
     474            4712 :     N = (double) path->num_workers + 1;
     475 CBC        4712 :     logN = LOG2(N);
     476 ECB             : 
     477                 :     /* Assumed cost per tuple comparison */
     478 GIC        4712 :     comparison_cost = 2.0 * cpu_operator_cost;
     479                 : 
     480 ECB             :     /* Heap creation cost */
     481 GIC        4712 :     startup_cost += comparison_cost * N * logN;
     482                 : 
     483 ECB             :     /* Per-tuple heap maintenance cost */
     484 GIC        4712 :     run_cost += path->path.rows * comparison_cost * logN;
     485                 : 
     486 ECB             :     /* small cost for heap management, like cost_merge_append */
     487 GIC        4712 :     run_cost += cpu_operator_cost * path->path.rows;
     488                 : 
     489 ECB             :     /*
     490                 :      * Parallel setup and communication cost.  Since Gather Merge, unlike
     491                 :      * Gather, requires us to block until a tuple is available from every
     492                 :      * worker, we bump the IPC cost up a little bit as compared with Gather.
     493                 :      * For lack of a better idea, charge an extra 5%.
     494                 :      */
     495 GIC        4712 :     startup_cost += parallel_setup_cost;
     496            4712 :     run_cost += parallel_tuple_cost * path->path.rows * 1.05;
     497 ECB             : 
     498 CBC        4712 :     path->path.startup_cost = startup_cost + input_startup_cost;
     499 GIC        4712 :     path->path.total_cost = (startup_cost + run_cost + input_total_cost);
     500 CBC        4712 : }
     501 ECB             : 
     502                 : /*
     503                 :  * cost_index
     504                 :  *    Determines and returns the cost of scanning a relation using an index.
     505                 :  *
     506                 :  * 'path' describes the indexscan under consideration, and is complete
     507                 :  *      except for the fields to be set by this routine
     508                 :  * 'loop_count' is the number of repetitions of the indexscan to factor into
     509                 :  *      estimates of caching behavior
     510                 :  *
     511                 :  * In addition to rows, startup_cost and total_cost, cost_index() sets the
     512                 :  * path's indextotalcost and indexselectivity fields.  These values will be
     513                 :  * needed if the IndexPath is used in a BitmapIndexScan.
     514                 :  *
     515                 :  * NOTE: path->indexquals must contain only clauses usable as index
     516                 :  * restrictions.  Any additional quals evaluated as qpquals may reduce the
     517                 :  * number of returned tuples, but they won't reduce the number of tuples
     518                 :  * we have to fetch from the table, so they don't reduce the scan cost.
     519                 :  */
     520                 : void
     521 GIC      266936 : cost_index(IndexPath *path, PlannerInfo *root, double loop_count,
     522                 :            bool partial_path)
     523 ECB             : {
     524 GIC      266936 :     IndexOptInfo *index = path->indexinfo;
     525          266936 :     RelOptInfo *baserel = index->rel;
     526 CBC      266936 :     bool        indexonly = (path->path.pathtype == T_IndexOnlyScan);
     527 ECB             :     amcostestimate_function amcostestimate;
     528                 :     List       *qpquals;
     529 GIC      266936 :     Cost        startup_cost = 0;
     530          266936 :     Cost        run_cost = 0;
     531 CBC      266936 :     Cost        cpu_run_cost = 0;
     532 ECB             :     Cost        indexStartupCost;
     533                 :     Cost        indexTotalCost;
     534                 :     Selectivity indexSelectivity;
     535                 :     double      indexCorrelation,
     536                 :                 csquared;
     537                 :     double      spc_seq_page_cost,
     538                 :                 spc_random_page_cost;
     539                 :     Cost        min_IO_cost,
     540                 :                 max_IO_cost;
     541                 :     QualCost    qpqual_cost;
     542                 :     Cost        cpu_per_tuple;
     543                 :     double      tuples_fetched;
     544                 :     double      pages_fetched;
     545                 :     double      rand_heap_pages;
     546                 :     double      index_pages;
     547                 : 
     548                 :     /* Should only be applied to base relations */
     549 GIC      266936 :     Assert(IsA(baserel, RelOptInfo) &&
     550                 :            IsA(index, IndexOptInfo));
     551 CBC      266936 :     Assert(baserel->relid > 0);
     552 GIC      266936 :     Assert(baserel->rtekind == RTE_RELATION);
     553 ECB             : 
     554                 :     /*
     555                 :      * Mark the path with the correct row estimate, and identify which quals
     556                 :      * will need to be enforced as qpquals.  We need not check any quals that
     557                 :      * are implied by the index's predicate, so we can use indrestrictinfo not
     558                 :      * baserestrictinfo as the list of relevant restriction clauses for the
     559                 :      * rel.
     560                 :      */
     561 GIC      266936 :     if (path->path.param_info)
     562                 :     {
     563 CBC       50764 :         path->path.rows = path->path.param_info->ppi_rows;
     564                 :         /* qpquals come from the rel's restriction clauses and ppi_clauses */
     565           50764 :         qpquals = list_concat(extract_nonindex_conditions(path->indexinfo->indrestrictinfo,
     566                 :                                                           path->indexclauses),
     567           50764 :                               extract_nonindex_conditions(path->path.param_info->ppi_clauses,
     568                 :                                                           path->indexclauses));
     569 ECB             :     }
     570                 :     else
     571                 :     {
     572 GIC      216172 :         path->path.rows = baserel->rows;
     573                 :         /* qpquals come from just the rel's restriction clauses */
     574 CBC      216172 :         qpquals = extract_nonindex_conditions(path->indexinfo->indrestrictinfo,
     575                 :                                               path->indexclauses);
     576 ECB             :     }
     577                 : 
     578 GIC      266936 :     if (!enable_indexscan)
     579            1936 :         startup_cost += disable_cost;
     580 ECB             :     /* we don't need to check enable_indexonlyscan; indxpath.c does that */
     581                 : 
     582                 :     /*
     583                 :      * Call index-access-method-specific code to estimate the processing cost
     584                 :      * for scanning the index, as well as the selectivity of the index (ie,
     585                 :      * the fraction of main-table tuples we will have to retrieve) and its
     586                 :      * correlation to the main-table tuple order.  We need a cast here because
     587                 :      * pathnodes.h uses a weak function type to avoid including amapi.h.
     588                 :      */
     589 GIC      266936 :     amcostestimate = (amcostestimate_function) index->amcostestimate;
     590          266936 :     amcostestimate(root, path, loop_count,
     591 ECB             :                    &indexStartupCost, &indexTotalCost,
     592                 :                    &indexSelectivity, &indexCorrelation,
     593                 :                    &index_pages);
     594                 : 
     595                 :     /*
     596                 :      * Save amcostestimate's results for possible use in bitmap scan planning.
     597                 :      * We don't bother to save indexStartupCost or indexCorrelation, because a
     598                 :      * bitmap scan doesn't care about either.
     599                 :      */
     600 GIC      266936 :     path->indextotalcost = indexTotalCost;
     601          266936 :     path->indexselectivity = indexSelectivity;
     602 ECB             : 
     603                 :     /* all costs for touching index itself included here */
     604 GIC      266936 :     startup_cost += indexStartupCost;
     605          266936 :     run_cost += indexTotalCost - indexStartupCost;
     606 ECB             : 
     607                 :     /* estimate number of main-table tuples fetched */
     608 GIC      266936 :     tuples_fetched = clamp_row_est(indexSelectivity * baserel->tuples);
     609                 : 
     610 ECB             :     /* fetch estimated page costs for tablespace containing table */
     611 GIC      266936 :     get_tablespace_page_costs(baserel->reltablespace,
     612                 :                               &spc_random_page_cost,
     613 ECB             :                               &spc_seq_page_cost);
     614                 : 
     615                 :     /*----------
     616                 :      * Estimate number of main-table pages fetched, and compute I/O cost.
     617                 :      *
     618                 :      * When the index ordering is uncorrelated with the table ordering,
     619                 :      * we use an approximation proposed by Mackert and Lohman (see
     620                 :      * index_pages_fetched() for details) to compute the number of pages
     621                 :      * fetched, and then charge spc_random_page_cost per page fetched.
     622                 :      *
     623                 :      * When the index ordering is exactly correlated with the table ordering
     624                 :      * (just after a CLUSTER, for example), the number of pages fetched should
     625                 :      * be exactly selectivity * table_size.  What's more, all but the first
     626                 :      * will be sequential fetches, not the random fetches that occur in the
     627                 :      * uncorrelated case.  So if the number of pages is more than 1, we
     628                 :      * ought to charge
     629                 :      *      spc_random_page_cost + (pages_fetched - 1) * spc_seq_page_cost
     630                 :      * For partially-correlated indexes, we ought to charge somewhere between
     631                 :      * these two estimates.  We currently interpolate linearly between the
     632                 :      * estimates based on the correlation squared (XXX is that appropriate?).
     633                 :      *
     634                 :      * If it's an index-only scan, then we will not need to fetch any heap
     635                 :      * pages for which the visibility map shows all tuples are visible.
     636                 :      * Hence, reduce the estimated number of heap fetches accordingly.
     637                 :      * We use the measured fraction of the entire heap that is all-visible,
     638                 :      * which might not be particularly relevant to the subset of the heap
     639                 :      * that this query will fetch; but it's not clear how to do better.
     640                 :      *----------
     641                 :      */
     642 GIC      266936 :     if (loop_count > 1)
     643                 :     {
     644 ECB             :         /*
     645                 :          * For repeated indexscans, the appropriate estimate for the
     646                 :          * uncorrelated case is to scale up the number of tuples fetched in
     647                 :          * the Mackert and Lohman formula by the number of scans, so that we
     648                 :          * estimate the number of pages fetched by all the scans; then
     649                 :          * pro-rate the costs for one scan.  In this case we assume all the
     650                 :          * fetches are random accesses.
     651                 :          */
     652 GIC       29207 :         pages_fetched = index_pages_fetched(tuples_fetched * loop_count,
     653                 :                                             baserel->pages,
     654 CBC       29207 :                                             (double) index->pages,
     655                 :                                             root);
     656 ECB             : 
     657 GIC       29207 :         if (indexonly)
     658            4512 :             pages_fetched = ceil(pages_fetched * (1.0 - baserel->allvisfrac));
     659 ECB             : 
     660 CBC       29207 :         rand_heap_pages = pages_fetched;
     661                 : 
     662           29207 :         max_IO_cost = (pages_fetched * spc_random_page_cost) / loop_count;
     663                 : 
     664 ECB             :         /*
     665                 :          * In the perfectly correlated case, the number of pages touched by
     666                 :          * each scan is selectivity * table_size, and we can use the Mackert
     667                 :          * and Lohman formula at the page level to estimate how much work is
     668                 :          * saved by caching across scans.  We still assume all the fetches are
     669                 :          * random, though, which is an overestimate that's hard to correct for
     670                 :          * without double-counting the cache effects.  (But in most cases
     671                 :          * where such a plan is actually interesting, only one page would get
     672                 :          * fetched per scan anyway, so it shouldn't matter much.)
     673                 :          */
     674 GIC       29207 :         pages_fetched = ceil(indexSelectivity * (double) baserel->pages);
     675                 : 
     676 CBC       29207 :         pages_fetched = index_pages_fetched(pages_fetched * loop_count,
     677                 :                                             baserel->pages,
     678           29207 :                                             (double) index->pages,
     679                 :                                             root);
     680 ECB             : 
     681 GIC       29207 :         if (indexonly)
     682            4512 :             pages_fetched = ceil(pages_fetched * (1.0 - baserel->allvisfrac));
     683 ECB             : 
     684 CBC       29207 :         min_IO_cost = (pages_fetched * spc_random_page_cost) / loop_count;
     685                 :     }
     686 ECB             :     else
     687                 :     {
     688                 :         /*
     689                 :          * Normal case: apply the Mackert and Lohman formula, and then
     690                 :          * interpolate between that and the correlation-derived result.
     691                 :          */
     692 GIC      237729 :         pages_fetched = index_pages_fetched(tuples_fetched,
     693                 :                                             baserel->pages,
     694 CBC      237729 :                                             (double) index->pages,
     695                 :                                             root);
     696 ECB             : 
     697 GIC      237729 :         if (indexonly)
     698           25625 :             pages_fetched = ceil(pages_fetched * (1.0 - baserel->allvisfrac));
     699 ECB             : 
     700 CBC      237729 :         rand_heap_pages = pages_fetched;
     701                 : 
     702 ECB             :         /* max_IO_cost is for the perfectly uncorrelated case (csquared=0) */
     703 GIC      237729 :         max_IO_cost = pages_fetched * spc_random_page_cost;
     704                 : 
     705 ECB             :         /* min_IO_cost is for the perfectly correlated case (csquared=1) */
     706 GIC      237729 :         pages_fetched = ceil(indexSelectivity * (double) baserel->pages);
     707                 : 
     708 CBC      237729 :         if (indexonly)
     709 GIC       25625 :             pages_fetched = ceil(pages_fetched * (1.0 - baserel->allvisfrac));
     710 ECB             : 
     711 CBC      237729 :         if (pages_fetched > 0)
     712                 :         {
     713          220103 :             min_IO_cost = spc_random_page_cost;
     714 GIC      220103 :             if (pages_fetched > 1)
     715 CBC       61017 :                 min_IO_cost += (pages_fetched - 1) * spc_seq_page_cost;
     716 ECB             :         }
     717                 :         else
     718 GIC       17626 :             min_IO_cost = 0;
     719                 :     }
     720 ECB             : 
     721 GIC      266936 :     if (partial_path)
     722                 :     {
     723 ECB             :         /*
     724                 :          * For index only scans compute workers based on number of index pages
     725                 :          * fetched; the number of heap pages we fetch might be so small as to
     726                 :          * effectively rule out parallelism, which we don't want to do.
     727                 :          */
     728 GIC       86429 :         if (indexonly)
     729            8690 :             rand_heap_pages = -1;
     730 ECB             : 
     731                 :         /*
     732                 :          * Estimate the number of parallel workers required to scan index. Use
     733                 :          * the number of heap pages computed considering heap fetches won't be
     734                 :          * sequential as for parallel scans the pages are accessed in random
     735                 :          * order.
     736                 :          */
     737 GIC       86429 :         path->path.parallel_workers = compute_parallel_worker(baserel,
     738                 :                                                               rand_heap_pages,
     739 ECB             :                                                               index_pages,
     740                 :                                                               max_parallel_workers_per_gather);
     741                 : 
     742                 :         /*
     743                 :          * Fall out if workers can't be assigned for parallel scan, because in
     744                 :          * such a case this path will be rejected.  So there is no benefit in
     745                 :          * doing extra computation.
     746                 :          */
     747 GIC       86429 :         if (path->path.parallel_workers <= 0)
     748           81683 :             return;
     749 ECB             : 
     750 CBC        4746 :         path->path.parallel_aware = true;
     751                 :     }
     752 ECB             : 
     753                 :     /*
     754                 :      * Now interpolate based on estimated index order correlation to get total
     755                 :      * disk I/O cost for main table accesses.
     756                 :      */
     757 GIC      185253 :     csquared = indexCorrelation * indexCorrelation;
     758                 : 
     759 CBC      185253 :     run_cost += max_IO_cost + csquared * (min_IO_cost - max_IO_cost);
     760                 : 
     761 ECB             :     /*
     762                 :      * Estimate CPU costs per tuple.
     763                 :      *
     764                 :      * What we want here is cpu_tuple_cost plus the evaluation costs of any
     765                 :      * qual clauses that we have to evaluate as qpquals.
     766                 :      */
     767 GIC      185253 :     cost_qual_eval(&qpqual_cost, qpquals, root);
     768                 : 
     769 CBC      185253 :     startup_cost += qpqual_cost.startup;
     770 GIC      185253 :     cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
     771 ECB             : 
     772 CBC      185253 :     cpu_run_cost += cpu_per_tuple * tuples_fetched;
     773                 : 
     774 ECB             :     /* tlist eval costs are paid per output row, not per tuple scanned */
     775 GIC      185253 :     startup_cost += path->path.pathtarget->cost.startup;
     776          185253 :     cpu_run_cost += path->path.pathtarget->cost.per_tuple * path->path.rows;
     777 ECB             : 
     778                 :     /* Adjust costing for parallelism, if used. */
     779 GIC      185253 :     if (path->path.parallel_workers > 0)
     780                 :     {
     781 CBC        4746 :         double      parallel_divisor = get_parallel_divisor(&path->path);
     782                 : 
     783            4746 :         path->path.rows = clamp_row_est(path->path.rows / parallel_divisor);
     784                 : 
     785 ECB             :         /* The CPU cost is divided among all the workers. */
     786 GIC        4746 :         cpu_run_cost /= parallel_divisor;
     787                 :     }
     788 ECB             : 
     789 GIC      185253 :     run_cost += cpu_run_cost;
     790                 : 
     791 CBC      185253 :     path->path.startup_cost = startup_cost;
     792 GIC      185253 :     path->path.total_cost = startup_cost + run_cost;
     793 ECB             : }
     794                 : 
     795                 : /*
     796                 :  * extract_nonindex_conditions
     797                 :  *
     798                 :  * Given a list of quals to be enforced in an indexscan, extract the ones that
     799                 :  * will have to be applied as qpquals (ie, the index machinery won't handle
     800                 :  * them).  Here we detect only whether a qual clause is directly redundant
     801                 :  * with some indexclause.  If the index path is chosen for use, createplan.c
     802                 :  * will try a bit harder to get rid of redundant qual conditions; specifically
     803                 :  * it will see if quals can be proven to be implied by the indexquals.  But
     804                 :  * it does not seem worth the cycles to try to factor that in at this stage,
     805                 :  * since we're only trying to estimate qual eval costs.  Otherwise this must
     806                 :  * match the logic in create_indexscan_plan().
     807                 :  *
     808                 :  * qual_clauses, and the result, are lists of RestrictInfos.
     809                 :  * indexclauses is a list of IndexClauses.
     810                 :  */
     811                 : static List *
     812 GIC      317700 : extract_nonindex_conditions(List *qual_clauses, List *indexclauses)
     813                 : {
     814 CBC      317700 :     List       *result = NIL;
     815                 :     ListCell   *lc;
     816 ECB             : 
     817 GIC      645187 :     foreach(lc, qual_clauses)
     818                 :     {
     819 CBC      327487 :         RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc);
     820                 : 
     821          327487 :         if (rinfo->pseudoconstant)
     822 GIC        1420 :             continue;           /* we may drop pseudoconstants here */
     823 CBC      326067 :         if (is_redundant_with_indexclauses(rinfo, indexclauses))
     824          196735 :             continue;           /* dup or derived from same EquivalenceClass */
     825 ECB             :         /* ... skip the predicate proof attempt createplan.c will try ... */
     826 CBC      129332 :         result = lappend(result, rinfo);
     827                 :     }
     828          317700 :     return result;
     829                 : }
     830 ECB             : 
     831                 : /*
     832                 :  * index_pages_fetched
     833                 :  *    Estimate the number of pages actually fetched after accounting for
     834                 :  *    cache effects.
     835                 :  *
     836                 :  * We use an approximation proposed by Mackert and Lohman, "Index Scans
     837                 :  * Using a Finite LRU Buffer: A Validated I/O Model", ACM Transactions
     838                 :  * on Database Systems, Vol. 14, No. 3, September 1989, Pages 401-424.
     839                 :  * The Mackert and Lohman approximation is that the number of pages
     840                 :  * fetched is
     841                 :  *  PF =
     842                 :  *      min(2TNs/(2T+Ns), T)            when T <= b
     843                 :  *      2TNs/(2T+Ns)                    when T > b and Ns <= 2Tb/(2T-b)
     844                 :  *      b + (Ns - 2Tb/(2T-b))*(T-b)/T   when T > b and Ns > 2Tb/(2T-b)
     845                 :  * where
     846                 :  *      T = # pages in table
     847                 :  *      N = # tuples in table
     848                 :  *      s = selectivity = fraction of table to be scanned
     849                 :  *      b = # buffer pages available (we include kernel space here)
     850                 :  *
     851                 :  * We assume that effective_cache_size is the total number of buffer pages
     852                 :  * available for the whole query, and pro-rate that space across all the
     853                 :  * tables in the query and the index currently under consideration.  (This
     854                 :  * ignores space needed for other indexes used by the query, but since we
     855                 :  * don't know which indexes will get used, we can't estimate that very well;
     856                 :  * and in any case counting all the tables may well be an overestimate, since
     857                 :  * depending on the join plan not all the tables may be scanned concurrently.)
     858                 :  *
     859                 :  * The product Ns is the number of tuples fetched; we pass in that
     860                 :  * product rather than calculating it here.  "pages" is the number of pages
     861                 :  * in the object under consideration (either an index or a table).
     862                 :  * "index_pages" is the amount to add to the total table space, which was
     863                 :  * computed for us by make_one_rel.
     864                 :  *
     865                 :  * Caller is expected to have ensured that tuples_fetched is greater than zero
     866                 :  * and rounded to integer (see clamp_row_est).  The result will likewise be
     867                 :  * greater than zero and integral.
     868                 :  */
     869                 : double
     870 GIC      375855 : index_pages_fetched(double tuples_fetched, BlockNumber pages,
     871                 :                     double index_pages, PlannerInfo *root)
     872 ECB             : {
     873                 :     double      pages_fetched;
     874                 :     double      total_pages;
     875                 :     double      T,
     876                 :                 b;
     877                 : 
     878                 :     /* T is # pages in table, but don't allow it to be zero */
     879 GIC      375855 :     T = (pages > 1) ? (double) pages : 1.0;
     880                 : 
     881 ECB             :     /* Compute number of pages assumed to be competing for cache space */
     882 GIC      375855 :     total_pages = root->total_table_pages + index_pages;
     883          375855 :     total_pages = Max(total_pages, 1.0);
     884 CBC      375855 :     Assert(T <= total_pages);
     885 ECB             : 
     886                 :     /* b is pro-rated share of effective_cache_size */
     887 GIC      375855 :     b = (double) effective_cache_size * T / total_pages;
     888                 : 
     889 ECB             :     /* force it positive and integral */
     890 GIC      375855 :     if (b <= 1.0)
     891 UIC           0 :         b = 1.0;
     892 ECB             :     else
     893 GBC      375855 :         b = ceil(b);
     894                 : 
     895 ECB             :     /* This part is the Mackert and Lohman formula */
     896 GIC      375855 :     if (T <= b)
     897                 :     {
     898 CBC      375855 :         pages_fetched =
     899 GIC      375855 :             (2.0 * T * tuples_fetched) / (2.0 * T + tuples_fetched);
     900 CBC      375855 :         if (pages_fetched >= T)
     901          219690 :             pages_fetched = T;
     902 ECB             :         else
     903 CBC      156165 :             pages_fetched = ceil(pages_fetched);
     904                 :     }
     905 ECB             :     else
     906                 :     {
     907                 :         double      lim;
     908                 : 
     909 UIC           0 :         lim = (2.0 * T * b) / (2.0 * T - b);
     910               0 :         if (tuples_fetched <= lim)
     911 EUB             :         {
     912 UBC           0 :             pages_fetched =
     913 UIC           0 :                 (2.0 * T * tuples_fetched) / (2.0 * T + tuples_fetched);
     914 EUB             :         }
     915                 :         else
     916                 :         {
     917 UIC           0 :             pages_fetched =
     918               0 :                 b + (tuples_fetched - lim) * (T - b) / T;
     919 EUB             :         }
     920 UBC           0 :         pages_fetched = ceil(pages_fetched);
     921                 :     }
     922 GBC      375855 :     return pages_fetched;
     923                 : }
     924 ECB             : 
     925                 : /*
     926                 :  * get_indexpath_pages
     927                 :  *      Determine the total size of the indexes used in a bitmap index path.
     928                 :  *
     929                 :  * Note: if the same index is used more than once in a bitmap tree, we will
     930                 :  * count it multiple times, which perhaps is the wrong thing ... but it's
     931                 :  * not completely clear, and detecting duplicates is difficult, so ignore it
     932                 :  * for now.
     933                 :  */
     934                 : static double
     935 GIC       61367 : get_indexpath_pages(Path *bitmapqual)
     936                 : {
     937 CBC       61367 :     double      result = 0;
     938                 :     ListCell   *l;
     939 ECB             : 
     940 GIC       61367 :     if (IsA(bitmapqual, BitmapAndPath))
     941                 :     {
     942 CBC        7017 :         BitmapAndPath *apath = (BitmapAndPath *) bitmapqual;
     943                 : 
     944           21051 :         foreach(l, apath->bitmapquals)
     945                 :         {
     946           14034 :             result += get_indexpath_pages((Path *) lfirst(l));
     947                 :         }
     948 ECB             :     }
     949 GIC       54350 :     else if (IsA(bitmapqual, BitmapOrPath))
     950                 :     {
     951 CBC          29 :         BitmapOrPath *opath = (BitmapOrPath *) bitmapqual;
     952                 : 
     953              87 :         foreach(l, opath->bitmapquals)
     954                 :         {
     955              58 :             result += get_indexpath_pages((Path *) lfirst(l));
     956                 :         }
     957 ECB             :     }
     958 GIC       54321 :     else if (IsA(bitmapqual, IndexPath))
     959                 :     {
     960 CBC       54321 :         IndexPath  *ipath = (IndexPath *) bitmapqual;
     961                 : 
     962           54321 :         result = (double) ipath->indexinfo->pages;
     963                 :     }
     964 ECB             :     else
     965 UIC           0 :         elog(ERROR, "unrecognized node type: %d", nodeTag(bitmapqual));
     966                 : 
     967 GBC       61367 :     return result;
     968                 : }
     969 ECB             : 
     970                 : /*
     971                 :  * cost_bitmap_heap_scan
     972                 :  *    Determines and returns the cost of scanning a relation using a bitmap
     973                 :  *    index-then-heap plan.
     974                 :  *
     975                 :  * 'baserel' is the relation to be scanned
     976                 :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
     977                 :  * 'bitmapqual' is a tree of IndexPaths, BitmapAndPaths, and BitmapOrPaths
     978                 :  * 'loop_count' is the number of repetitions of the indexscan to factor into
     979                 :  *      estimates of caching behavior
     980                 :  *
     981                 :  * Note: the component IndexPaths in bitmapqual should have been costed
     982                 :  * using the same loop_count.
     983                 :  */
     984                 : void
     985 GIC      182089 : cost_bitmap_heap_scan(Path *path, PlannerInfo *root, RelOptInfo *baserel,
     986                 :                       ParamPathInfo *param_info,
     987 ECB             :                       Path *bitmapqual, double loop_count)
     988                 : {
     989 GIC      182089 :     Cost        startup_cost = 0;
     990          182089 :     Cost        run_cost = 0;
     991 ECB             :     Cost        indexTotalCost;
     992                 :     QualCost    qpqual_cost;
     993                 :     Cost        cpu_per_tuple;
     994                 :     Cost        cost_per_page;
     995                 :     Cost        cpu_run_cost;
     996                 :     double      tuples_fetched;
     997                 :     double      pages_fetched;
     998                 :     double      spc_seq_page_cost,
     999                 :                 spc_random_page_cost;
    1000                 :     double      T;
    1001                 : 
    1002                 :     /* Should only be applied to base relations */
    1003 GIC      182089 :     Assert(IsA(baserel, RelOptInfo));
    1004          182089 :     Assert(baserel->relid > 0);
    1005 CBC      182089 :     Assert(baserel->rtekind == RTE_RELATION);
    1006 ECB             : 
    1007                 :     /* Mark the path with the correct row estimate */
    1008 GIC      182089 :     if (param_info)
    1009           74912 :         path->rows = param_info->ppi_rows;
    1010 ECB             :     else
    1011 CBC      107177 :         path->rows = baserel->rows;
    1012                 : 
    1013          182089 :     if (!enable_bitmapscan)
    1014 GIC        4617 :         startup_cost += disable_cost;
    1015 ECB             : 
    1016 CBC      182089 :     pages_fetched = compute_bitmap_pages(root, baserel, bitmapqual,
    1017                 :                                          loop_count, &indexTotalCost,
    1018 ECB             :                                          &tuples_fetched);
    1019                 : 
    1020 GIC      182089 :     startup_cost += indexTotalCost;
    1021          182089 :     T = (baserel->pages > 1) ? (double) baserel->pages : 1.0;
    1022 ECB             : 
    1023                 :     /* Fetch estimated page costs for tablespace containing table. */
    1024 GIC      182089 :     get_tablespace_page_costs(baserel->reltablespace,
    1025                 :                               &spc_random_page_cost,
    1026 ECB             :                               &spc_seq_page_cost);
    1027                 : 
    1028                 :     /*
    1029                 :      * For small numbers of pages we should charge spc_random_page_cost
    1030                 :      * apiece, while if nearly all the table's pages are being read, it's more
    1031                 :      * appropriate to charge spc_seq_page_cost apiece.  The effect is
    1032                 :      * nonlinear, too. For lack of a better idea, interpolate like this to
    1033                 :      * determine the cost per page.
    1034                 :      */
    1035 GIC      182089 :     if (pages_fetched >= 2.0)
    1036           39221 :         cost_per_page = spc_random_page_cost -
    1037 CBC       39221 :             (spc_random_page_cost - spc_seq_page_cost)
    1038           39221 :             * sqrt(pages_fetched / T);
    1039 ECB             :     else
    1040 CBC      142868 :         cost_per_page = spc_random_page_cost;
    1041                 : 
    1042          182089 :     run_cost += pages_fetched * cost_per_page;
    1043                 : 
    1044 ECB             :     /*
    1045                 :      * Estimate CPU costs per tuple.
    1046                 :      *
    1047                 :      * Often the indexquals don't need to be rechecked at each tuple ... but
    1048                 :      * not always, especially not if there are enough tuples involved that the
    1049                 :      * bitmaps become lossy.  For the moment, just assume they will be
    1050                 :      * rechecked always.  This means we charge the full freight for all the
    1051                 :      * scan clauses.
    1052                 :      */
    1053 GIC      182089 :     get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1054                 : 
    1055 CBC      182089 :     startup_cost += qpqual_cost.startup;
    1056 GIC      182089 :     cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
    1057 CBC      182089 :     cpu_run_cost = cpu_per_tuple * tuples_fetched;
    1058 ECB             : 
    1059                 :     /* Adjust costing for parallelism, if used. */
    1060 GIC      182089 :     if (path->parallel_workers > 0)
    1061                 :     {
    1062 CBC        2024 :         double      parallel_divisor = get_parallel_divisor(path);
    1063                 : 
    1064 ECB             :         /* The CPU cost is divided among all the workers. */
    1065 GIC        2024 :         cpu_run_cost /= parallel_divisor;
    1066                 : 
    1067 CBC        2024 :         path->rows = clamp_row_est(path->rows / parallel_divisor);
    1068                 :     }
    1069 ECB             : 
    1070                 : 
    1071 GIC      182089 :     run_cost += cpu_run_cost;
    1072                 : 
    1073 ECB             :     /* tlist eval costs are paid per output row, not per tuple scanned */
    1074 GIC      182089 :     startup_cost += path->pathtarget->cost.startup;
    1075          182089 :     run_cost += path->pathtarget->cost.per_tuple * path->rows;
    1076 ECB             : 
    1077 CBC      182089 :     path->startup_cost = startup_cost;
    1078 GIC      182089 :     path->total_cost = startup_cost + run_cost;
    1079 CBC      182089 : }
    1080 ECB             : 
    1081                 : /*
    1082                 :  * cost_bitmap_tree_node
    1083                 :  *      Extract cost and selectivity from a bitmap tree node (index/and/or)
    1084                 :  */
    1085                 : void
    1086 GIC      322322 : cost_bitmap_tree_node(Path *path, Cost *cost, Selectivity *selec)
    1087                 : {
    1088 CBC      322322 :     if (IsA(path, IndexPath))
    1089                 :     {
    1090          308306 :         *cost = ((IndexPath *) path)->indextotalcost;
    1091 GIC      308306 :         *selec = ((IndexPath *) path)->indexselectivity;
    1092 ECB             : 
    1093                 :         /*
    1094                 :          * Charge a small amount per retrieved tuple to reflect the costs of
    1095                 :          * manipulating the bitmap.  This is mostly to make sure that a bitmap
    1096                 :          * scan doesn't look to be the same cost as an indexscan to retrieve a
    1097                 :          * single tuple.
    1098                 :          */
    1099 GIC      308306 :         *cost += 0.1 * cpu_operator_cost * path->rows;
    1100                 :     }
    1101 CBC       14016 :     else if (IsA(path, BitmapAndPath))
    1102                 :     {
    1103           12926 :         *cost = path->total_cost;
    1104 GIC       12926 :         *selec = ((BitmapAndPath *) path)->bitmapselectivity;
    1105 ECB             :     }
    1106 CBC        1090 :     else if (IsA(path, BitmapOrPath))
    1107                 :     {
    1108            1090 :         *cost = path->total_cost;
    1109 GIC        1090 :         *selec = ((BitmapOrPath *) path)->bitmapselectivity;
    1110 ECB             :     }
    1111                 :     else
    1112                 :     {
    1113 UIC           0 :         elog(ERROR, "unrecognized node type: %d", nodeTag(path));
    1114                 :         *cost = *selec = 0;     /* keep compiler quiet */
    1115 EUB             :     }
    1116 GIC      322322 : }
    1117                 : 
    1118 ECB             : /*
    1119                 :  * cost_bitmap_and_node
    1120                 :  *      Estimate the cost of a BitmapAnd node
    1121                 :  *
    1122                 :  * Note that this considers only the costs of index scanning and bitmap
    1123                 :  * creation, not the eventual heap access.  In that sense the object isn't
    1124                 :  * truly a Path, but it has enough path-like properties (costs in particular)
    1125                 :  * to warrant treating it as one.  We don't bother to set the path rows field,
    1126                 :  * however.
    1127                 :  */
    1128                 : void
    1129 GIC       12900 : cost_bitmap_and_node(BitmapAndPath *path, PlannerInfo *root)
    1130                 : {
    1131 ECB             :     Cost        totalCost;
    1132                 :     Selectivity selec;
    1133                 :     ListCell   *l;
    1134                 : 
    1135                 :     /*
    1136                 :      * We estimate AND selectivity on the assumption that the inputs are
    1137                 :      * independent.  This is probably often wrong, but we don't have the info
    1138                 :      * to do better.
    1139                 :      *
    1140                 :      * The runtime cost of the BitmapAnd itself is estimated at 100x
    1141                 :      * cpu_operator_cost for each tbm_intersect needed.  Probably too small,
    1142                 :      * definitely too simplistic?
    1143                 :      */
    1144 GIC       12900 :     totalCost = 0.0;
    1145           12900 :     selec = 1.0;
    1146 CBC       38700 :     foreach(l, path->bitmapquals)
    1147 ECB             :     {
    1148 CBC       25800 :         Path       *subpath = (Path *) lfirst(l);
    1149                 :         Cost        subCost;
    1150 ECB             :         Selectivity subselec;
    1151                 : 
    1152 GIC       25800 :         cost_bitmap_tree_node(subpath, &subCost, &subselec);
    1153                 : 
    1154 CBC       25800 :         selec *= subselec;
    1155                 : 
    1156           25800 :         totalCost += subCost;
    1157 GIC       25800 :         if (l != list_head(path->bitmapquals))
    1158 CBC       12900 :             totalCost += 100.0 * cpu_operator_cost;
    1159 ECB             :     }
    1160 CBC       12900 :     path->bitmapselectivity = selec;
    1161 GIC       12900 :     path->path.rows = 0;     /* per above, not used */
    1162 CBC       12900 :     path->path.startup_cost = totalCost;
    1163           12900 :     path->path.total_cost = totalCost;
    1164           12900 : }
    1165 ECB             : 
    1166                 : /*
    1167                 :  * cost_bitmap_or_node
    1168                 :  *      Estimate the cost of a BitmapOr node
    1169                 :  *
    1170                 :  * See comments for cost_bitmap_and_node.
    1171                 :  */
    1172                 : void
    1173 GIC         356 : cost_bitmap_or_node(BitmapOrPath *path, PlannerInfo *root)
    1174                 : {
    1175 ECB             :     Cost        totalCost;
    1176                 :     Selectivity selec;
    1177                 :     ListCell   *l;
    1178                 : 
    1179                 :     /*
    1180                 :      * We estimate OR selectivity on the assumption that the inputs are
    1181                 :      * non-overlapping, since that's often the case in "x IN (list)" type
    1182                 :      * situations.  Of course, we clamp to 1.0 at the end.
    1183                 :      *
    1184                 :      * The runtime cost of the BitmapOr itself is estimated at 100x
    1185                 :      * cpu_operator_cost for each tbm_union needed.  Probably too small,
    1186                 :      * definitely too simplistic?  We are aware that the tbm_unions are
    1187                 :      * optimized out when the inputs are BitmapIndexScans.
    1188                 :      */
    1189 GIC         356 :     totalCost = 0.0;
    1190             356 :     selec = 0.0;
    1191 CBC        1098 :     foreach(l, path->bitmapquals)
    1192 ECB             :     {
    1193 CBC         742 :         Path       *subpath = (Path *) lfirst(l);
    1194                 :         Cost        subCost;
    1195 ECB             :         Selectivity subselec;
    1196                 : 
    1197 GIC         742 :         cost_bitmap_tree_node(subpath, &subCost, &subselec);
    1198                 : 
    1199 CBC         742 :         selec += subselec;
    1200                 : 
    1201             742 :         totalCost += subCost;
    1202 GIC         742 :         if (l != list_head(path->bitmapquals) &&
    1203 CBC         386 :             !IsA(subpath, IndexPath))
    1204              15 :             totalCost += 100.0 * cpu_operator_cost;
    1205 ECB             :     }
    1206 CBC         356 :     path->bitmapselectivity = Min(selec, 1.0);
    1207 GIC         356 :     path->path.rows = 0;     /* per above, not used */
    1208 CBC         356 :     path->path.startup_cost = totalCost;
    1209             356 :     path->path.total_cost = totalCost;
    1210             356 : }
    1211 ECB             : 
    1212                 : /*
    1213                 :  * cost_tidscan
    1214                 :  *    Determines and returns the cost of scanning a relation using TIDs.
    1215                 :  *
    1216                 :  * 'baserel' is the relation to be scanned
    1217                 :  * 'tidquals' is the list of TID-checkable quals
    1218                 :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
    1219                 :  */
    1220                 : void
    1221 GIC         378 : cost_tidscan(Path *path, PlannerInfo *root,
    1222                 :              RelOptInfo *baserel, List *tidquals, ParamPathInfo *param_info)
    1223 ECB             : {
    1224 GIC         378 :     Cost        startup_cost = 0;
    1225             378 :     Cost        run_cost = 0;
    1226 CBC         378 :     bool        isCurrentOf = false;
    1227 ECB             :     QualCost    qpqual_cost;
    1228                 :     Cost        cpu_per_tuple;
    1229                 :     QualCost    tid_qual_cost;
    1230                 :     int         ntuples;
    1231                 :     ListCell   *l;
    1232                 :     double      spc_random_page_cost;
    1233                 : 
    1234                 :     /* Should only be applied to base relations */
    1235 GIC         378 :     Assert(baserel->relid > 0);
    1236             378 :     Assert(baserel->rtekind == RTE_RELATION);
    1237 ECB             : 
    1238                 :     /* Mark the path with the correct row estimate */
    1239 GIC         378 :     if (param_info)
    1240              72 :         path->rows = param_info->ppi_rows;
    1241 ECB             :     else
    1242 CBC         306 :         path->rows = baserel->rows;
    1243                 : 
    1244 ECB             :     /* Count how many tuples we expect to retrieve */
    1245 GIC         378 :     ntuples = 0;
    1246             768 :     foreach(l, tidquals)
    1247 ECB             :     {
    1248 CBC         390 :         RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
    1249 GIC         390 :         Expr       *qual = rinfo->clause;
    1250 ECB             : 
    1251 CBC         390 :         if (IsA(qual, ScalarArrayOpExpr))
    1252                 :         {
    1253 ECB             :             /* Each element of the array yields 1 tuple */
    1254 GIC          15 :             ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) qual;
    1255              15 :             Node       *arraynode = (Node *) lsecond(saop->args);
    1256 ECB             : 
    1257 CBC          15 :             ntuples += estimate_array_length(arraynode);
    1258                 :         }
    1259             375 :         else if (IsA(qual, CurrentOfExpr))
    1260                 :         {
    1261 ECB             :             /* CURRENT OF yields 1 tuple */
    1262 GIC         196 :             isCurrentOf = true;
    1263             196 :             ntuples++;
    1264 ECB             :         }
    1265                 :         else
    1266                 :         {
    1267                 :             /* It's just CTID = something, count 1 tuple */
    1268 GIC         179 :             ntuples++;
    1269                 :         }
    1270 ECB             :     }
    1271                 : 
    1272                 :     /*
    1273                 :      * We must force TID scan for WHERE CURRENT OF, because only nodeTidscan.c
    1274                 :      * understands how to do it correctly.  Therefore, honor enable_tidscan
    1275                 :      * only when CURRENT OF isn't present.  Also note that cost_qual_eval
    1276                 :      * counts a CurrentOfExpr as having startup cost disable_cost, which we
    1277                 :      * subtract off here; that's to prevent other plan types such as seqscan
    1278                 :      * from winning.
    1279                 :      */
    1280 GIC         378 :     if (isCurrentOf)
    1281                 :     {
    1282 CBC         196 :         Assert(baserel->baserestrictcost.startup >= disable_cost);
    1283 GIC         196 :         startup_cost -= disable_cost;
    1284 ECB             :     }
    1285 CBC         182 :     else if (!enable_tidscan)
    1286 UIC           0 :         startup_cost += disable_cost;
    1287 ECB             : 
    1288 EUB             :     /*
    1289                 :      * The TID qual expressions will be computed once, any other baserestrict
    1290                 :      * quals once per retrieved tuple.
    1291                 :      */
    1292 GIC         378 :     cost_qual_eval(&tid_qual_cost, tidquals, root);
    1293                 : 
    1294 ECB             :     /* fetch estimated page cost for tablespace containing table */
    1295 GIC         378 :     get_tablespace_page_costs(baserel->reltablespace,
    1296                 :                               &spc_random_page_cost,
    1297 ECB             :                               NULL);
    1298                 : 
    1299                 :     /* disk costs --- assume each tuple on a different page */
    1300 GIC         378 :     run_cost += spc_random_page_cost * ntuples;
    1301                 : 
    1302 ECB             :     /* Add scanning CPU costs */
    1303 GIC         378 :     get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1304                 : 
    1305 ECB             :     /* XXX currently we assume TID quals are a subset of qpquals */
    1306 GIC         378 :     startup_cost += qpqual_cost.startup + tid_qual_cost.per_tuple;
    1307             378 :     cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple -
    1308 CBC         378 :         tid_qual_cost.per_tuple;
    1309             378 :     run_cost += cpu_per_tuple * ntuples;
    1310 ECB             : 
    1311                 :     /* tlist eval costs are paid per output row, not per tuple scanned */
    1312 GIC         378 :     startup_cost += path->pathtarget->cost.startup;
    1313             378 :     run_cost += path->pathtarget->cost.per_tuple * path->rows;
    1314 ECB             : 
    1315 CBC         378 :     path->startup_cost = startup_cost;
    1316 GIC         378 :     path->total_cost = startup_cost + run_cost;
    1317 CBC         378 : }
    1318 ECB             : 
    1319                 : /*
    1320                 :  * cost_tidrangescan
    1321                 :  *    Determines and sets the costs of scanning a relation using a range of
    1322                 :  *    TIDs for 'path'
    1323                 :  *
    1324                 :  * 'baserel' is the relation to be scanned
    1325                 :  * 'tidrangequals' is the list of TID-checkable range quals
    1326                 :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
    1327                 :  */
    1328                 : void
    1329 GIC         101 : cost_tidrangescan(Path *path, PlannerInfo *root,
    1330                 :                   RelOptInfo *baserel, List *tidrangequals,
    1331 ECB             :                   ParamPathInfo *param_info)
    1332                 : {
    1333                 :     Selectivity selectivity;
    1334                 :     double      pages;
    1335 GIC         101 :     Cost        startup_cost = 0;
    1336             101 :     Cost        run_cost = 0;
    1337 ECB             :     QualCost    qpqual_cost;
    1338                 :     Cost        cpu_per_tuple;
    1339                 :     QualCost    tid_qual_cost;
    1340                 :     double      ntuples;
    1341                 :     double      nseqpages;
    1342                 :     double      spc_random_page_cost;
    1343                 :     double      spc_seq_page_cost;
    1344                 : 
    1345                 :     /* Should only be applied to base relations */
    1346 GIC         101 :     Assert(baserel->relid > 0);
    1347             101 :     Assert(baserel->rtekind == RTE_RELATION);
    1348 ECB             : 
    1349                 :     /* Mark the path with the correct row estimate */
    1350 GIC         101 :     if (param_info)
    1351 UIC           0 :         path->rows = param_info->ppi_rows;
    1352 ECB             :     else
    1353 GBC         101 :         path->rows = baserel->rows;
    1354                 : 
    1355 ECB             :     /* Count how many tuples and pages we expect to scan */
    1356 GIC         101 :     selectivity = clauselist_selectivity(root, tidrangequals, baserel->relid,
    1357                 :                                          JOIN_INNER, NULL);
    1358 CBC         101 :     pages = ceil(selectivity * baserel->pages);
    1359                 : 
    1360             101 :     if (pages <= 0.0)
    1361 GIC          21 :         pages = 1.0;
    1362 ECB             : 
    1363                 :     /*
    1364                 :      * The first page in a range requires a random seek, but each subsequent
    1365                 :      * page is just a normal sequential page read. NOTE: it's desirable for
    1366                 :      * TID Range Scans to cost more than the equivalent Sequential Scans,
    1367                 :      * because Seq Scans have some performance advantages such as scan
    1368                 :      * synchronization and parallelizability, and we'd prefer one of them to
    1369                 :      * be picked unless a TID Range Scan really is better.
    1370                 :      */
    1371 GIC         101 :     ntuples = selectivity * baserel->tuples;
    1372             101 :     nseqpages = pages - 1.0;
    1373 ECB             : 
    1374 CBC         101 :     if (!enable_tidscan)
    1375 UIC           0 :         startup_cost += disable_cost;
    1376 ECB             : 
    1377 EUB             :     /*
    1378                 :      * The TID qual expressions will be computed once, any other baserestrict
    1379                 :      * quals once per retrieved tuple.
    1380                 :      */
    1381 GIC         101 :     cost_qual_eval(&tid_qual_cost, tidrangequals, root);
    1382                 : 
    1383 ECB             :     /* fetch estimated page cost for tablespace containing table */
    1384 GIC         101 :     get_tablespace_page_costs(baserel->reltablespace,
    1385                 :                               &spc_random_page_cost,
    1386 ECB             :                               &spc_seq_page_cost);
    1387                 : 
    1388                 :     /* disk costs; 1 random page and the remainder as seq pages */
    1389 GIC         101 :     run_cost += spc_random_page_cost + spc_seq_page_cost * nseqpages;
    1390                 : 
    1391 ECB             :     /* Add scanning CPU costs */
    1392 GIC         101 :     get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1393                 : 
    1394 ECB             :     /*
    1395                 :      * XXX currently we assume TID quals are a subset of qpquals at this
    1396                 :      * point; they will be removed (if possible) when we create the plan, so
    1397                 :      * we subtract their cost from the total qpqual cost.  (If the TID quals
    1398                 :      * can't be removed, this is a mistake and we're going to underestimate
    1399                 :      * the CPU cost a bit.)
    1400                 :      */
    1401 GIC         101 :     startup_cost += qpqual_cost.startup + tid_qual_cost.per_tuple;
    1402             101 :     cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple -
    1403 CBC         101 :         tid_qual_cost.per_tuple;
    1404             101 :     run_cost += cpu_per_tuple * ntuples;
    1405 ECB             : 
    1406                 :     /* tlist eval costs are paid per output row, not per tuple scanned */
    1407 GIC         101 :     startup_cost += path->pathtarget->cost.startup;
    1408             101 :     run_cost += path->pathtarget->cost.per_tuple * path->rows;
    1409 ECB             : 
    1410 CBC         101 :     path->startup_cost = startup_cost;
    1411 GIC         101 :     path->total_cost = startup_cost + run_cost;
    1412 CBC         101 : }
    1413 ECB             : 
    1414                 : /*
    1415                 :  * cost_subqueryscan
    1416                 :  *    Determines and returns the cost of scanning a subquery RTE.
    1417                 :  *
    1418                 :  * 'baserel' is the relation to be scanned
    1419                 :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
    1420                 :  * 'trivial_pathtarget' is true if the pathtarget is believed to be trivial.
    1421                 :  */
    1422                 : void
    1423 GIC       10523 : cost_subqueryscan(SubqueryScanPath *path, PlannerInfo *root,
    1424                 :                   RelOptInfo *baserel, ParamPathInfo *param_info,
    1425                 :                   bool trivial_pathtarget)
    1426                 : {
    1427 ECB             :     Cost        startup_cost;
    1428                 :     Cost        run_cost;
    1429                 :     List       *qpquals;
    1430                 :     QualCost    qpqual_cost;
    1431                 :     Cost        cpu_per_tuple;
    1432                 : 
    1433                 :     /* Should only be applied to base relations that are subqueries */
    1434 GIC       10523 :     Assert(baserel->relid > 0);
    1435           10523 :     Assert(baserel->rtekind == RTE_SUBQUERY);
    1436                 : 
    1437                 :     /*
    1438 ECB             :      * We compute the rowcount estimate as the subplan's estimate times the
    1439                 :      * selectivity of relevant restriction clauses.  In simple cases this will
    1440                 :      * come out the same as baserel->rows; but when dealing with parallelized
    1441                 :      * paths we must do it like this to get the right answer.
    1442                 :      */
    1443 GIC       10523 :     if (param_info)
    1444             210 :         qpquals = list_concat_copy(param_info->ppi_clauses,
    1445             210 :                                    baserel->baserestrictinfo);
    1446                 :     else
    1447 CBC       10313 :         qpquals = baserel->baserestrictinfo;
    1448 ECB             : 
    1449 CBC       10523 :     path->path.rows = clamp_row_est(path->subpath->rows *
    1450 GIC       10523 :                                     clauselist_selectivity(root,
    1451 ECB             :                                                            qpquals,
    1452                 :                                                            0,
    1453                 :                                                            JOIN_INNER,
    1454                 :                                                            NULL));
    1455                 : 
    1456                 :     /*
    1457                 :      * Cost of path is cost of evaluating the subplan, plus cost of evaluating
    1458                 :      * any restriction clauses and tlist that will be attached to the
    1459                 :      * SubqueryScan node, plus cpu_tuple_cost to account for selection and
    1460                 :      * projection overhead.
    1461                 :      */
    1462 GIC       10523 :     path->path.startup_cost = path->subpath->startup_cost;
    1463           10523 :     path->path.total_cost = path->subpath->total_cost;
    1464                 : 
    1465                 :     /*
    1466                 :      * However, if there are no relevant restriction clauses and the
    1467                 :      * pathtarget is trivial, then we expect that setrefs.c will optimize away
    1468                 :      * the SubqueryScan plan node altogether, so we should just make its cost
    1469                 :      * and rowcount equal to the input path's.
    1470                 :      *
    1471                 :      * Note: there are some edge cases where createplan.c will apply a
    1472                 :      * different targetlist to the SubqueryScan node, thus falsifying our
    1473                 :      * current estimate of whether the target is trivial, and making the cost
    1474                 :      * estimate (though not the rowcount) wrong.  It does not seem worth the
    1475                 :      * extra complication to try to account for that exactly, especially since
    1476                 :      * that behavior falsifies other cost estimates as well.
    1477                 :      */
    1478 GNC       10523 :     if (qpquals == NIL && trivial_pathtarget)
    1479            5547 :         return;
    1480                 : 
    1481 GIC        4976 :     get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1482 ECB             : 
    1483 CBC        4976 :     startup_cost = qpqual_cost.startup;
    1484 GIC        4976 :     cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
    1485            4976 :     run_cost = cpu_per_tuple * path->subpath->rows;
    1486                 : 
    1487                 :     /* tlist eval costs are paid per output row, not per tuple scanned */
    1488            4976 :     startup_cost += path->path.pathtarget->cost.startup;
    1489            4976 :     run_cost += path->path.pathtarget->cost.per_tuple * path->path.rows;
    1490                 : 
    1491            4976 :     path->path.startup_cost += startup_cost;
    1492            4976 :     path->path.total_cost += startup_cost + run_cost;
    1493                 : }
    1494                 : 
    1495                 : /*
    1496                 :  * cost_functionscan
    1497                 :  *    Determines and returns the cost of scanning a function RTE.
    1498 ECB             :  *
    1499                 :  * 'baserel' is the relation to be scanned
    1500                 :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
    1501                 :  */
    1502                 : void
    1503 CBC       17699 : cost_functionscan(Path *path, PlannerInfo *root,
    1504 ECB             :                   RelOptInfo *baserel, ParamPathInfo *param_info)
    1505                 : {
    1506 GIC       17699 :     Cost        startup_cost = 0;
    1507           17699 :     Cost        run_cost = 0;
    1508 ECB             :     QualCost    qpqual_cost;
    1509                 :     Cost        cpu_per_tuple;
    1510                 :     RangeTblEntry *rte;
    1511                 :     QualCost    exprcost;
    1512                 : 
    1513                 :     /* Should only be applied to base relations that are functions */
    1514 GIC       17699 :     Assert(baserel->relid > 0);
    1515           17699 :     rte = planner_rt_fetch(baserel->relid, root);
    1516           17699 :     Assert(rte->rtekind == RTE_FUNCTION);
    1517                 : 
    1518                 :     /* Mark the path with the correct row estimate */
    1519           17699 :     if (param_info)
    1520            3086 :         path->rows = param_info->ppi_rows;
    1521                 :     else
    1522           14613 :         path->rows = baserel->rows;
    1523 ECB             : 
    1524                 :     /*
    1525                 :      * Estimate costs of executing the function expression(s).
    1526                 :      *
    1527                 :      * Currently, nodeFunctionscan.c always executes the functions to
    1528                 :      * completion before returning any rows, and caches the results in a
    1529                 :      * tuplestore.  So the function eval cost is all startup cost, and per-row
    1530                 :      * costs are minimal.
    1531                 :      *
    1532                 :      * XXX in principle we ought to charge tuplestore spill costs if the
    1533                 :      * number of rows is large.  However, given how phony our rowcount
    1534                 :      * estimates for functions tend to be, there's not a lot of point in that
    1535                 :      * refinement right now.
    1536                 :      */
    1537 GIC       17699 :     cost_qual_eval_node(&exprcost, (Node *) rte->functions, root);
    1538                 : 
    1539 CBC       17699 :     startup_cost += exprcost.startup + exprcost.per_tuple;
    1540 ECB             : 
    1541                 :     /* Add scanning CPU costs */
    1542 CBC       17699 :     get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1543                 : 
    1544 GIC       17699 :     startup_cost += qpqual_cost.startup;
    1545           17699 :     cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
    1546           17699 :     run_cost += cpu_per_tuple * baserel->tuples;
    1547                 : 
    1548                 :     /* tlist eval costs are paid per output row, not per tuple scanned */
    1549           17699 :     startup_cost += path->pathtarget->cost.startup;
    1550           17699 :     run_cost += path->pathtarget->cost.per_tuple * path->rows;
    1551                 : 
    1552           17699 :     path->startup_cost = startup_cost;
    1553           17699 :     path->total_cost = startup_cost + run_cost;
    1554           17699 : }
    1555                 : 
    1556                 : /*
    1557 ECB             :  * cost_tablefuncscan
    1558                 :  *    Determines and returns the cost of scanning a table function.
    1559                 :  *
    1560                 :  * 'baserel' is the relation to be scanned
    1561                 :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
    1562                 :  */
    1563                 : void
    1564 CBC         108 : cost_tablefuncscan(Path *path, PlannerInfo *root,
    1565 ECB             :                    RelOptInfo *baserel, ParamPathInfo *param_info)
    1566                 : {
    1567 GIC         108 :     Cost        startup_cost = 0;
    1568             108 :     Cost        run_cost = 0;
    1569 ECB             :     QualCost    qpqual_cost;
    1570                 :     Cost        cpu_per_tuple;
    1571                 :     RangeTblEntry *rte;
    1572                 :     QualCost    exprcost;
    1573                 : 
    1574                 :     /* Should only be applied to base relations that are functions */
    1575 GIC         108 :     Assert(baserel->relid > 0);
    1576             108 :     rte = planner_rt_fetch(baserel->relid, root);
    1577             108 :     Assert(rte->rtekind == RTE_TABLEFUNC);
    1578                 : 
    1579                 :     /* Mark the path with the correct row estimate */
    1580             108 :     if (param_info)
    1581              72 :         path->rows = param_info->ppi_rows;
    1582                 :     else
    1583              36 :         path->rows = baserel->rows;
    1584 ECB             : 
    1585                 :     /*
    1586                 :      * Estimate costs of executing the table func expression(s).
    1587                 :      *
    1588                 :      * XXX in principle we ought to charge tuplestore spill costs if the
    1589                 :      * number of rows is large.  However, given how phony our rowcount
    1590                 :      * estimates for tablefuncs tend to be, there's not a lot of point in that
    1591                 :      * refinement right now.
    1592                 :      */
    1593 GIC         108 :     cost_qual_eval_node(&exprcost, (Node *) rte->tablefunc, root);
    1594                 : 
    1595 CBC         108 :     startup_cost += exprcost.startup + exprcost.per_tuple;
    1596 ECB             : 
    1597                 :     /* Add scanning CPU costs */
    1598 GIC         108 :     get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1599                 : 
    1600 CBC         108 :     startup_cost += qpqual_cost.startup;
    1601             108 :     cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
    1602 GIC         108 :     run_cost += cpu_per_tuple * baserel->tuples;
    1603 ECB             : 
    1604                 :     /* tlist eval costs are paid per output row, not per tuple scanned */
    1605 GIC         108 :     startup_cost += path->pathtarget->cost.startup;
    1606             108 :     run_cost += path->pathtarget->cost.per_tuple * path->rows;
    1607                 : 
    1608             108 :     path->startup_cost = startup_cost;
    1609             108 :     path->total_cost = startup_cost + run_cost;
    1610             108 : }
    1611                 : 
    1612                 : /*
    1613 ECB             :  * cost_valuesscan
    1614                 :  *    Determines and returns the cost of scanning a VALUES RTE.
    1615                 :  *
    1616                 :  * 'baserel' is the relation to be scanned
    1617                 :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
    1618                 :  */
    1619                 : void
    1620 CBC        3553 : cost_valuesscan(Path *path, PlannerInfo *root,
    1621 ECB             :                 RelOptInfo *baserel, ParamPathInfo *param_info)
    1622                 : {
    1623 GIC        3553 :     Cost        startup_cost = 0;
    1624            3553 :     Cost        run_cost = 0;
    1625 ECB             :     QualCost    qpqual_cost;
    1626                 :     Cost        cpu_per_tuple;
    1627                 : 
    1628                 :     /* Should only be applied to base relations that are values lists */
    1629 CBC        3553 :     Assert(baserel->relid > 0);
    1630            3553 :     Assert(baserel->rtekind == RTE_VALUES);
    1631                 : 
    1632                 :     /* Mark the path with the correct row estimate */
    1633 GIC        3553 :     if (param_info)
    1634              24 :         path->rows = param_info->ppi_rows;
    1635                 :     else
    1636            3529 :         path->rows = baserel->rows;
    1637                 : 
    1638                 :     /*
    1639                 :      * For now, estimate list evaluation cost at one operator eval per list
    1640 ECB             :      * (probably pretty bogus, but is it worth being smarter?)
    1641                 :      */
    1642 GIC        3553 :     cpu_per_tuple = cpu_operator_cost;
    1643 ECB             : 
    1644                 :     /* Add scanning CPU costs */
    1645 GIC        3553 :     get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1646                 : 
    1647            3553 :     startup_cost += qpqual_cost.startup;
    1648            3553 :     cpu_per_tuple += cpu_tuple_cost + qpqual_cost.per_tuple;
    1649 CBC        3553 :     run_cost += cpu_per_tuple * baserel->tuples;
    1650 ECB             : 
    1651                 :     /* tlist eval costs are paid per output row, not per tuple scanned */
    1652 GIC        3553 :     startup_cost += path->pathtarget->cost.startup;
    1653 CBC        3553 :     run_cost += path->pathtarget->cost.per_tuple * path->rows;
    1654 ECB             : 
    1655 GIC        3553 :     path->startup_cost = startup_cost;
    1656 CBC        3553 :     path->total_cost = startup_cost + run_cost;
    1657 GIC        3553 : }
    1658                 : 
    1659                 : /*
    1660                 :  * cost_ctescan
    1661                 :  *    Determines and returns the cost of scanning a CTE RTE.
    1662 ECB             :  *
    1663                 :  * Note: this is used for both self-reference and regular CTEs; the
    1664                 :  * possible cost differences are below the threshold of what we could
    1665                 :  * estimate accurately anyway.  Note that the costs of evaluating the
    1666                 :  * referenced CTE query are added into the final plan as initplan costs,
    1667                 :  * and should NOT be counted here.
    1668                 :  */
    1669                 : void
    1670 GIC        1597 : cost_ctescan(Path *path, PlannerInfo *root,
    1671                 :              RelOptInfo *baserel, ParamPathInfo *param_info)
    1672 ECB             : {
    1673 CBC        1597 :     Cost        startup_cost = 0;
    1674 GIC        1597 :     Cost        run_cost = 0;
    1675 ECB             :     QualCost    qpqual_cost;
    1676                 :     Cost        cpu_per_tuple;
    1677                 : 
    1678                 :     /* Should only be applied to base relations that are CTEs */
    1679 GIC        1597 :     Assert(baserel->relid > 0);
    1680            1597 :     Assert(baserel->rtekind == RTE_CTE);
    1681                 : 
    1682                 :     /* Mark the path with the correct row estimate */
    1683            1597 :     if (param_info)
    1684 UIC           0 :         path->rows = param_info->ppi_rows;
    1685                 :     else
    1686 GIC        1597 :         path->rows = baserel->rows;
    1687                 : 
    1688                 :     /* Charge one CPU tuple cost per row for tuplestore manipulation */
    1689            1597 :     cpu_per_tuple = cpu_tuple_cost;
    1690 ECB             : 
    1691                 :     /* Add scanning CPU costs */
    1692 GIC        1597 :     get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1693 ECB             : 
    1694 CBC        1597 :     startup_cost += qpqual_cost.startup;
    1695 GIC        1597 :     cpu_per_tuple += cpu_tuple_cost + qpqual_cost.per_tuple;
    1696            1597 :     run_cost += cpu_per_tuple * baserel->tuples;
    1697                 : 
    1698                 :     /* tlist eval costs are paid per output row, not per tuple scanned */
    1699 CBC        1597 :     startup_cost += path->pathtarget->cost.startup;
    1700            1597 :     run_cost += path->pathtarget->cost.per_tuple * path->rows;
    1701                 : 
    1702 GIC        1597 :     path->startup_cost = startup_cost;
    1703 CBC        1597 :     path->total_cost = startup_cost + run_cost;
    1704 GBC        1597 : }
    1705                 : 
    1706 ECB             : /*
    1707                 :  * cost_namedtuplestorescan
    1708                 :  *    Determines and returns the cost of scanning a named tuplestore.
    1709                 :  */
    1710                 : void
    1711 GIC         219 : cost_namedtuplestorescan(Path *path, PlannerInfo *root,
    1712 ECB             :                          RelOptInfo *baserel, ParamPathInfo *param_info)
    1713                 : {
    1714 CBC         219 :     Cost        startup_cost = 0;
    1715             219 :     Cost        run_cost = 0;
    1716 ECB             :     QualCost    qpqual_cost;
    1717                 :     Cost        cpu_per_tuple;
    1718                 : 
    1719                 :     /* Should only be applied to base relations that are Tuplestores */
    1720 CBC         219 :     Assert(baserel->relid > 0);
    1721 GIC         219 :     Assert(baserel->rtekind == RTE_NAMEDTUPLESTORE);
    1722 ECB             : 
    1723                 :     /* Mark the path with the correct row estimate */
    1724 CBC         219 :     if (param_info)
    1725 UIC           0 :         path->rows = param_info->ppi_rows;
    1726                 :     else
    1727 GIC         219 :         path->rows = baserel->rows;
    1728                 : 
    1729                 :     /* Charge one CPU tuple cost per row for tuplestore manipulation */
    1730             219 :     cpu_per_tuple = cpu_tuple_cost;
    1731 ECB             : 
    1732                 :     /* Add scanning CPU costs */
    1733 GIC         219 :     get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1734 ECB             : 
    1735 CBC         219 :     startup_cost += qpqual_cost.startup;
    1736 GIC         219 :     cpu_per_tuple += cpu_tuple_cost + qpqual_cost.per_tuple;
    1737             219 :     run_cost += cpu_per_tuple * baserel->tuples;
    1738                 : 
    1739             219 :     path->startup_cost = startup_cost;
    1740 CBC         219 :     path->total_cost = startup_cost + run_cost;
    1741             219 : }
    1742                 : 
    1743                 : /*
    1744 ECB             :  * cost_resultscan
    1745 EUB             :  *    Determines and returns the cost of scanning an RTE_RESULT relation.
    1746                 :  */
    1747 ECB             : void
    1748 GIC         685 : cost_resultscan(Path *path, PlannerInfo *root,
    1749                 :                 RelOptInfo *baserel, ParamPathInfo *param_info)
    1750 ECB             : {
    1751 GIC         685 :     Cost        startup_cost = 0;
    1752             685 :     Cost        run_cost = 0;
    1753 ECB             :     QualCost    qpqual_cost;
    1754                 :     Cost        cpu_per_tuple;
    1755                 : 
    1756                 :     /* Should only be applied to RTE_RESULT base relations */
    1757 CBC         685 :     Assert(baserel->relid > 0);
    1758 GIC         685 :     Assert(baserel->rtekind == RTE_RESULT);
    1759 ECB             : 
    1760                 :     /* Mark the path with the correct row estimate */
    1761 CBC         685 :     if (param_info)
    1762 GIC          63 :         path->rows = param_info->ppi_rows;
    1763                 :     else
    1764             622 :         path->rows = baserel->rows;
    1765                 : 
    1766                 :     /* We charge qual cost plus cpu_tuple_cost */
    1767             685 :     get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1768 ECB             : 
    1769 GIC         685 :     startup_cost += qpqual_cost.startup;
    1770             685 :     cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
    1771 CBC         685 :     run_cost += cpu_per_tuple * baserel->tuples;
    1772 ECB             : 
    1773 GIC         685 :     path->startup_cost = startup_cost;
    1774             685 :     path->total_cost = startup_cost + run_cost;
    1775             685 : }
    1776                 : 
    1777 ECB             : /*
    1778                 :  * cost_recursive_union
    1779                 :  *    Determines and returns the cost of performing a recursive union,
    1780                 :  *    and also the estimated output size.
    1781                 :  *
    1782                 :  * We are given Paths for the nonrecursive and recursive terms.
    1783                 :  */
    1784                 : void
    1785 GIC         354 : cost_recursive_union(Path *runion, Path *nrterm, Path *rterm)
    1786                 : {
    1787 ECB             :     Cost        startup_cost;
    1788                 :     Cost        total_cost;
    1789                 :     double      total_rows;
    1790                 : 
    1791                 :     /* We probably have decent estimates for the non-recursive term */
    1792 GIC         354 :     startup_cost = nrterm->startup_cost;
    1793 CBC         354 :     total_cost = nrterm->total_cost;
    1794             354 :     total_rows = nrterm->rows;
    1795 ECB             : 
    1796                 :     /*
    1797                 :      * We arbitrarily assume that about 10 recursive iterations will be
    1798                 :      * needed, and that we've managed to get a good fix on the cost and output
    1799                 :      * size of each one of them.  These are mighty shaky assumptions but it's
    1800                 :      * hard to see how to do better.
    1801                 :      */
    1802 GIC         354 :     total_cost += 10 * rterm->total_cost;
    1803             354 :     total_rows += 10 * rterm->rows;
    1804                 : 
    1805 ECB             :     /*
    1806                 :      * Also charge cpu_tuple_cost per row to account for the costs of
    1807                 :      * manipulating the tuplestores.  (We don't worry about possible
    1808                 :      * spill-to-disk costs.)
    1809                 :      */
    1810 GIC         354 :     total_cost += cpu_tuple_cost * total_rows;
    1811                 : 
    1812 CBC         354 :     runion->startup_cost = startup_cost;
    1813             354 :     runion->total_cost = total_cost;
    1814             354 :     runion->rows = total_rows;
    1815 GIC         354 :     runion->pathtarget->width = Max(nrterm->pathtarget->width,
    1816                 :                                     rterm->pathtarget->width);
    1817             354 : }
    1818                 : 
    1819                 : /*
    1820                 :  * cost_tuplesort
    1821                 :  *    Determines and returns the cost of sorting a relation using tuplesort,
    1822 ECB             :  *    not including the cost of reading the input data.
    1823                 :  *
    1824                 :  * If the total volume of data to sort is less than sort_mem, we will do
    1825                 :  * an in-memory sort, which requires no I/O and about t*log2(t) tuple
    1826                 :  * comparisons for t tuples.
    1827                 :  *
    1828                 :  * If the total volume exceeds sort_mem, we switch to a tape-style merge
    1829                 :  * algorithm.  There will still be about t*log2(t) tuple comparisons in
    1830                 :  * total, but we will also need to write and read each tuple once per
    1831                 :  * merge pass.  We expect about ceil(logM(r)) merge passes where r is the
    1832                 :  * number of initial runs formed and M is the merge order used by tuplesort.c.
    1833                 :  * Since the average initial run should be about sort_mem, we have
    1834                 :  *      disk traffic = 2 * relsize * ceil(logM(p / sort_mem))
    1835                 :  *      cpu = comparison_cost * t * log2(t)
    1836                 :  *
    1837                 :  * If the sort is bounded (i.e., only the first k result tuples are needed)
    1838                 :  * and k tuples can fit into sort_mem, we use a heap method that keeps only
    1839                 :  * k tuples in the heap; this will require about t*log2(k) tuple comparisons.
    1840                 :  *
    1841                 :  * The disk traffic is assumed to be 3/4ths sequential and 1/4th random
    1842                 :  * accesses (XXX can't we refine that guess?)
    1843                 :  *
    1844                 :  * By default, we charge two operator evals per tuple comparison, which should
    1845                 :  * be in the right ballpark in most cases.  The caller can tweak this by
    1846                 :  * specifying nonzero comparison_cost; typically that's used for any extra
    1847                 :  * work that has to be done to prepare the inputs to the comparison operators.
    1848                 :  *
    1849                 :  * 'tuples' is the number of tuples in the relation
    1850                 :  * 'width' is the average tuple width in bytes
    1851                 :  * 'comparison_cost' is the extra cost per comparison, if any
    1852                 :  * 'sort_mem' is the number of kilobytes of work memory allowed for the sort
    1853                 :  * 'limit_tuples' is the bound on the number of output tuples; -1 if no bound
    1854                 :  */
    1855                 : static void
    1856 GIC      586586 : cost_tuplesort(Cost *startup_cost, Cost *run_cost,
    1857                 :                double tuples, int width,
    1858                 :                Cost comparison_cost, int sort_mem,
    1859                 :                double limit_tuples)
    1860                 : {
    1861          586586 :     double      input_bytes = relation_byte_size(tuples, width);
    1862                 :     double      output_bytes;
    1863                 :     double      output_tuples;
    1864          586586 :     long        sort_mem_bytes = sort_mem * 1024L;
    1865                 : 
    1866                 :     /*
    1867                 :      * We want to be sure the cost of a sort is never estimated as zero, even
    1868                 :      * if passed-in tuple count is zero.  Besides, mustn't do log(0)...
    1869                 :      */
    1870          586586 :     if (tuples < 2.0)
    1871          181484 :         tuples = 2.0;
    1872                 : 
    1873                 :     /* Include the default cost-per-comparison */
    1874          586586 :     comparison_cost += 2.0 * cpu_operator_cost;
    1875                 : 
    1876 ECB             :     /* Do we have a useful LIMIT? */
    1877 GIC      586586 :     if (limit_tuples > 0 && limit_tuples < tuples)
    1878                 :     {
    1879            1080 :         output_tuples = limit_tuples;
    1880            1080 :         output_bytes = relation_byte_size(output_tuples, width);
    1881 ECB             :     }
    1882                 :     else
    1883                 :     {
    1884 CBC      585506 :         output_tuples = tuples;
    1885 GIC      585506 :         output_bytes = input_bytes;
    1886                 :     }
    1887                 : 
    1888          586586 :     if (output_bytes > sort_mem_bytes)
    1889                 :     {
    1890 ECB             :         /*
    1891                 :          * We'll have to use a disk-based sort of all the tuples
    1892                 :          */
    1893 GIC        7679 :         double      npages = ceil(input_bytes / BLCKSZ);
    1894 CBC        7679 :         double      nruns = input_bytes / sort_mem_bytes;
    1895 GIC        7679 :         double      mergeorder = tuplesort_merge_order(sort_mem_bytes);
    1896                 :         double      log_runs;
    1897 ECB             :         double      npageaccesses;
    1898                 : 
    1899                 :         /*
    1900                 :          * CPU costs
    1901                 :          *
    1902                 :          * Assume about N log2 N comparisons
    1903                 :          */
    1904 CBC        7679 :         *startup_cost = comparison_cost * tuples * LOG2(tuples);
    1905 ECB             : 
    1906                 :         /* Disk costs */
    1907                 : 
    1908                 :         /* Compute logM(r) as log(r) / log(M) */
    1909 GIC        7679 :         if (nruns > mergeorder)
    1910            2386 :             log_runs = ceil(log(nruns) / log(mergeorder));
    1911                 :         else
    1912            5293 :             log_runs = 1.0;
    1913 CBC        7679 :         npageaccesses = 2.0 * npages * log_runs;
    1914 ECB             :         /* Assume 3/4ths of accesses are sequential, 1/4th are not */
    1915 CBC        7679 :         *startup_cost += npageaccesses *
    1916 GIC        7679 :             (seq_page_cost * 0.75 + random_page_cost * 0.25);
    1917                 :     }
    1918          578907 :     else if (tuples > 2 * output_tuples || input_bytes > sort_mem_bytes)
    1919                 :     {
    1920                 :         /*
    1921                 :          * We'll use a bounded heap-sort keeping just K tuples in memory, for
    1922                 :          * a total number of tuple comparisons of N log2 K; but the constant
    1923                 :          * factor is a bit higher than for quicksort.  Tweak it so that the
    1924 ECB             :          * cost curve is continuous at the crossover point.
    1925                 :          */
    1926 GIC         616 :         *startup_cost = comparison_cost * tuples * LOG2(2.0 * output_tuples);
    1927                 :     }
    1928                 :     else
    1929 ECB             :     {
    1930                 :         /* We'll use plain quicksort on all the input tuples */
    1931 GIC      578291 :         *startup_cost = comparison_cost * tuples * LOG2(tuples);
    1932 ECB             :     }
    1933                 : 
    1934                 :     /*
    1935                 :      * Also charge a small amount (arbitrarily set equal to operator cost) per
    1936                 :      * extracted tuple.  We don't charge cpu_tuple_cost because a Sort node
    1937                 :      * doesn't do qual-checking or projection, so it has less overhead than
    1938                 :      * most plan nodes.  Note it's correct to use tuples not output_tuples
    1939                 :      * here --- the upper LIMIT will pro-rate the run cost so we'd be double
    1940                 :      * counting the LIMIT otherwise.
    1941                 :      */
    1942 GIC      586586 :     *run_cost = cpu_operator_cost * tuples;
    1943          586586 : }
    1944                 : 
    1945                 : /*
    1946 ECB             :  * cost_incremental_sort
    1947                 :  *  Determines and returns the cost of sorting a relation incrementally, when
    1948                 :  *  the input path is presorted by a prefix of the pathkeys.
    1949                 :  *
    1950                 :  * 'presorted_keys' is the number of leading pathkeys by which the input path
    1951                 :  * is sorted.
    1952                 :  *
    1953                 :  * We estimate the number of groups into which the relation is divided by the
    1954                 :  * leading pathkeys, and then calculate the cost of sorting a single group
    1955                 :  * with tuplesort using cost_tuplesort().
    1956                 :  */
    1957                 : void
    1958 GIC        2295 : cost_incremental_sort(Path *path,
    1959                 :                       PlannerInfo *root, List *pathkeys, int presorted_keys,
    1960                 :                       Cost input_startup_cost, Cost input_total_cost,
    1961                 :                       double input_tuples, int width, Cost comparison_cost, int sort_mem,
    1962 ECB             :                       double limit_tuples)
    1963                 : {
    1964                 :     Cost        startup_cost,
    1965                 :                 run_cost,
    1966 GIC        2295 :                 input_run_cost = input_total_cost - input_startup_cost;
    1967                 :     double      group_tuples,
    1968                 :                 input_groups;
    1969                 :     Cost        group_startup_cost,
    1970                 :                 group_run_cost,
    1971                 :                 group_input_run_cost;
    1972            2295 :     List       *presortedExprs = NIL;
    1973                 :     ListCell   *l;
    1974            2295 :     bool        unknown_varno = false;
    1975                 : 
    1976 GNC        2295 :     Assert(presorted_keys > 0 && presorted_keys < list_length(pathkeys));
    1977 ECB             : 
    1978                 :     /*
    1979                 :      * We want to be sure the cost of a sort is never estimated as zero, even
    1980                 :      * if passed-in tuple count is zero.  Besides, mustn't do log(0)...
    1981                 :      */
    1982 GIC        2295 :     if (input_tuples < 2.0)
    1983            1029 :         input_tuples = 2.0;
    1984                 : 
    1985 ECB             :     /* Default estimate of number of groups, capped to one group per row. */
    1986 GIC        2295 :     input_groups = Min(input_tuples, DEFAULT_NUM_DISTINCT);
    1987                 : 
    1988                 :     /*
    1989                 :      * Extract presorted keys as list of expressions.
    1990                 :      *
    1991 ECB             :      * We need to be careful about Vars containing "varno 0" which might have
    1992                 :      * been introduced by generate_append_tlist, which would confuse
    1993                 :      * estimate_num_groups (in fact it'd fail for such expressions). See
    1994                 :      * recurse_set_operations which has to deal with the same issue.
    1995                 :      *
    1996                 :      * Unlike recurse_set_operations we can't access the original target list
    1997                 :      * here, and even if we could it's not very clear how useful would that be
    1998                 :      * for a set operation combining multiple tables. So we simply detect if
    1999                 :      * there are any expressions with "varno 0" and use the default
    2000                 :      * DEFAULT_NUM_DISTINCT in that case.
    2001                 :      *
    2002                 :      * We might also use either 1.0 (a single group) or input_tuples (each row
    2003                 :      * being a separate group), pretty much the worst and best case for
    2004                 :      * incremental sort. But those are extreme cases and using something in
    2005                 :      * between seems reasonable. Furthermore, generate_append_tlist is used
    2006                 :      * for set operations, which are likely to produce mostly unique output
    2007                 :      * anyway - from that standpoint the DEFAULT_NUM_DISTINCT is defensive
    2008                 :      * while maintaining lower startup cost.
    2009                 :      */
    2010 GIC        2322 :     foreach(l, pathkeys)
    2011                 :     {
    2012            2322 :         PathKey    *key = (PathKey *) lfirst(l);
    2013            2322 :         EquivalenceMember *member = (EquivalenceMember *)
    2014            2322 :         linitial(key->pk_eclass->ec_members);
    2015                 : 
    2016                 :         /*
    2017                 :          * Check if the expression contains Var with "varno 0" so that we
    2018                 :          * don't call estimate_num_groups in that case.
    2019                 :          */
    2020            2322 :         if (bms_is_member(0, pull_varnos(root, (Node *) member->em_expr)))
    2021                 :         {
    2022               3 :             unknown_varno = true;
    2023               3 :             break;
    2024                 :         }
    2025                 : 
    2026                 :         /* expression not containing any Vars with "varno 0" */
    2027            2319 :         presortedExprs = lappend(presortedExprs, member->em_expr);
    2028                 : 
    2029 GNC        2319 :         if (foreach_current_index(l) + 1 >= presorted_keys)
    2030 CBC        2292 :             break;
    2031 ECB             :     }
    2032                 : 
    2033                 :     /* Estimate the number of groups with equal presorted keys. */
    2034 GIC        2295 :     if (!unknown_varno)
    2035            2292 :         input_groups = estimate_num_groups(root, presortedExprs, input_tuples,
    2036                 :                                            NULL, NULL);
    2037                 : 
    2038 CBC        2295 :     group_tuples = input_tuples / input_groups;
    2039 GIC        2295 :     group_input_run_cost = input_run_cost / input_groups;
    2040 ECB             : 
    2041                 :     /*
    2042                 :      * Estimate the average cost of sorting of one group where presorted keys
    2043                 :      * are equal.
    2044                 :      */
    2045 CBC        2295 :     cost_tuplesort(&group_startup_cost, &group_run_cost,
    2046                 :                    group_tuples, width, comparison_cost, sort_mem,
    2047                 :                    limit_tuples);
    2048                 : 
    2049 ECB             :     /*
    2050                 :      * Startup cost of incremental sort is the startup cost of its first group
    2051                 :      * plus the cost of its input.
    2052                 :      */
    2053 GNC        2295 :     startup_cost = group_startup_cost + input_startup_cost +
    2054                 :         group_input_run_cost;
    2055                 : 
    2056                 :     /*
    2057                 :      * After we started producing tuples from the first group, the cost of
    2058                 :      * producing all the tuples is given by the cost to finish processing this
    2059                 :      * group, plus the total cost to process the remaining groups, plus the
    2060 ECB             :      * remaining cost of input.
    2061                 :      */
    2062 GNC        2295 :     run_cost = group_run_cost + (group_run_cost + group_startup_cost) *
    2063            2295 :         (input_groups - 1) + group_input_run_cost * (input_groups - 1);
    2064                 : 
    2065                 :     /*
    2066                 :      * Incremental sort adds some overhead by itself. Firstly, it has to
    2067 ECB             :      * detect the sort groups. This is roughly equal to one extra copy and
    2068                 :      * comparison per tuple.
    2069                 :      */
    2070 GIC        2295 :     run_cost += (cpu_tuple_cost + comparison_cost) * input_tuples;
    2071                 : 
    2072                 :     /*
    2073                 :      * Additionally, we charge double cpu_tuple_cost for each input group to
    2074                 :      * account for the tuplesort_reset that's performed after each group.
    2075                 :      */
    2076            2295 :     run_cost += 2.0 * cpu_tuple_cost * input_groups;
    2077                 : 
    2078            2295 :     path->rows = input_tuples;
    2079            2295 :     path->startup_cost = startup_cost;
    2080 CBC        2295 :     path->total_cost = startup_cost + run_cost;
    2081            2295 : }
    2082                 : 
    2083                 : /*
    2084                 :  * cost_sort
    2085                 :  *    Determines and returns the cost of sorting a relation, including
    2086                 :  *    the cost of reading the input data.
    2087                 :  *
    2088 ECB             :  * NOTE: some callers currently pass NIL for pathkeys because they
    2089                 :  * can't conveniently supply the sort keys.  Since this routine doesn't
    2090                 :  * currently do anything with pathkeys anyway, that doesn't matter...
    2091                 :  * but if it ever does, it should react gracefully to lack of key data.
    2092                 :  * (Actually, the thing we'd most likely be interested in is just the number
    2093                 :  * of sort keys, which all callers *could* supply.)
    2094                 :  */
    2095                 : void
    2096 CBC      584291 : cost_sort(Path *path, PlannerInfo *root,
    2097 ECB             :           List *pathkeys, Cost input_cost, double tuples, int width,
    2098                 :           Cost comparison_cost, int sort_mem,
    2099                 :           double limit_tuples)
    2100                 : 
    2101                 : {
    2102                 :     Cost        startup_cost;
    2103                 :     Cost        run_cost;
    2104                 : 
    2105 GIC      584291 :     cost_tuplesort(&startup_cost, &run_cost,
    2106                 :                    tuples, width,
    2107                 :                    comparison_cost, sort_mem,
    2108                 :                    limit_tuples);
    2109                 : 
    2110          584291 :     if (!enable_sort)
    2111             589 :         startup_cost += disable_cost;
    2112                 : 
    2113          584291 :     startup_cost += input_cost;
    2114 ECB             : 
    2115 GIC      584291 :     path->rows = tuples;
    2116          584291 :     path->startup_cost = startup_cost;
    2117          584291 :     path->total_cost = startup_cost + run_cost;
    2118          584291 : }
    2119                 : 
    2120                 : /*
    2121                 :  * append_nonpartial_cost
    2122                 :  *    Estimate the cost of the non-partial paths in a Parallel Append.
    2123 ECB             :  *    The non-partial paths are assumed to be the first "numpaths" paths
    2124                 :  *    from the subpaths list, and to be in order of decreasing cost.
    2125                 :  */
    2126                 : static Cost
    2127 GIC        6833 : append_nonpartial_cost(List *subpaths, int numpaths, int parallel_workers)
    2128 ECB             : {
    2129                 :     Cost       *costarr;
    2130                 :     int         arrlen;
    2131                 :     ListCell   *l;
    2132                 :     ListCell   *cell;
    2133                 :     int         path_index;
    2134                 :     int         min_index;
    2135                 :     int         max_index;
    2136                 : 
    2137 GIC        6833 :     if (numpaths == 0)
    2138            6333 :         return 0;
    2139                 : 
    2140                 :     /*
    2141                 :      * Array length is number of workers or number of relevant paths,
    2142                 :      * whichever is less.
    2143                 :      */
    2144 CBC         500 :     arrlen = Min(parallel_workers, numpaths);
    2145 GIC         500 :     costarr = (Cost *) palloc(sizeof(Cost) * arrlen);
    2146                 : 
    2147                 :     /* The first few paths will each be claimed by a different worker. */
    2148             500 :     path_index = 0;
    2149            1283 :     foreach(cell, subpaths)
    2150                 :     {
    2151            1188 :         Path       *subpath = (Path *) lfirst(cell);
    2152                 : 
    2153            1188 :         if (path_index == arrlen)
    2154 CBC         405 :             break;
    2155             783 :         costarr[path_index++] = subpath->total_cost;
    2156                 :     }
    2157                 : 
    2158                 :     /*
    2159                 :      * Since subpaths are sorted by decreasing cost, the last one will have
    2160                 :      * the minimum cost.
    2161 ECB             :      */
    2162 CBC         500 :     min_index = arrlen - 1;
    2163                 : 
    2164                 :     /*
    2165 ECB             :      * For each of the remaining subpaths, add its cost to the array element
    2166                 :      * with minimum cost.
    2167                 :      */
    2168 CBC         741 :     for_each_cell(l, subpaths, cell)
    2169                 :     {
    2170             497 :         Path       *subpath = (Path *) lfirst(l);
    2171 ECB             : 
    2172                 :         /* Consider only the non-partial paths */
    2173 GIC         497 :         if (path_index++ == numpaths)
    2174             256 :             break;
    2175                 : 
    2176             241 :         costarr[min_index] += subpath->total_cost;
    2177                 : 
    2178 ECB             :         /* Update the new min cost array index */
    2179 GNC         241 :         min_index = 0;
    2180             741 :         for (int i = 0; i < arrlen; i++)
    2181                 :         {
    2182 GIC         500 :             if (costarr[i] < costarr[min_index])
    2183             101 :                 min_index = i;
    2184                 :         }
    2185 ECB             :     }
    2186                 : 
    2187                 :     /* Return the highest cost from the array */
    2188 GNC         500 :     max_index = 0;
    2189            1283 :     for (int i = 0; i < arrlen; i++)
    2190                 :     {
    2191 CBC         783 :         if (costarr[i] > costarr[max_index])
    2192              95 :             max_index = i;
    2193                 :     }
    2194 ECB             : 
    2195 GIC         500 :     return costarr[max_index];
    2196                 : }
    2197 ECB             : 
    2198                 : /*
    2199                 :  * cost_append
    2200                 :  *    Determines and returns the cost of an Append node.
    2201                 :  */
    2202                 : void
    2203 GIC       21287 : cost_append(AppendPath *apath)
    2204                 : {
    2205                 :     ListCell   *l;
    2206 ECB             : 
    2207 CBC       21287 :     apath->path.startup_cost = 0;
    2208 GIC       21287 :     apath->path.total_cost = 0;
    2209 CBC       21287 :     apath->path.rows = 0;
    2210 ECB             : 
    2211 GIC       21287 :     if (apath->subpaths == NIL)
    2212             672 :         return;
    2213 ECB             : 
    2214 GIC       20615 :     if (!apath->path.parallel_aware)
    2215                 :     {
    2216           13782 :         List       *pathkeys = apath->path.pathkeys;
    2217                 : 
    2218           13782 :         if (pathkeys == NIL)
    2219                 :         {
    2220 GNC       12815 :             Path       *firstsubpath = (Path *) linitial(apath->subpaths);
    2221 ECB             : 
    2222                 :             /*
    2223                 :              * For an unordered, non-parallel-aware Append we take the startup
    2224                 :              * cost as the startup cost of the first subpath.
    2225                 :              */
    2226 GNC       12815 :             apath->path.startup_cost = firstsubpath->startup_cost;
    2227 ECB             : 
    2228                 :             /* Compute rows and costs as sums of subplan rows and costs. */
    2229 CBC       50545 :             foreach(l, apath->subpaths)
    2230 ECB             :             {
    2231 GIC       37730 :                 Path       *subpath = (Path *) lfirst(l);
    2232 ECB             : 
    2233 GIC       37730 :                 apath->path.rows += subpath->rows;
    2234 CBC       37730 :                 apath->path.total_cost += subpath->total_cost;
    2235                 :             }
    2236 ECB             :         }
    2237                 :         else
    2238                 :         {
    2239                 :             /*
    2240                 :              * For an ordered, non-parallel-aware Append we take the startup
    2241                 :              * cost as the sum of the subpath startup costs.  This ensures
    2242                 :              * that we don't underestimate the startup cost when a query's
    2243                 :              * LIMIT is such that several of the children have to be run to
    2244                 :              * satisfy it.  This might be overkill --- another plausible hack
    2245                 :              * would be to take the Append's startup cost as the maximum of
    2246                 :              * the child startup costs.  But we don't want to risk believing
    2247                 :              * that an ORDER BY LIMIT query can be satisfied at small cost
    2248                 :              * when the first child has small startup cost but later ones
    2249                 :              * don't.  (If we had the ability to deal with nonlinear cost
    2250                 :              * interpolation for partial retrievals, we would not need to be
    2251                 :              * so conservative about this.)
    2252                 :              *
    2253                 :              * This case is also different from the above in that we have to
    2254                 :              * account for possibly injecting sorts into subpaths that aren't
    2255                 :              * natively ordered.
    2256                 :              */
    2257 GIC        3774 :             foreach(l, apath->subpaths)
    2258                 :             {
    2259            2807 :                 Path       *subpath = (Path *) lfirst(l);
    2260                 :                 Path        sort_path;  /* dummy for result of cost_sort */
    2261                 : 
    2262            2807 :                 if (!pathkeys_contained_in(pathkeys, subpath->pathkeys))
    2263                 :                 {
    2264                 :                     /*
    2265                 :                      * We'll need to insert a Sort node, so include costs for
    2266                 :                      * that.  We can use the parent's LIMIT if any, since we
    2267                 :                      * certainly won't pull more than that many tuples from
    2268                 :                      * any child.
    2269                 :                      */
    2270              22 :                     cost_sort(&sort_path,
    2271                 :                               NULL, /* doesn't currently need root */
    2272                 :                               pathkeys,
    2273                 :                               subpath->total_cost,
    2274                 :                               subpath->rows,
    2275 CBC          22 :                               subpath->pathtarget->width,
    2276                 :                               0.0,
    2277 ECB             :                               work_mem,
    2278                 :                               apath->limit_tuples);
    2279 GIC          22 :                     subpath = &sort_path;
    2280 ECB             :                 }
    2281                 : 
    2282 GIC        2807 :                 apath->path.rows += subpath->rows;
    2283            2807 :                 apath->path.startup_cost += subpath->startup_cost;
    2284            2807 :                 apath->path.total_cost += subpath->total_cost;
    2285                 :             }
    2286                 :         }
    2287                 :     }
    2288 ECB             :     else                        /* parallel-aware */
    2289                 :     {
    2290 GIC        6833 :         int         i = 0;
    2291            6833 :         double      parallel_divisor = get_parallel_divisor(&apath->path);
    2292                 : 
    2293 ECB             :         /* Parallel-aware Append never produces ordered output. */
    2294 GIC        6833 :         Assert(apath->path.pathkeys == NIL);
    2295                 : 
    2296                 :         /* Calculate startup cost. */
    2297 CBC       28323 :         foreach(l, apath->subpaths)
    2298                 :         {
    2299 GIC       21490 :             Path       *subpath = (Path *) lfirst(l);
    2300 ECB             : 
    2301                 :             /*
    2302                 :              * Append will start returning tuples when the child node having
    2303                 :              * lowest startup cost is done setting up. We consider only the
    2304                 :              * first few subplans that immediately get a worker assigned.
    2305                 :              */
    2306 GIC       21490 :             if (i == 0)
    2307            6833 :                 apath->path.startup_cost = subpath->startup_cost;
    2308 CBC       14657 :             else if (i < apath->path.parallel_workers)
    2309            6680 :                 apath->path.startup_cost = Min(apath->path.startup_cost,
    2310                 :                                                subpath->startup_cost);
    2311                 : 
    2312 ECB             :             /*
    2313                 :              * Apply parallel divisor to subpaths.  Scale the number of rows
    2314                 :              * for each partial subpath based on the ratio of the parallel
    2315                 :              * divisor originally used for the subpath to the one we adopted.
    2316                 :              * Also add the cost of partial paths to the total cost, but
    2317                 :              * ignore non-partial paths for now.
    2318                 :              */
    2319 GIC       21490 :             if (i < apath->first_partial_path)
    2320            1024 :                 apath->path.rows += subpath->rows / parallel_divisor;
    2321                 :             else
    2322                 :             {
    2323                 :                 double      subpath_parallel_divisor;
    2324 ECB             : 
    2325 CBC       20466 :                 subpath_parallel_divisor = get_parallel_divisor(subpath);
    2326           20466 :                 apath->path.rows += subpath->rows * (subpath_parallel_divisor /
    2327 ECB             :                                                      parallel_divisor);
    2328 GIC       20466 :                 apath->path.total_cost += subpath->total_cost;
    2329                 :             }
    2330                 : 
    2331           21490 :             apath->path.rows = clamp_row_est(apath->path.rows);
    2332                 : 
    2333           21490 :             i++;
    2334                 :         }
    2335                 : 
    2336                 :         /* Add cost for non-partial subpaths. */
    2337 CBC        6833 :         apath->path.total_cost +=
    2338            6833 :             append_nonpartial_cost(apath->subpaths,
    2339                 :                                    apath->first_partial_path,
    2340                 :                                    apath->path.parallel_workers);
    2341                 :     }
    2342                 : 
    2343 ECB             :     /*
    2344                 :      * Although Append does not do any selection or projection, it's not free;
    2345                 :      * add a small per-tuple overhead.
    2346                 :      */
    2347 GIC       20615 :     apath->path.total_cost +=
    2348           20615 :         cpu_tuple_cost * APPEND_CPU_COST_MULTIPLIER * apath->path.rows;
    2349 ECB             : }
    2350                 : 
    2351                 : /*
    2352                 :  * cost_merge_append
    2353                 :  *    Determines and returns the cost of a MergeAppend node.
    2354                 :  *
    2355                 :  * MergeAppend merges several pre-sorted input streams, using a heap that
    2356                 :  * at any given instant holds the next tuple from each stream.  If there
    2357                 :  * are N streams, we need about N*log2(N) tuple comparisons to construct
    2358                 :  * the heap at startup, and then for each output tuple, about log2(N)
    2359                 :  * comparisons to replace the top entry.
    2360                 :  *
    2361                 :  * (The effective value of N will drop once some of the input streams are
    2362                 :  * exhausted, but it seems unlikely to be worth trying to account for that.)
    2363                 :  *
    2364                 :  * The heap is never spilled to disk, since we assume N is not very large.
    2365                 :  * So this is much simpler than cost_sort.
    2366                 :  *
    2367                 :  * As in cost_sort, we charge two operator evals per tuple comparison.
    2368                 :  *
    2369                 :  * 'pathkeys' is a list of sort keys
    2370                 :  * 'n_streams' is the number of input streams
    2371                 :  * 'input_startup_cost' is the sum of the input streams' startup costs
    2372                 :  * 'input_total_cost' is the sum of the input streams' total costs
    2373                 :  * 'tuples' is the number of tuples in all the streams
    2374                 :  */
    2375                 : void
    2376 GIC        1785 : cost_merge_append(Path *path, PlannerInfo *root,
    2377                 :                   List *pathkeys, int n_streams,
    2378                 :                   Cost input_startup_cost, Cost input_total_cost,
    2379                 :                   double tuples)
    2380                 : {
    2381            1785 :     Cost        startup_cost = 0;
    2382            1785 :     Cost        run_cost = 0;
    2383                 :     Cost        comparison_cost;
    2384                 :     double      N;
    2385                 :     double      logN;
    2386                 : 
    2387                 :     /*
    2388                 :      * Avoid log(0)...
    2389                 :      */
    2390            1785 :     N = (n_streams < 2) ? 2.0 : (double) n_streams;
    2391            1785 :     logN = LOG2(N);
    2392                 : 
    2393                 :     /* Assumed cost per tuple comparison */
    2394 CBC        1785 :     comparison_cost = 2.0 * cpu_operator_cost;
    2395                 : 
    2396                 :     /* Heap creation cost */
    2397 GIC        1785 :     startup_cost += comparison_cost * N * logN;
    2398                 : 
    2399 ECB             :     /* Per-tuple heap maintenance cost */
    2400 CBC        1785 :     run_cost += tuples * comparison_cost * logN;
    2401                 : 
    2402                 :     /*
    2403                 :      * Although MergeAppend does not do any selection or projection, it's not
    2404                 :      * free; add a small per-tuple overhead.
    2405                 :      */
    2406 GIC        1785 :     run_cost += cpu_tuple_cost * APPEND_CPU_COST_MULTIPLIER * tuples;
    2407                 : 
    2408 CBC        1785 :     path->startup_cost = startup_cost + input_startup_cost;
    2409            1785 :     path->total_cost = startup_cost + run_cost + input_total_cost;
    2410 GIC        1785 : }
    2411                 : 
    2412 ECB             : /*
    2413                 :  * cost_material
    2414                 :  *    Determines and returns the cost of materializing a relation, including
    2415                 :  *    the cost of reading the input data.
    2416                 :  *
    2417                 :  * If the total volume of data to materialize exceeds work_mem, we will need
    2418                 :  * to write it to disk, so the cost is much higher in that case.
    2419                 :  *
    2420                 :  * Note that here we are estimating the costs for the first scan of the
    2421                 :  * relation, so the materialization is all overhead --- any savings will
    2422                 :  * occur only on rescan, which is estimated in cost_rescan.
    2423                 :  */
    2424                 : void
    2425 GIC      177675 : cost_material(Path *path,
    2426 ECB             :               Cost input_startup_cost, Cost input_total_cost,
    2427                 :               double tuples, int width)
    2428                 : {
    2429 GIC      177675 :     Cost        startup_cost = input_startup_cost;
    2430          177675 :     Cost        run_cost = input_total_cost - input_startup_cost;
    2431          177675 :     double      nbytes = relation_byte_size(tuples, width);
    2432          177675 :     long        work_mem_bytes = work_mem * 1024L;
    2433                 : 
    2434          177675 :     path->rows = tuples;
    2435                 : 
    2436                 :     /*
    2437                 :      * Whether spilling or not, charge 2x cpu_operator_cost per tuple to
    2438                 :      * reflect bookkeeping overhead.  (This rate must be more than what
    2439                 :      * cost_rescan charges for materialize, ie, cpu_operator_cost per tuple;
    2440                 :      * if it is exactly the same then there will be a cost tie between
    2441                 :      * nestloop with A outer, materialized B inner and nestloop with B outer,
    2442                 :      * materialized A inner.  The extra cost ensures we'll prefer
    2443 ECB             :      * materializing the smaller rel.)  Note that this is normally a good deal
    2444                 :      * less than cpu_tuple_cost; which is OK because a Material plan node
    2445                 :      * doesn't do qual-checking or projection, so it's got less overhead than
    2446                 :      * most plan nodes.
    2447                 :      */
    2448 CBC      177675 :     run_cost += 2 * cpu_operator_cost * tuples;
    2449 ECB             : 
    2450                 :     /*
    2451                 :      * If we will spill to disk, charge at the rate of seq_page_cost per page.
    2452                 :      * This cost is assumed to be evenly spread through the plan run phase,
    2453                 :      * which isn't exactly accurate but our cost model doesn't allow for
    2454                 :      * nonuniform costs within the run phase.
    2455                 :      */
    2456 GIC      177675 :     if (nbytes > work_mem_bytes)
    2457                 :     {
    2458            1967 :         double      npages = ceil(nbytes / BLCKSZ);
    2459                 : 
    2460            1967 :         run_cost += seq_page_cost * npages;
    2461                 :     }
    2462                 : 
    2463          177675 :     path->startup_cost = startup_cost;
    2464          177675 :     path->total_cost = startup_cost + run_cost;
    2465          177675 : }
    2466 ECB             : 
    2467                 : /*
    2468                 :  * cost_memoize_rescan
    2469                 :  *    Determines the estimated cost of rescanning a Memoize node.
    2470                 :  *
    2471                 :  * In order to estimate this, we must gain knowledge of how often we expect to
    2472                 :  * be called and how many distinct sets of parameters we are likely to be
    2473                 :  * called with. If we expect a good cache hit ratio, then we can set our
    2474                 :  * costs to account for that hit ratio, plus a little bit of cost for the
    2475                 :  * caching itself.  Caching will not work out well if we expect to be called
    2476                 :  * with too many distinct parameter values.  The worst-case here is that we
    2477                 :  * never see any parameter value twice, in which case we'd never get a cache
    2478                 :  * hit and caching would be a complete waste of effort.
    2479                 :  */
    2480                 : static void
    2481 CBC       89794 : cost_memoize_rescan(PlannerInfo *root, MemoizePath *mpath,
    2482 ECB             :                     Cost *rescan_startup_cost, Cost *rescan_total_cost)
    2483                 : {
    2484                 :     EstimationInfo estinfo;
    2485                 :     ListCell   *lc;
    2486 GIC       89794 :     Cost        input_startup_cost = mpath->subpath->startup_cost;
    2487           89794 :     Cost        input_total_cost = mpath->subpath->total_cost;
    2488           89794 :     double      tuples = mpath->subpath->rows;
    2489           89794 :     double      calls = mpath->calls;
    2490           89794 :     int         width = mpath->subpath->pathtarget->width;
    2491                 : 
    2492                 :     double      hash_mem_bytes;
    2493                 :     double      est_entry_bytes;
    2494                 :     double      est_cache_entries;
    2495                 :     double      ndistinct;
    2496                 :     double      evict_ratio;
    2497                 :     double      hit_ratio;
    2498                 :     Cost        startup_cost;
    2499                 :     Cost        total_cost;
    2500 ECB             : 
    2501                 :     /* available cache space */
    2502 GIC       89794 :     hash_mem_bytes = get_hash_memory_limit();
    2503                 : 
    2504                 :     /*
    2505 ECB             :      * Set the number of bytes each cache entry should consume in the cache.
    2506                 :      * To provide us with better estimations on how many cache entries we can
    2507                 :      * store at once, we make a call to the executor here to ask it what
    2508                 :      * memory overheads there are for a single cache entry.
    2509                 :      */
    2510 GIC       89794 :     est_entry_bytes = relation_byte_size(tuples, width) +
    2511           89794 :         ExecEstimateCacheEntryOverheadBytes(tuples);
    2512                 : 
    2513                 :     /* include the estimated width for the cache keys */
    2514 GNC      189220 :     foreach(lc, mpath->param_exprs)
    2515           99426 :         est_entry_bytes += get_expr_width(root, (Node *) lfirst(lc));
    2516                 : 
    2517                 :     /* estimate on the upper limit of cache entries we can hold at once */
    2518 GIC       89794 :     est_cache_entries = floor(hash_mem_bytes / est_entry_bytes);
    2519                 : 
    2520                 :     /* estimate on the distinct number of parameter values */
    2521           89794 :     ndistinct = estimate_num_groups(root, mpath->param_exprs, calls, NULL,
    2522                 :                                     &estinfo);
    2523 ECB             : 
    2524                 :     /*
    2525                 :      * When the estimation fell back on using a default value, it's a bit too
    2526                 :      * risky to assume that it's ok to use a Memoize node.  The use of a
    2527                 :      * default could cause us to use a Memoize node when it's really
    2528                 :      * inappropriate to do so.  If we see that this has been done, then we'll
    2529                 :      * assume that every call will have unique parameters, which will almost
    2530                 :      * certainly mean a MemoizePath will never survive add_path().
    2531                 :      */
    2532 CBC       89794 :     if ((estinfo.flags & SELFLAG_USED_DEFAULT) != 0)
    2533 GIC        6052 :         ndistinct = calls;
    2534                 : 
    2535 ECB             :     /*
    2536                 :      * Since we've already estimated the maximum number of entries we can
    2537                 :      * store at once and know the estimated number of distinct values we'll be
    2538                 :      * called with, we'll take this opportunity to set the path's est_entries.
    2539                 :      * This will ultimately determine the hash table size that the executor
    2540                 :      * will use.  If we leave this at zero, the executor will just choose the
    2541                 :      * size itself.  Really this is not the right place to do this, but it's
    2542                 :      * convenient since everything is already calculated.
    2543                 :      */
    2544 GIC       89794 :     mpath->est_entries = Min(Min(ndistinct, est_cache_entries),
    2545                 :                              PG_UINT32_MAX);
    2546                 : 
    2547                 :     /*
    2548                 :      * When the number of distinct parameter values is above the amount we can
    2549                 :      * store in the cache, then we'll have to evict some entries from the
    2550                 :      * cache.  This is not free. Here we estimate how often we'll incur the
    2551                 :      * cost of that eviction.
    2552                 :      */
    2553 CBC       89794 :     evict_ratio = 1.0 - Min(est_cache_entries, ndistinct) / ndistinct;
    2554 ECB             : 
    2555                 :     /*
    2556                 :      * In order to estimate how costly a single scan will be, we need to
    2557                 :      * attempt to estimate what the cache hit ratio will be.  To do that we
    2558                 :      * must look at how many scans are estimated in total for this node and
    2559                 :      * how many of those scans we expect to get a cache hit.
    2560                 :      */
    2561 GNC      179588 :     hit_ratio = ((calls - ndistinct) / calls) *
    2562           89794 :         (est_cache_entries / Max(ndistinct, est_cache_entries));
    2563                 : 
    2564           89794 :     Assert(hit_ratio >= 0 && hit_ratio <= 1.0);
    2565                 : 
    2566                 :     /*
    2567                 :      * Set the total_cost accounting for the expected cache hit ratio.  We
    2568                 :      * also add on a cpu_operator_cost to account for a cache lookup. This
    2569                 :      * will happen regardless of whether it's a cache hit or not.
    2570                 :      */
    2571 GIC       89794 :     total_cost = input_total_cost * (1.0 - hit_ratio) + cpu_operator_cost;
    2572                 : 
    2573 ECB             :     /* Now adjust the total cost to account for cache evictions */
    2574                 : 
    2575                 :     /* Charge a cpu_tuple_cost for evicting the actual cache entry */
    2576 GIC       89794 :     total_cost += cpu_tuple_cost * evict_ratio;
    2577                 : 
    2578                 :     /*
    2579                 :      * Charge a 10th of cpu_operator_cost to evict every tuple in that entry.
    2580                 :      * The per-tuple eviction is really just a pfree, so charging a whole
    2581 ECB             :      * cpu_operator_cost seems a little excessive.
    2582                 :      */
    2583 GIC       89794 :     total_cost += cpu_operator_cost / 10.0 * evict_ratio * tuples;
    2584 ECB             : 
    2585                 :     /*
    2586                 :      * Now adjust for storing things in the cache, since that's not free
    2587                 :      * either.  Everything must go in the cache.  We don't proportion this
    2588                 :      * over any ratio, just apply it once for the scan.  We charge a
    2589                 :      * cpu_tuple_cost for the creation of the cache entry and also a
    2590                 :      * cpu_operator_cost for each tuple we expect to cache.
    2591                 :      */
    2592 GIC       89794 :     total_cost += cpu_tuple_cost + cpu_operator_cost * tuples;
    2593                 : 
    2594                 :     /*
    2595                 :      * Getting the first row must be also be proportioned according to the
    2596 ECB             :      * expected cache hit ratio.
    2597                 :      */
    2598 GIC       89794 :     startup_cost = input_startup_cost * (1.0 - hit_ratio);
    2599                 : 
    2600                 :     /*
    2601                 :      * Additionally we charge a cpu_tuple_cost to account for cache lookups,
    2602                 :      * which we'll do regardless of whether it was a cache hit or not.
    2603 ECB             :      */
    2604 GIC       89794 :     startup_cost += cpu_tuple_cost;
    2605                 : 
    2606           89794 :     *rescan_startup_cost = startup_cost;
    2607           89794 :     *rescan_total_cost = total_cost;
    2608           89794 : }
    2609                 : 
    2610                 : /*
    2611                 :  * cost_agg
    2612 ECB             :  *      Determines and returns the cost of performing an Agg plan node,
    2613                 :  *      including the cost of its input.
    2614                 :  *
    2615                 :  * aggcosts can be NULL when there are no actual aggregate functions (i.e.,
    2616                 :  * we are using a hashed Agg node just to do grouping).
    2617                 :  *
    2618                 :  * Note: when aggstrategy == AGG_SORTED, caller must ensure that input costs
    2619                 :  * are for appropriately-sorted input.
    2620                 :  */
    2621                 : void
    2622 GIC       29989 : cost_agg(Path *path, PlannerInfo *root,
    2623                 :          AggStrategy aggstrategy, const AggClauseCosts *aggcosts,
    2624 ECB             :          int numGroupCols, double numGroups,
    2625                 :          List *quals,
    2626                 :          Cost input_startup_cost, Cost input_total_cost,
    2627                 :          double input_tuples, double input_width)
    2628                 : {
    2629                 :     double      output_tuples;
    2630                 :     Cost        startup_cost;
    2631                 :     Cost        total_cost;
    2632                 :     AggClauseCosts dummy_aggcosts;
    2633                 : 
    2634                 :     /* Use all-zero per-aggregate costs if NULL is passed */
    2635 GIC       29989 :     if (aggcosts == NULL)
    2636                 :     {
    2637            5701 :         Assert(aggstrategy == AGG_HASHED);
    2638           34206 :         MemSet(&dummy_aggcosts, 0, sizeof(AggClauseCosts));
    2639            5701 :         aggcosts = &dummy_aggcosts;
    2640                 :     }
    2641                 : 
    2642 ECB             :     /*
    2643                 :      * The transCost.per_tuple component of aggcosts should be charged once
    2644                 :      * per input tuple, corresponding to the costs of evaluating the aggregate
    2645                 :      * transfns and their input expressions. The finalCost.per_tuple component
    2646                 :      * is charged once per output tuple, corresponding to the costs of
    2647                 :      * evaluating the finalfns.  Startup costs are of course charged but once.
    2648                 :      *
    2649                 :      * If we are grouping, we charge an additional cpu_operator_cost per
    2650                 :      * grouping column per input tuple for grouping comparisons.
    2651                 :      *
    2652                 :      * We will produce a single output tuple if not grouping, and a tuple per
    2653                 :      * group otherwise.  We charge cpu_tuple_cost for each output tuple.
    2654                 :      *
    2655                 :      * Note: in this cost model, AGG_SORTED and AGG_HASHED have exactly the
    2656                 :      * same total CPU cost, but AGG_SORTED has lower startup cost.  If the
    2657                 :      * input path is already sorted appropriately, AGG_SORTED should be
    2658                 :      * preferred (since it has no risk of memory overflow).  This will happen
    2659                 :      * as long as the computed total costs are indeed exactly equal --- but if
    2660                 :      * there's roundoff error we might do the wrong thing.  So be sure that
    2661                 :      * the computations below form the same intermediate values in the same
    2662                 :      * order.
    2663                 :      */
    2664 GIC       29989 :     if (aggstrategy == AGG_PLAIN)
    2665                 :     {
    2666           15454 :         startup_cost = input_total_cost;
    2667           15454 :         startup_cost += aggcosts->transCost.startup;
    2668           15454 :         startup_cost += aggcosts->transCost.per_tuple * input_tuples;
    2669           15454 :         startup_cost += aggcosts->finalCost.startup;
    2670           15454 :         startup_cost += aggcosts->finalCost.per_tuple;
    2671                 :         /* we aren't grouping */
    2672           15454 :         total_cost = startup_cost + cpu_tuple_cost;
    2673           15454 :         output_tuples = 1;
    2674                 :     }
    2675           14535 :     else if (aggstrategy == AGG_SORTED || aggstrategy == AGG_MIXED)
    2676                 :     {
    2677                 :         /* Here we are able to deliver output on-the-fly */
    2678            5045 :         startup_cost = input_startup_cost;
    2679            5045 :         total_cost = input_total_cost;
    2680            5045 :         if (aggstrategy == AGG_MIXED && !enable_hashagg)
    2681                 :         {
    2682             228 :             startup_cost += disable_cost;
    2683             228 :             total_cost += disable_cost;
    2684 ECB             :         }
    2685                 :         /* calcs phrased this way to match HASHED case, see note above */
    2686 CBC        5045 :         total_cost += aggcosts->transCost.startup;
    2687            5045 :         total_cost += aggcosts->transCost.per_tuple * input_tuples;
    2688            5045 :         total_cost += (cpu_operator_cost * numGroupCols) * input_tuples;
    2689            5045 :         total_cost += aggcosts->finalCost.startup;
    2690            5045 :         total_cost += aggcosts->finalCost.per_tuple * numGroups;
    2691 GIC        5045 :         total_cost += cpu_tuple_cost * numGroups;
    2692 CBC        5045 :         output_tuples = numGroups;
    2693 ECB             :     }
    2694                 :     else
    2695                 :     {
    2696                 :         /* must be AGG_HASHED */
    2697 GIC        9490 :         startup_cost = input_total_cost;
    2698 CBC        9490 :         if (!enable_hashagg)
    2699             687 :             startup_cost += disable_cost;
    2700            9490 :         startup_cost += aggcosts->transCost.startup;
    2701 GIC        9490 :         startup_cost += aggcosts->transCost.per_tuple * input_tuples;
    2702 ECB             :         /* cost of computing hash value */
    2703 CBC        9490 :         startup_cost += (cpu_operator_cost * numGroupCols) * input_tuples;
    2704 GIC        9490 :         startup_cost += aggcosts->finalCost.startup;
    2705                 : 
    2706 CBC        9490 :         total_cost = startup_cost;
    2707            9490 :         total_cost += aggcosts->finalCost.per_tuple * numGroups;
    2708 ECB             :         /* cost of retrieving from hash table */
    2709 CBC        9490 :         total_cost += cpu_tuple_cost * numGroups;
    2710            9490 :         output_tuples = numGroups;
    2711 ECB             :     }
    2712                 : 
    2713                 :     /*
    2714                 :      * Add the disk costs of hash aggregation that spills to disk.
    2715                 :      *
    2716                 :      * Groups that go into the hash table stay in memory until finalized, so
    2717                 :      * spilling and reprocessing tuples doesn't incur additional invocations
    2718                 :      * of transCost or finalCost. Furthermore, the computed hash value is
    2719                 :      * stored with the spilled tuples, so we don't incur extra invocations of
    2720                 :      * the hash function.
    2721                 :      *
    2722                 :      * Hash Agg begins returning tuples after the first batch is complete.
    2723                 :      * Accrue writes (spilled tuples) to startup_cost and to total_cost;
    2724                 :      * accrue reads only to total_cost.
    2725                 :      */
    2726 CBC       29989 :     if (aggstrategy == AGG_HASHED || aggstrategy == AGG_MIXED)
    2727 ECB             :     {
    2728                 :         double      pages;
    2729 CBC        9912 :         double      pages_written = 0.0;
    2730            9912 :         double      pages_read = 0.0;
    2731                 :         double      spill_cost;
    2732                 :         double      hashentrysize;
    2733                 :         double      nbatches;
    2734                 :         Size        mem_limit;
    2735                 :         uint64      ngroups_limit;
    2736                 :         int         num_partitions;
    2737                 :         int         depth;
    2738                 : 
    2739                 :         /*
    2740                 :          * Estimate number of batches based on the computed limits. If less
    2741                 :          * than or equal to one, all groups are expected to fit in memory;
    2742                 :          * otherwise we expect to spill.
    2743                 :          */
    2744 GIC        9912 :         hashentrysize = hash_agg_entry_size(list_length(root->aggtransinfos),
    2745                 :                                             input_width,
    2746 CBC        9912 :                                             aggcosts->transitionSpace);
    2747 GIC        9912 :         hash_agg_set_limits(hashentrysize, numGroups, 0, &mem_limit,
    2748                 :                             &ngroups_limit, &num_partitions);
    2749 ECB             : 
    2750 CBC        9912 :         nbatches = Max((numGroups * hashentrysize) / mem_limit,
    2751                 :                        numGroups / ngroups_limit);
    2752                 : 
    2753 GIC        9912 :         nbatches = Max(ceil(nbatches), 1.0);
    2754            9912 :         num_partitions = Max(num_partitions, 2);
    2755                 : 
    2756                 :         /*
    2757                 :          * The number of partitions can change at different levels of
    2758                 :          * recursion; but for the purposes of this calculation assume it stays
    2759                 :          * constant.
    2760                 :          */
    2761            9912 :         depth = ceil(log(nbatches) / log(num_partitions));
    2762                 : 
    2763                 :         /*
    2764 ECB             :          * Estimate number of pages read and written. For each level of
    2765                 :          * recursion, a tuple must be written and then later read.
    2766                 :          */
    2767 CBC        9912 :         pages = relation_byte_size(input_tuples, input_width) / BLCKSZ;
    2768 GIC        9912 :         pages_written = pages_read = pages * depth;
    2769                 : 
    2770 ECB             :         /*
    2771                 :          * HashAgg has somewhat worse IO behavior than Sort on typical
    2772                 :          * hardware/OS combinations. Account for this with a generic penalty.
    2773                 :          */
    2774 CBC        9912 :         pages_read *= 2.0;
    2775 GIC        9912 :         pages_written *= 2.0;
    2776                 : 
    2777            9912 :         startup_cost += pages_written * random_page_cost;
    2778            9912 :         total_cost += pages_written * random_page_cost;
    2779            9912 :         total_cost += pages_read * seq_page_cost;
    2780                 : 
    2781 ECB             :         /* account for CPU cost of spilling a tuple and reading it back */
    2782 GIC        9912 :         spill_cost = depth * input_tuples * 2.0 * cpu_tuple_cost;
    2783            9912 :         startup_cost += spill_cost;
    2784            9912 :         total_cost += spill_cost;
    2785                 :     }
    2786                 : 
    2787 ECB             :     /*
    2788                 :      * If there are quals (HAVING quals), account for their cost and
    2789                 :      * selectivity.
    2790                 :      */
    2791 GIC       29989 :     if (quals)
    2792                 :     {
    2793                 :         QualCost    qual_cost;
    2794 ECB             : 
    2795 CBC        1852 :         cost_qual_eval(&qual_cost, quals, root);
    2796 GIC        1852 :         startup_cost += qual_cost.startup;
    2797 CBC        1852 :         total_cost += qual_cost.startup + output_tuples * qual_cost.per_tuple;
    2798 ECB             : 
    2799 CBC        1852 :         output_tuples = clamp_row_est(output_tuples *
    2800 GIC        1852 :                                       clauselist_selectivity(root,
    2801                 :                                                              quals,
    2802 ECB             :                                                              0,
    2803                 :                                                              JOIN_INNER,
    2804                 :                                                              NULL));
    2805                 :     }
    2806                 : 
    2807 GIC       29989 :     path->rows = output_tuples;
    2808           29989 :     path->startup_cost = startup_cost;
    2809           29989 :     path->total_cost = total_cost;
    2810           29989 : }
    2811 ECB             : 
    2812                 : /*
    2813                 :  * cost_windowagg
    2814                 :  *      Determines and returns the cost of performing a WindowAgg plan node,
    2815                 :  *      including the cost of its input.
    2816                 :  *
    2817                 :  * Input is assumed already properly sorted.
    2818                 :  */
    2819                 : void
    2820 CBC        1155 : cost_windowagg(Path *path, PlannerInfo *root,
    2821                 :                List *windowFuncs, int numPartCols, int numOrderCols,
    2822                 :                Cost input_startup_cost, Cost input_total_cost,
    2823                 :                double input_tuples)
    2824                 : {
    2825                 :     Cost        startup_cost;
    2826                 :     Cost        total_cost;
    2827 ECB             :     ListCell   *lc;
    2828                 : 
    2829 CBC        1155 :     startup_cost = input_startup_cost;
    2830            1155 :     total_cost = input_total_cost;
    2831                 : 
    2832                 :     /*
    2833                 :      * Window functions are assumed to cost their stated execution cost, plus
    2834                 :      * the cost of evaluating their input expressions, per tuple.  Since they
    2835                 :      * may in fact evaluate their inputs at multiple rows during each cycle,
    2836                 :      * this could be a drastic underestimate; but without a way to know how
    2837                 :      * many rows the window function will fetch, it's hard to do better.  In
    2838                 :      * any case, it's a good estimate for all the built-in window functions,
    2839                 :      * so we'll just do this for now.
    2840 ECB             :      */
    2841 GIC        2580 :     foreach(lc, windowFuncs)
    2842                 :     {
    2843            1425 :         WindowFunc *wfunc = lfirst_node(WindowFunc, lc);
    2844                 :         Cost        wfunccost;
    2845                 :         QualCost    argcosts;
    2846                 : 
    2847            1425 :         argcosts.startup = argcosts.per_tuple = 0;
    2848            1425 :         add_function_cost(root, wfunc->winfnoid, (Node *) wfunc,
    2849 ECB             :                           &argcosts);
    2850 CBC        1425 :         startup_cost += argcosts.startup;
    2851 GIC        1425 :         wfunccost = argcosts.per_tuple;
    2852                 : 
    2853                 :         /* also add the input expressions' cost to per-input-row costs */
    2854            1425 :         cost_qual_eval_node(&argcosts, (Node *) wfunc->args, root);
    2855            1425 :         startup_cost += argcosts.startup;
    2856            1425 :         wfunccost += argcosts.per_tuple;
    2857                 : 
    2858                 :         /*
    2859                 :          * Add the filter's cost to per-input-row costs.  XXX We should reduce
    2860                 :          * input expression costs according to filter selectivity.
    2861 ECB             :          */
    2862 GIC        1425 :         cost_qual_eval_node(&argcosts, (Node *) wfunc->aggfilter, root);
    2863 CBC        1425 :         startup_cost += argcosts.startup;
    2864 GIC        1425 :         wfunccost += argcosts.per_tuple;
    2865                 : 
    2866            1425 :         total_cost += wfunccost * input_tuples;
    2867 ECB             :     }
    2868                 : 
    2869                 :     /*
    2870                 :      * We also charge cpu_operator_cost per grouping column per tuple for
    2871                 :      * grouping comparisons, plus cpu_tuple_cost per tuple for general
    2872                 :      * overhead.
    2873                 :      *
    2874                 :      * XXX this neglects costs of spooling the data to disk when it overflows
    2875                 :      * work_mem.  Sooner or later that should get accounted for.
    2876                 :      */
    2877 GIC        1155 :     total_cost += cpu_operator_cost * (numPartCols + numOrderCols) * input_tuples;
    2878            1155 :     total_cost += cpu_tuple_cost * input_tuples;
    2879                 : 
    2880            1155 :     path->rows = input_tuples;
    2881            1155 :     path->startup_cost = startup_cost;
    2882 CBC        1155 :     path->total_cost = total_cost;
    2883            1155 : }
    2884 ECB             : 
    2885                 : /*
    2886                 :  * cost_group
    2887                 :  *      Determines and returns the cost of performing a Group plan node,
    2888                 :  *      including the cost of its input.
    2889                 :  *
    2890                 :  * Note: caller must ensure that input costs are for appropriately-sorted
    2891                 :  * input.
    2892                 :  */
    2893                 : void
    2894 GIC        2172 : cost_group(Path *path, PlannerInfo *root,
    2895                 :            int numGroupCols, double numGroups,
    2896                 :            List *quals,
    2897 ECB             :            Cost input_startup_cost, Cost input_total_cost,
    2898                 :            double input_tuples)
    2899                 : {
    2900                 :     double      output_tuples;
    2901                 :     Cost        startup_cost;
    2902                 :     Cost        total_cost;
    2903                 : 
    2904 GIC        2172 :     output_tuples = numGroups;
    2905            2172 :     startup_cost = input_startup_cost;
    2906            2172 :     total_cost = input_total_cost;
    2907                 : 
    2908                 :     /*
    2909                 :      * Charge one cpu_operator_cost per comparison per input tuple. We assume
    2910                 :      * all columns get compared at most of the tuples.
    2911                 :      */
    2912            2172 :     total_cost += cpu_operator_cost * input_tuples * numGroupCols;
    2913                 : 
    2914 ECB             :     /*
    2915                 :      * If there are quals (HAVING quals), account for their cost and
    2916                 :      * selectivity.
    2917                 :      */
    2918 GIC        2172 :     if (quals)
    2919                 :     {
    2920                 :         QualCost    qual_cost;
    2921                 : 
    2922 UIC           0 :         cost_qual_eval(&qual_cost, quals, root);
    2923               0 :         startup_cost += qual_cost.startup;
    2924 LBC           0 :         total_cost += qual_cost.startup + output_tuples * qual_cost.per_tuple;
    2925 ECB             : 
    2926 LBC           0 :         output_tuples = clamp_row_est(output_tuples *
    2927 UIC           0 :                                       clauselist_selectivity(root,
    2928                 :                                                              quals,
    2929                 :                                                              0,
    2930                 :                                                              JOIN_INNER,
    2931                 :                                                              NULL));
    2932 ECB             :     }
    2933                 : 
    2934 GIC        2172 :     path->rows = output_tuples;
    2935            2172 :     path->startup_cost = startup_cost;
    2936            2172 :     path->total_cost = total_cost;
    2937            2172 : }
    2938 ECB             : 
    2939                 : /*
    2940                 :  * initial_cost_nestloop
    2941                 :  *    Preliminary estimate of the cost of a nestloop join path.
    2942 EUB             :  *
    2943                 :  * This must quickly produce lower-bound estimates of the path's startup and
    2944                 :  * total costs.  If we are unable to eliminate the proposed path from
    2945                 :  * consideration using the lower bounds, final_cost_nestloop will be called
    2946                 :  * to obtain the final estimates.
    2947                 :  *
    2948                 :  * The exact division of labor between this function and final_cost_nestloop
    2949                 :  * is private to them, and represents a tradeoff between speed of the initial
    2950                 :  * estimate and getting a tight lower bound.  We choose to not examine the
    2951                 :  * join quals here, since that's by far the most expensive part of the
    2952                 :  * calculations.  The end result is that CPU-cost considerations must be
    2953                 :  * left for the second phase; and for SEMI/ANTI joins, we must also postpone
    2954 ECB             :  * incorporation of the inner path's run cost.
    2955                 :  *
    2956                 :  * 'workspace' is to be filled with startup_cost, total_cost, and perhaps
    2957                 :  *      other data to be used by final_cost_nestloop
    2958                 :  * 'jointype' is the type of join to be performed
    2959                 :  * 'outer_path' is the outer input to the join
    2960                 :  * 'inner_path' is the inner input to the join
    2961                 :  * 'extra' contains miscellaneous information about the join
    2962                 :  */
    2963                 : void
    2964 GIC      920500 : initial_cost_nestloop(PlannerInfo *root, JoinCostWorkspace *workspace,
    2965                 :                       JoinType jointype,
    2966                 :                       Path *outer_path, Path *inner_path,
    2967                 :                       JoinPathExtraData *extra)
    2968                 : {
    2969          920500 :     Cost        startup_cost = 0;
    2970          920500 :     Cost        run_cost = 0;
    2971          920500 :     double      outer_path_rows = outer_path->rows;
    2972                 :     Cost        inner_rescan_start_cost;
    2973                 :     Cost        inner_rescan_total_cost;
    2974                 :     Cost        inner_run_cost;
    2975                 :     Cost        inner_rescan_run_cost;
    2976                 : 
    2977                 :     /* estimate costs to rescan the inner relation */
    2978          920500 :     cost_rescan(root, inner_path,
    2979                 :                 &inner_rescan_start_cost,
    2980                 :                 &inner_rescan_total_cost);
    2981                 : 
    2982                 :     /* cost of source data */
    2983                 : 
    2984 ECB             :     /*
    2985                 :      * NOTE: clearly, we must pay both outer and inner paths' startup_cost
    2986                 :      * before we can start returning tuples, so the join's startup cost is
    2987                 :      * their sum.  We'll also pay the inner path's rescan startup cost
    2988                 :      * multiple times.
    2989                 :      */
    2990 CBC      920500 :     startup_cost += outer_path->startup_cost + inner_path->startup_cost;
    2991          920500 :     run_cost += outer_path->total_cost - outer_path->startup_cost;
    2992 GIC      920500 :     if (outer_path_rows > 1)
    2993          625074 :         run_cost += (outer_path_rows - 1) * inner_rescan_start_cost;
    2994                 : 
    2995          920500 :     inner_run_cost = inner_path->total_cost - inner_path->startup_cost;
    2996          920500 :     inner_rescan_run_cost = inner_rescan_total_cost - inner_rescan_start_cost;
    2997                 : 
    2998 CBC      920500 :     if (jointype == JOIN_SEMI || jointype == JOIN_ANTI ||
    2999 GIC      893407 :         extra->inner_unique)
    3000                 :     {
    3001                 :         /*
    3002                 :          * With a SEMI or ANTI join, or if the innerrel is known unique, the
    3003                 :          * executor will stop after the first match.
    3004                 :          *
    3005                 :          * Getting decent estimates requires inspection of the join quals,
    3006                 :          * which we choose to postpone to final_cost_nestloop.
    3007                 :          */
    3008                 : 
    3009                 :         /* Save private data for final_cost_nestloop */
    3010 CBC      430167 :         workspace->inner_run_cost = inner_run_cost;
    3011          430167 :         workspace->inner_rescan_run_cost = inner_rescan_run_cost;
    3012 ECB             :     }
    3013                 :     else
    3014                 :     {
    3015                 :         /* Normal case; we'll scan whole input rel for each outer row */
    3016 CBC      490333 :         run_cost += inner_run_cost;
    3017 GIC      490333 :         if (outer_path_rows > 1)
    3018 CBC      339776 :             run_cost += (outer_path_rows - 1) * inner_rescan_run_cost;
    3019 ECB             :     }
    3020                 : 
    3021                 :     /* CPU costs left for later */
    3022                 : 
    3023                 :     /* Public result fields */
    3024 GIC      920500 :     workspace->startup_cost = startup_cost;
    3025          920500 :     workspace->total_cost = startup_cost + run_cost;
    3026                 :     /* Save private data for final_cost_nestloop */
    3027          920500 :     workspace->run_cost = run_cost;
    3028          920500 : }
    3029                 : 
    3030 ECB             : /*
    3031                 :  * final_cost_nestloop
    3032                 :  *    Final estimate of the cost and result size of a nestloop join path.
    3033                 :  *
    3034                 :  * 'path' is already filled in except for the rows and cost fields
    3035                 :  * 'workspace' is the result from initial_cost_nestloop
    3036                 :  * 'extra' contains miscellaneous information about the join
    3037                 :  */
    3038                 : void
    3039 GIC      444183 : final_cost_nestloop(PlannerInfo *root, NestPath *path,
    3040                 :                     JoinCostWorkspace *workspace,
    3041                 :                     JoinPathExtraData *extra)
    3042                 : {
    3043          444183 :     Path       *outer_path = path->jpath.outerjoinpath;
    3044 CBC      444183 :     Path       *inner_path = path->jpath.innerjoinpath;
    3045          444183 :     double      outer_path_rows = outer_path->rows;
    3046 GIC      444183 :     double      inner_path_rows = inner_path->rows;
    3047 CBC      444183 :     Cost        startup_cost = workspace->startup_cost;
    3048          444183 :     Cost        run_cost = workspace->run_cost;
    3049                 :     Cost        cpu_per_tuple;
    3050                 :     QualCost    restrict_qual_cost;
    3051                 :     double      ntuples;
    3052                 : 
    3053                 :     /* Protect some assumptions below that rowcounts aren't zero */
    3054 GIC      444183 :     if (outer_path_rows <= 0)
    3055 UIC           0 :         outer_path_rows = 1;
    3056 GIC      444183 :     if (inner_path_rows <= 0)
    3057             282 :         inner_path_rows = 1;
    3058                 :     /* Mark the path with the correct row estimate */
    3059 CBC      444183 :     if (path->jpath.path.param_info)
    3060 GIC        9741 :         path->jpath.path.rows = path->jpath.path.param_info->ppi_rows;
    3061                 :     else
    3062          434442 :         path->jpath.path.rows = path->jpath.path.parent->rows;
    3063 ECB             : 
    3064                 :     /* For partial paths, scale row estimate. */
    3065 CBC      444183 :     if (path->jpath.path.parallel_workers > 0)
    3066 ECB             :     {
    3067 CBC        3674 :         double      parallel_divisor = get_parallel_divisor(&path->jpath.path);
    3068 ECB             : 
    3069 GIC        3674 :         path->jpath.path.rows =
    3070            3674 :             clamp_row_est(path->jpath.path.rows / parallel_divisor);
    3071                 :     }
    3072                 : 
    3073                 :     /*
    3074 ECB             :      * We could include disable_cost in the preliminary estimate, but that
    3075 EUB             :      * would amount to optimizing for the case where the join method is
    3076 ECB             :      * disabled, which doesn't seem like the way to bet.
    3077                 :      */
    3078 GIC      444183 :     if (!enable_nestloop)
    3079 CBC        1536 :         startup_cost += disable_cost;
    3080 ECB             : 
    3081                 :     /* cost of inner-relation source data (we already dealt with outer rel) */
    3082                 : 
    3083 GIC      444183 :     if (path->jpath.jointype == JOIN_SEMI || path->jpath.jointype == JOIN_ANTI ||
    3084          428364 :         extra->inner_unique)
    3085 CBC      287577 :     {
    3086                 :         /*
    3087 ECB             :          * With a SEMI or ANTI join, or if the innerrel is known unique, the
    3088                 :          * executor will stop after the first match.
    3089                 :          */
    3090 CBC      287577 :         Cost        inner_run_cost = workspace->inner_run_cost;
    3091 GIC      287577 :         Cost        inner_rescan_run_cost = workspace->inner_rescan_run_cost;
    3092                 :         double      outer_matched_rows;
    3093                 :         double      outer_unmatched_rows;
    3094                 :         Selectivity inner_scan_frac;
    3095                 : 
    3096                 :         /*
    3097                 :          * For an outer-rel row that has at least one match, we can expect the
    3098 ECB             :          * inner scan to stop after a fraction 1/(match_count+1) of the inner
    3099                 :          * rows, if the matches are evenly distributed.  Since they probably
    3100                 :          * aren't quite evenly distributed, we apply a fuzz factor of 2.0 to
    3101                 :          * that fraction.  (If we used a larger fuzz factor, we'd have to
    3102                 :          * clamp inner_scan_frac to at most 1.0; but since match_count is at
    3103                 :          * least 1, no such clamp is needed now.)
    3104                 :          */
    3105 CBC      287577 :         outer_matched_rows = rint(outer_path_rows * extra->semifactors.outer_match_frac);
    3106 GIC      287577 :         outer_unmatched_rows = outer_path_rows - outer_matched_rows;
    3107          287577 :         inner_scan_frac = 2.0 / (extra->semifactors.match_count + 1.0);
    3108                 : 
    3109                 :         /*
    3110 ECB             :          * Compute number of tuples processed (not number emitted!).  First,
    3111                 :          * account for successfully-matched outer rows.
    3112                 :          */
    3113 GIC      287577 :         ntuples = outer_matched_rows * inner_path_rows * inner_scan_frac;
    3114                 : 
    3115                 :         /*
    3116                 :          * Now we need to estimate the actual costs of scanning the inner
    3117                 :          * relation, which may be quite a bit less than N times inner_run_cost
    3118                 :          * due to early scan stops.  We consider two cases.  If the inner path
    3119                 :          * is an indexscan using all the joinquals as indexquals, then an
    3120                 :          * unmatched outer row results in an indexscan returning no rows,
    3121                 :          * which is probably quite cheap.  Otherwise, the executor will have
    3122                 :          * to scan the whole inner rel for an unmatched row; not so cheap.
    3123                 :          */
    3124          287577 :         if (has_indexed_join_quals(path))
    3125 ECB             :         {
    3126                 :             /*
    3127                 :              * Successfully-matched outer rows will only require scanning
    3128                 :              * inner_scan_frac of the inner relation.  In this case, we don't
    3129                 :              * need to charge the full inner_run_cost even when that's more
    3130                 :              * than inner_rescan_run_cost, because we can assume that none of
    3131                 :              * the inner scans ever scan the whole inner relation.  So it's
    3132                 :              * okay to assume that all the inner scan executions can be
    3133                 :              * fractions of the full cost, even if materialization is reducing
    3134                 :              * the rescan cost.  At this writing, it's impossible to get here
    3135                 :              * for a materialized inner scan, so inner_run_cost and
    3136                 :              * inner_rescan_run_cost will be the same anyway; but just in
    3137                 :              * case, use inner_run_cost for the first matched tuple and
    3138                 :              * inner_rescan_run_cost for additional ones.
    3139                 :              */
    3140 GIC       53553 :             run_cost += inner_run_cost * inner_scan_frac;
    3141           53553 :             if (outer_matched_rows > 1)
    3142            5128 :                 run_cost += (outer_matched_rows - 1) * inner_rescan_run_cost * inner_scan_frac;
    3143                 : 
    3144 ECB             :             /*
    3145                 :              * Add the cost of inner-scan executions for unmatched outer rows.
    3146                 :              * We estimate this as the same cost as returning the first tuple
    3147                 :              * of a nonempty scan.  We consider that these are all rescans,
    3148                 :              * since we used inner_run_cost once already.
    3149                 :              */
    3150 GIC       53553 :             run_cost += outer_unmatched_rows *
    3151           53553 :                 inner_rescan_run_cost / inner_path_rows;
    3152                 : 
    3153                 :             /*
    3154                 :              * We won't be evaluating any quals at all for unmatched rows, so
    3155                 :              * don't add them to ntuples.
    3156                 :              */
    3157                 :         }
    3158                 :         else
    3159                 :         {
    3160 ECB             :             /*
    3161                 :              * Here, a complicating factor is that rescans may be cheaper than
    3162                 :              * first scans.  If we never scan all the way to the end of the
    3163                 :              * inner rel, it might be (depending on the plan type) that we'd
    3164                 :              * never pay the whole inner first-scan run cost.  However it is
    3165                 :              * difficult to estimate whether that will happen (and it could
    3166                 :              * not happen if there are any unmatched outer rows!), so be
    3167                 :              * conservative and always charge the whole first-scan cost once.
    3168                 :              * We consider this charge to correspond to the first unmatched
    3169                 :              * outer row, unless there isn't one in our estimate, in which
    3170                 :              * case blame it on the first matched row.
    3171                 :              */
    3172                 : 
    3173                 :             /* First, count all unmatched join tuples as being processed */
    3174 GIC      234024 :             ntuples += outer_unmatched_rows * inner_path_rows;
    3175                 : 
    3176                 :             /* Now add the forced full scan, and decrement appropriate count */
    3177          234024 :             run_cost += inner_run_cost;
    3178          234024 :             if (outer_unmatched_rows >= 1)
    3179          227885 :                 outer_unmatched_rows -= 1;
    3180                 :             else
    3181            6139 :                 outer_matched_rows -= 1;
    3182                 : 
    3183                 :             /* Add inner run cost for additional outer tuples having matches */
    3184          234024 :             if (outer_matched_rows > 0)
    3185           84771 :                 run_cost += outer_matched_rows * inner_rescan_run_cost * inner_scan_frac;
    3186                 : 
    3187                 :             /* Add inner run cost for additional unmatched outer tuples */
    3188          234024 :             if (outer_unmatched_rows > 0)
    3189          149068 :                 run_cost += outer_unmatched_rows * inner_rescan_run_cost;
    3190                 :         }
    3191                 :     }
    3192                 :     else
    3193                 :     {
    3194 ECB             :         /* Normal-case source costs were included in preliminary estimate */
    3195                 : 
    3196                 :         /* Compute number of tuples processed (not number emitted!) */
    3197 CBC      156606 :         ntuples = outer_path_rows * inner_path_rows;
    3198 ECB             :     }
    3199                 : 
    3200                 :     /* CPU costs */
    3201 CBC      444183 :     cost_qual_eval(&restrict_qual_cost, path->jpath.joinrestrictinfo, root);
    3202 GIC      444183 :     startup_cost += restrict_qual_cost.startup;
    3203          444183 :     cpu_per_tuple = cpu_tuple_cost + restrict_qual_cost.per_tuple;
    3204 CBC      444183 :     run_cost += cpu_per_tuple * ntuples;
    3205 ECB             : 
    3206                 :     /* tlist eval costs are paid per output row, not per tuple scanned */
    3207 GIC      444183 :     startup_cost += path->jpath.path.pathtarget->cost.startup;
    3208 CBC      444183 :     run_cost += path->jpath.path.pathtarget->cost.per_tuple * path->jpath.path.rows;
    3209 ECB             : 
    3210 GIC      444183 :     path->jpath.path.startup_cost = startup_cost;
    3211          444183 :     path->jpath.path.total_cost = startup_cost + run_cost;
    3212          444183 : }
    3213                 : 
    3214                 : /*
    3215                 :  * initial_cost_mergejoin
    3216                 :  *    Preliminary estimate of the cost of a mergejoin path.
    3217 ECB             :  *
    3218                 :  * This must quickly produce lower-bound estimates of the path's startup and
    3219                 :  * total costs.  If we are unable to eliminate the proposed path from
    3220                 :  * consideration using the lower bounds, final_cost_mergejoin will be called
    3221                 :  * to obtain the final estimates.
    3222                 :  *
    3223                 :  * The exact division of labor between this function and final_cost_mergejoin
    3224                 :  * is private to them, and represents a tradeoff between speed of the initial
    3225                 :  * estimate and getting a tight lower bound.  We choose to not examine the
    3226                 :  * join quals here, except for obtaining the scan selectivity estimate which
    3227                 :  * is really essential (but fortunately, use of caching keeps the cost of
    3228                 :  * getting that down to something reasonable).
    3229                 :  * We also assume that cost_sort is cheap enough to use here.
    3230                 :  *
    3231                 :  * 'workspace' is to be filled with startup_cost, total_cost, and perhaps
    3232                 :  *      other data to be used by final_cost_mergejoin
    3233                 :  * 'jointype' is the type of join to be performed
    3234                 :  * 'mergeclauses' is the list of joinclauses to be used as merge clauses
    3235                 :  * 'outer_path' is the outer input to the join
    3236                 :  * 'inner_path' is the inner input to the join
    3237                 :  * 'outersortkeys' is the list of sort keys for the outer path
    3238                 :  * 'innersortkeys' is the list of sort keys for the inner path
    3239                 :  * 'extra' contains miscellaneous information about the join
    3240                 :  *
    3241                 :  * Note: outersortkeys and innersortkeys should be NIL if no explicit
    3242                 :  * sort is needed because the respective source path is already ordered.
    3243                 :  */
    3244                 : void
    3245 GIC      430011 : initial_cost_mergejoin(PlannerInfo *root, JoinCostWorkspace *workspace,
    3246                 :                        JoinType jointype,
    3247                 :                        List *mergeclauses,
    3248                 :                        Path *outer_path, Path *inner_path,
    3249                 :                        List *outersortkeys, List *innersortkeys,
    3250                 :                        JoinPathExtraData *extra)
    3251                 : {
    3252          430011 :     Cost        startup_cost = 0;
    3253          430011 :     Cost        run_cost = 0;
    3254          430011 :     double      outer_path_rows = outer_path->rows;
    3255          430011 :     double      inner_path_rows = inner_path->rows;
    3256                 :     Cost        inner_run_cost;
    3257                 :     double      outer_rows,
    3258                 :                 inner_rows,
    3259                 :                 outer_skip_rows,
    3260                 :                 inner_skip_rows;
    3261                 :     Selectivity outerstartsel,
    3262                 :                 outerendsel,
    3263                 :                 innerstartsel,
    3264                 :                 innerendsel;
    3265 ECB             :     Path        sort_path;      /* dummy for result of cost_sort */
    3266                 : 
    3267                 :     /* Protect some assumptions below that rowcounts aren't zero */
    3268 GIC      430011 :     if (outer_path_rows <= 0)
    3269              48 :         outer_path_rows = 1;
    3270          430011 :     if (inner_path_rows <= 0)
    3271              63 :         inner_path_rows = 1;
    3272 ECB             : 
    3273                 :     /*
    3274                 :      * A merge join will stop as soon as it exhausts either input stream
    3275                 :      * (unless it's an outer join, in which case the outer side has to be
    3276                 :      * scanned all the way anyway).  Estimate fraction of the left and right
    3277                 :      * inputs that will actually need to be scanned.  Likewise, we can
    3278                 :      * estimate the number of rows that will be skipped before the first join
    3279                 :      * pair is found, which should be factored into startup cost. We use only
    3280                 :      * the first (most significant) merge clause for this purpose. Since
    3281                 :      * mergejoinscansel() is a fairly expensive computation, we cache the
    3282                 :      * results in the merge clause RestrictInfo.
    3283                 :      */
    3284 GIC      430011 :     if (mergeclauses && jointype != JOIN_FULL)
    3285          427070 :     {
    3286          427070 :         RestrictInfo *firstclause = (RestrictInfo *) linitial(mergeclauses);
    3287                 :         List       *opathkeys;
    3288 ECB             :         List       *ipathkeys;
    3289                 :         PathKey    *opathkey;
    3290                 :         PathKey    *ipathkey;
    3291                 :         MergeScanSelCache *cache;
    3292                 : 
    3293                 :         /* Get the input pathkeys to determine the sort-order details */
    3294 GIC      427070 :         opathkeys = outersortkeys ? outersortkeys : outer_path->pathkeys;
    3295          427070 :         ipathkeys = innersortkeys ? innersortkeys : inner_path->pathkeys;
    3296          427070 :         Assert(opathkeys);
    3297          427070 :         Assert(ipathkeys);
    3298          427070 :         opathkey = (PathKey *) linitial(opathkeys);
    3299          427070 :         ipathkey = (PathKey *) linitial(ipathkeys);
    3300                 :         /* debugging check */
    3301          427070 :         if (opathkey->pk_opfamily != ipathkey->pk_opfamily ||
    3302          427070 :             opathkey->pk_eclass->ec_collation != ipathkey->pk_eclass->ec_collation ||
    3303          427070 :             opathkey->pk_strategy != ipathkey->pk_strategy ||
    3304 CBC      427070 :             opathkey->pk_nulls_first != ipathkey->pk_nulls_first)
    3305 LBC           0 :             elog(ERROR, "left and right pathkeys do not match in mergejoin");
    3306 ECB             : 
    3307                 :         /* Get the selectivity with caching */
    3308 GIC      427070 :         cache = cached_scansel(root, firstclause, opathkey);
    3309                 : 
    3310          427070 :         if (bms_is_subset(firstclause->left_relids,
    3311          427070 :                           outer_path->parent->relids))
    3312                 :         {
    3313                 :             /* left side of clause is outer */
    3314 CBC      223601 :             outerstartsel = cache->leftstartsel;
    3315          223601 :             outerendsel = cache->leftendsel;
    3316          223601 :             innerstartsel = cache->rightstartsel;
    3317          223601 :             innerendsel = cache->rightendsel;
    3318 ECB             :         }
    3319                 :         else
    3320                 :         {
    3321                 :             /* left side of clause is inner */
    3322 CBC      203469 :             outerstartsel = cache->rightstartsel;
    3323          203469 :             outerendsel = cache->rightendsel;
    3324          203469 :             innerstartsel = cache->leftstartsel;
    3325 GBC      203469 :             innerendsel = cache->leftendsel;
    3326                 :         }
    3327 GIC      427070 :         if (jointype == JOIN_LEFT ||
    3328 ECB             :             jointype == JOIN_ANTI)
    3329                 :         {
    3330 CBC       84058 :             outerstartsel = 0.0;
    3331           84058 :             outerendsel = 1.0;
    3332                 :         }
    3333 GNC      343012 :         else if (jointype == JOIN_RIGHT ||
    3334                 :                  jointype == JOIN_RIGHT_ANTI)
    3335 ECB             :         {
    3336 CBC       83776 :             innerstartsel = 0.0;
    3337           83776 :             innerendsel = 1.0;
    3338 ECB             :         }
    3339                 :     }
    3340                 :     else
    3341                 :     {
    3342                 :         /* cope with clauseless or full mergejoin */
    3343 CBC        2941 :         outerstartsel = innerstartsel = 0.0;
    3344            2941 :         outerendsel = innerendsel = 1.0;
    3345 ECB             :     }
    3346                 : 
    3347                 :     /*
    3348                 :      * Convert selectivities to row counts.  We force outer_rows and
    3349                 :      * inner_rows to be at least 1, but the skip_rows estimates can be zero.
    3350                 :      */
    3351 CBC      430011 :     outer_skip_rows = rint(outer_path_rows * outerstartsel);
    3352          430011 :     inner_skip_rows = rint(inner_path_rows * innerstartsel);
    3353 GIC      430011 :     outer_rows = clamp_row_est(outer_path_rows * outerendsel);
    3354 CBC      430011 :     inner_rows = clamp_row_est(inner_path_rows * innerendsel);
    3355                 : 
    3356 GIC      430011 :     Assert(outer_skip_rows <= outer_rows);
    3357 CBC      430011 :     Assert(inner_skip_rows <= inner_rows);
    3358 ECB             : 
    3359                 :     /*
    3360                 :      * Readjust scan selectivities to account for above rounding.  This is
    3361                 :      * normally an insignificant effect, but when there are only a few rows in
    3362                 :      * the inputs, failing to do this makes for a large percentage error.
    3363                 :      */
    3364 CBC      430011 :     outerstartsel = outer_skip_rows / outer_path_rows;
    3365          430011 :     innerstartsel = inner_skip_rows / inner_path_rows;
    3366 GIC      430011 :     outerendsel = outer_rows / outer_path_rows;
    3367          430011 :     innerendsel = inner_rows / inner_path_rows;
    3368                 : 
    3369          430011 :     Assert(outerstartsel <= outerendsel);
    3370          430011 :     Assert(innerstartsel <= innerendsel);
    3371                 : 
    3372 ECB             :     /* cost of source data */
    3373                 : 
    3374 CBC      430011 :     if (outersortkeys)          /* do we need to sort outer? */
    3375 ECB             :     {
    3376 GIC      207126 :         cost_sort(&sort_path,
    3377 ECB             :                   root,
    3378                 :                   outersortkeys,
    3379                 :                   outer_path->total_cost,
    3380                 :                   outer_path_rows,
    3381 GIC      207126 :                   outer_path->pathtarget->width,
    3382                 :                   0.0,
    3383                 :                   work_mem,
    3384                 :                   -1.0);
    3385 CBC      207126 :         startup_cost += sort_path.startup_cost;
    3386          207126 :         startup_cost += (sort_path.total_cost - sort_path.startup_cost)
    3387          207126 :             * outerstartsel;
    3388          207126 :         run_cost += (sort_path.total_cost - sort_path.startup_cost)
    3389 GIC      207126 :             * (outerendsel - outerstartsel);
    3390 ECB             :     }
    3391                 :     else
    3392                 :     {
    3393 GIC      222885 :         startup_cost += outer_path->startup_cost;
    3394          222885 :         startup_cost += (outer_path->total_cost - outer_path->startup_cost)
    3395 CBC      222885 :             * outerstartsel;
    3396 GIC      222885 :         run_cost += (outer_path->total_cost - outer_path->startup_cost)
    3397 CBC      222885 :             * (outerendsel - outerstartsel);
    3398                 :     }
    3399                 : 
    3400 GIC      430011 :     if (innersortkeys)          /* do we need to sort inner? */
    3401                 :     {
    3402 CBC      339579 :         cost_sort(&sort_path,
    3403                 :                   root,
    3404                 :                   innersortkeys,
    3405                 :                   inner_path->total_cost,
    3406 ECB             :                   inner_path_rows,
    3407 CBC      339579 :                   inner_path->pathtarget->width,
    3408 ECB             :                   0.0,
    3409                 :                   work_mem,
    3410                 :                   -1.0);
    3411 GIC      339579 :         startup_cost += sort_path.startup_cost;
    3412          339579 :         startup_cost += (sort_path.total_cost - sort_path.startup_cost)
    3413          339579 :             * innerstartsel;
    3414 CBC      339579 :         inner_run_cost = (sort_path.total_cost - sort_path.startup_cost)
    3415          339579 :             * (innerendsel - innerstartsel);
    3416 ECB             :     }
    3417                 :     else
    3418                 :     {
    3419 GIC       90432 :         startup_cost += inner_path->startup_cost;
    3420           90432 :         startup_cost += (inner_path->total_cost - inner_path->startup_cost)
    3421 CBC       90432 :             * innerstartsel;
    3422 GIC       90432 :         inner_run_cost = (inner_path->total_cost - inner_path->startup_cost)
    3423 CBC       90432 :             * (innerendsel - innerstartsel);
    3424                 :     }
    3425                 : 
    3426                 :     /*
    3427                 :      * We can't yet determine whether rescanning occurs, or whether
    3428 ECB             :      * materialization of the inner input should be done.  The minimum
    3429                 :      * possible inner input cost, regardless of rescan and materialization
    3430                 :      * considerations, is inner_run_cost.  We include that in
    3431                 :      * workspace->total_cost, but not yet in run_cost.
    3432                 :      */
    3433                 : 
    3434                 :     /* CPU costs left for later */
    3435                 : 
    3436                 :     /* Public result fields */
    3437 GIC      430011 :     workspace->startup_cost = startup_cost;
    3438          430011 :     workspace->total_cost = startup_cost + run_cost + inner_run_cost;
    3439                 :     /* Save private data for final_cost_mergejoin */
    3440 CBC      430011 :     workspace->run_cost = run_cost;
    3441          430011 :     workspace->inner_run_cost = inner_run_cost;
    3442          430011 :     workspace->outer_rows = outer_rows;
    3443          430011 :     workspace->inner_rows = inner_rows;
    3444          430011 :     workspace->outer_skip_rows = outer_skip_rows;
    3445 GIC      430011 :     workspace->inner_skip_rows = inner_skip_rows;
    3446          430011 : }
    3447                 : 
    3448                 : /*
    3449                 :  * final_cost_mergejoin
    3450                 :  *    Final estimate of the cost and result size of a mergejoin path.
    3451                 :  *
    3452                 :  * Unlike other costsize functions, this routine makes two actual decisions:
    3453                 :  * whether the executor will need to do mark/restore, and whether we should
    3454                 :  * materialize the inner path.  It would be logically cleaner to build
    3455                 :  * separate paths testing these alternatives, but that would require repeating
    3456                 :  * most of the cost calculations, which are not all that cheap.  Since the
    3457                 :  * choice will not affect output pathkeys or startup cost, only total cost,
    3458 ECB             :  * there is no possibility of wanting to keep more than one path.  So it seems
    3459                 :  * best to make the decisions here and record them in the path's
    3460                 :  * skip_mark_restore and materialize_inner fields.
    3461                 :  *
    3462                 :  * Mark/restore overhead is usually required, but can be skipped if we know
    3463                 :  * that the executor need find only one match per outer tuple, and that the
    3464                 :  * mergeclauses are sufficient to identify a match.
    3465                 :  *
    3466                 :  * We materialize the inner path if we need mark/restore and either the inner
    3467                 :  * path can't support mark/restore, or it's cheaper to use an interposed
    3468                 :  * Material node to handle mark/restore.
    3469                 :  *
    3470                 :  * 'path' is already filled in except for the rows and cost fields and
    3471                 :  *      skip_mark_restore and materialize_inner
    3472                 :  * 'workspace' is the result from initial_cost_mergejoin
    3473                 :  * 'extra' contains miscellaneous information about the join
    3474                 :  */
    3475                 : void
    3476 GIC      106831 : final_cost_mergejoin(PlannerInfo *root, MergePath *path,
    3477                 :                      JoinCostWorkspace *workspace,
    3478                 :                      JoinPathExtraData *extra)
    3479                 : {
    3480          106831 :     Path       *outer_path = path->jpath.outerjoinpath;
    3481          106831 :     Path       *inner_path = path->jpath.innerjoinpath;
    3482          106831 :     double      inner_path_rows = inner_path->rows;
    3483          106831 :     List       *mergeclauses = path->path_mergeclauses;
    3484          106831 :     List       *innersortkeys = path->innersortkeys;
    3485          106831 :     Cost        startup_cost = workspace->startup_cost;
    3486          106831 :     Cost        run_cost = workspace->run_cost;
    3487          106831 :     Cost        inner_run_cost = workspace->inner_run_cost;
    3488          106831 :     double      outer_rows = workspace->outer_rows;
    3489          106831 :     double      inner_rows = workspace->inner_rows;
    3490          106831 :     double      outer_skip_rows = workspace->outer_skip_rows;
    3491          106831 :     double      inner_skip_rows = workspace->inner_skip_rows;
    3492                 :     Cost        cpu_per_tuple,
    3493                 :                 bare_inner_cost,
    3494                 :                 mat_inner_cost;
    3495                 :     QualCost    merge_qual_cost;
    3496                 :     QualCost    qp_qual_cost;
    3497 ECB             :     double      mergejointuples,
    3498                 :                 rescannedtuples;
    3499                 :     double      rescanratio;
    3500                 : 
    3501                 :     /* Protect some assumptions below that rowcounts aren't zero */
    3502 CBC      106831 :     if (inner_path_rows <= 0)
    3503              45 :         inner_path_rows = 1;
    3504 ECB             : 
    3505                 :     /* Mark the path with the correct row estimate */
    3506 CBC      106831 :     if (path->jpath.path.param_info)
    3507             312 :         path->jpath.path.rows = path->jpath.path.param_info->ppi_rows;
    3508 ECB             :     else
    3509 CBC      106519 :         path->jpath.path.rows = path->jpath.path.parent->rows;
    3510 ECB             : 
    3511                 :     /* For partial paths, scale row estimate. */
    3512 CBC      106831 :     if (path->jpath.path.parallel_workers > 0)
    3513                 :     {
    3514 GIC        4447 :         double      parallel_divisor = get_parallel_divisor(&path->jpath.path);
    3515                 : 
    3516            4447 :         path->jpath.path.rows =
    3517            4447 :             clamp_row_est(path->jpath.path.rows / parallel_divisor);
    3518                 :     }
    3519                 : 
    3520                 :     /*
    3521                 :      * We could include disable_cost in the preliminary estimate, but that
    3522                 :      * would amount to optimizing for the case where the join method is
    3523 ECB             :      * disabled, which doesn't seem like the way to bet.
    3524                 :      */
    3525 GIC      106831 :     if (!enable_mergejoin)
    3526 UIC           0 :         startup_cost += disable_cost;
    3527 ECB             : 
    3528                 :     /*
    3529                 :      * Compute cost of the mergequals and qpquals (other restriction clauses)
    3530                 :      * separately.
    3531                 :      */
    3532 GIC      106831 :     cost_qual_eval(&merge_qual_cost, mergeclauses, root);
    3533 CBC      106831 :     cost_qual_eval(&qp_qual_cost, path->jpath.joinrestrictinfo, root);
    3534 GIC      106831 :     qp_qual_cost.startup -= merge_qual_cost.startup;
    3535 CBC      106831 :     qp_qual_cost.per_tuple -= merge_qual_cost.per_tuple;
    3536                 : 
    3537 ECB             :     /*
    3538                 :      * With a SEMI or ANTI join, or if the innerrel is known unique, the
    3539                 :      * executor will stop scanning for matches after the first match.  When
    3540                 :      * all the joinclauses are merge clauses, this means we don't ever need to
    3541                 :      * back up the merge, and so we can skip mark/restore overhead.
    3542                 :      */
    3543 GIC      106831 :     if ((path->jpath.jointype == JOIN_SEMI ||
    3544          105505 :          path->jpath.jointype == JOIN_ANTI ||
    3545          153941 :          extra->inner_unique) &&
    3546 CBC       52663 :         (list_length(path->jpath.joinrestrictinfo) ==
    3547 GBC       52663 :          list_length(path->path_mergeclauses)))
    3548 GIC       45803 :         path->skip_mark_restore = true;
    3549                 :     else
    3550           61028 :         path->skip_mark_restore = false;
    3551                 : 
    3552                 :     /*
    3553 ECB             :      * Get approx # tuples passing the mergequals.  We use approx_tuple_count
    3554                 :      * here because we need an estimate done with JOIN_INNER semantics.
    3555                 :      */
    3556 CBC      106831 :     mergejointuples = approx_tuple_count(root, &path->jpath, mergeclauses);
    3557                 : 
    3558                 :     /*
    3559                 :      * When there are equal merge keys in the outer relation, the mergejoin
    3560                 :      * must rescan any matching tuples in the inner relation. This means
    3561                 :      * re-fetching inner tuples; we have to estimate how often that happens.
    3562                 :      *
    3563                 :      * For regular inner and outer joins, the number of re-fetches can be
    3564 ECB             :      * estimated approximately as size of merge join output minus size of
    3565                 :      * inner relation. Assume that the distinct key values are 1, 2, ..., and
    3566                 :      * denote the number of values of each key in the outer relation as m1,
    3567                 :      * m2, ...; in the inner relation, n1, n2, ...  Then we have
    3568                 :      *
    3569                 :      * size of join = m1 * n1 + m2 * n2 + ...
    3570                 :      *
    3571                 :      * number of rescanned tuples = (m1 - 1) * n1 + (m2 - 1) * n2 + ... = m1 *
    3572                 :      * n1 + m2 * n2 + ... - (n1 + n2 + ...) = size of join - size of inner
    3573                 :      * relation
    3574                 :      *
    3575                 :      * This equation works correctly for outer tuples having no inner match
    3576                 :      * (nk = 0), but not for inner tuples having no outer match (mk = 0); we
    3577                 :      * are effectively subtracting those from the number of rescanned tuples,
    3578                 :      * when we should not.  Can we do better without expensive selectivity
    3579                 :      * computations?
    3580                 :      *
    3581                 :      * The whole issue is moot if we are working from a unique-ified outer
    3582                 :      * input, or if we know we don't need to mark/restore at all.
    3583                 :      */
    3584 GIC      106831 :     if (IsA(outer_path, UniquePath) || path->skip_mark_restore)
    3585           46127 :         rescannedtuples = 0;
    3586                 :     else
    3587                 :     {
    3588           60704 :         rescannedtuples = mergejointuples - inner_path_rows;
    3589                 :         /* Must clamp because of possible underestimate */
    3590           60704 :         if (rescannedtuples < 0)
    3591           26022 :             rescannedtuples = 0;
    3592                 :     }
    3593                 : 
    3594                 :     /*
    3595                 :      * We'll inflate various costs this much to account for rescanning.  Note
    3596                 :      * that this is to be multiplied by something involving inner_rows, or
    3597                 :      * another number related to the portion of the inner rel we'll scan.
    3598                 :      */
    3599          106831 :     rescanratio = 1.0 + (rescannedtuples / inner_rows);
    3600                 : 
    3601                 :     /*
    3602                 :      * Decide whether we want to materialize the inner input to shield it from
    3603                 :      * mark/restore and performing re-fetches.  Our cost model for regular
    3604                 :      * re-fetches is that a re-fetch costs the same as an original fetch,
    3605 ECB             :      * which is probably an overestimate; but on the other hand we ignore the
    3606                 :      * bookkeeping costs of mark/restore.  Not clear if it's worth developing
    3607                 :      * a more refined model.  So we just need to inflate the inner run cost by
    3608                 :      * rescanratio.
    3609                 :      */
    3610 GIC      106831 :     bare_inner_cost = inner_run_cost * rescanratio;
    3611 ECB             : 
    3612                 :     /*
    3613                 :      * When we interpose a Material node the re-fetch cost is assumed to be
    3614                 :      * just cpu_operator_cost per tuple, independently of the underlying
    3615                 :      * plan's cost; and we charge an extra cpu_operator_cost per original
    3616                 :      * fetch as well.  Note that we're assuming the materialize node will
    3617                 :      * never spill to disk, since it only has to remember tuples back to the
    3618                 :      * last mark.  (If there are a huge number of duplicates, our other cost
    3619                 :      * factors will make the path so expensive that it probably won't get
    3620                 :      * chosen anyway.)  So we don't use cost_rescan here.
    3621                 :      *
    3622                 :      * Note: keep this estimate in sync with create_mergejoin_plan's labeling
    3623                 :      * of the generated Material node.
    3624                 :      */
    3625 GIC      106831 :     mat_inner_cost = inner_run_cost +
    3626          106831 :         cpu_operator_cost * inner_rows * rescanratio;
    3627                 : 
    3628                 :     /*
    3629                 :      * If we don't need mark/restore at all, we don't need materialization.
    3630                 :      */
    3631 CBC      106831 :     if (path->skip_mark_restore)
    3632 GIC       45803 :         path->materialize_inner = false;
    3633                 : 
    3634                 :     /*
    3635                 :      * Prefer materializing if it looks cheaper, unless the user has asked to
    3636                 :      * suppress materialization.
    3637                 :      */
    3638           61028 :     else if (enable_material && mat_inner_cost < bare_inner_cost)
    3639            1086 :         path->materialize_inner = true;
    3640                 : 
    3641                 :     /*
    3642                 :      * Even if materializing doesn't look cheaper, we *must* do it if the
    3643                 :      * inner path is to be used directly (without sorting) and it doesn't
    3644                 :      * support mark/restore.
    3645                 :      *
    3646 ECB             :      * Since the inner side must be ordered, and only Sorts and IndexScans can
    3647                 :      * create order to begin with, and they both support mark/restore, you
    3648                 :      * might think there's no problem --- but you'd be wrong.  Nestloop and
    3649                 :      * merge joins can *preserve* the order of their inputs, so they can be
    3650                 :      * selected as the input of a mergejoin, and they don't support
    3651                 :      * mark/restore at present.
    3652                 :      *
    3653                 :      * We don't test the value of enable_material here, because
    3654                 :      * materialization is required for correctness in this case, and turning
    3655                 :      * it off does not entitle us to deliver an invalid plan.
    3656                 :      */
    3657 GIC       59942 :     else if (innersortkeys == NIL &&
    3658            1858 :              !ExecSupportsMarkRestore(inner_path))
    3659 CBC         354 :         path->materialize_inner = true;
    3660 ECB             : 
    3661                 :     /*
    3662                 :      * Also, force materializing if the inner path is to be sorted and the
    3663                 :      * sort is expected to spill to disk.  This is because the final merge
    3664                 :      * pass can be done on-the-fly if it doesn't have to support mark/restore.
    3665                 :      * We don't try to adjust the cost estimates for this consideration,
    3666                 :      * though.
    3667                 :      *
    3668                 :      * Since materialization is a performance optimization in this case,
    3669                 :      * rather than necessary for correctness, we skip it if enable_material is
    3670                 :      * off.
    3671                 :      */
    3672 GIC       59588 :     else if (enable_material && innersortkeys != NIL &&
    3673           58060 :              relation_byte_size(inner_path_rows,
    3674           58060 :                                 inner_path->pathtarget->width) >
    3675           58060 :              (work_mem * 1024L))
    3676              98 :         path->materialize_inner = true;
    3677                 :     else
    3678 CBC       59490 :         path->materialize_inner = false;
    3679 ECB             : 
    3680                 :     /* Charge the right incremental cost for the chosen case */
    3681 GIC      106831 :     if (path->materialize_inner)
    3682            1538 :         run_cost += mat_inner_cost;
    3683                 :     else
    3684          105293 :         run_cost += bare_inner_cost;
    3685                 : 
    3686                 :     /* CPU costs */
    3687                 : 
    3688                 :     /*
    3689                 :      * The number of tuple comparisons needed is approximately number of outer
    3690                 :      * rows plus number of inner rows plus number of rescanned tuples (can we
    3691                 :      * refine this?).  At each one, we need to evaluate the mergejoin quals.
    3692                 :      */
    3693 CBC      106831 :     startup_cost += merge_qual_cost.startup;
    3694          106831 :     startup_cost += merge_qual_cost.per_tuple *
    3695          106831 :         (outer_skip_rows + inner_skip_rows * rescanratio);
    3696          106831 :     run_cost += merge_qual_cost.per_tuple *
    3697          106831 :         ((outer_rows - outer_skip_rows) +
    3698 GIC      106831 :          (inner_rows - inner_skip_rows) * rescanratio);
    3699 ECB             : 
    3700                 :     /*
    3701                 :      * For each tuple that gets through the mergejoin proper, we charge
    3702                 :      * cpu_tuple_cost plus the cost of evaluating additional restriction
    3703                 :      * clauses that are to be applied at the join.  (This is pessimistic since
    3704                 :      * not all of the quals may get evaluated at each tuple.)
    3705                 :      *
    3706                 :      * Note: we could adjust for SEMI/ANTI joins skipping some qual
    3707                 :      * evaluations here, but it's probably not worth the trouble.
    3708                 :      */
    3709 GIC      106831 :     startup_cost += qp_qual_cost.startup;
    3710          106831 :     cpu_per_tuple = cpu_tuple_cost + qp_qual_cost.per_tuple;
    3711          106831 :     run_cost += cpu_per_tuple * mergejointuples;
    3712                 : 
    3713                 :     /* tlist eval costs are paid per output row, not per tuple scanned */
    3714 CBC      106831 :     startup_cost += path->jpath.path.pathtarget->cost.startup;
    3715          106831 :     run_cost += path->jpath.path.pathtarget->cost.per_tuple * path->jpath.path.rows;
    3716 ECB             : 
    3717 CBC      106831 :     path->jpath.path.startup_cost = startup_cost;
    3718          106831 :     path->jpath.path.total_cost = startup_cost + run_cost;
    3719          106831 : }
    3720                 : 
    3721                 : /*
    3722                 :  * run mergejoinscansel() with caching
    3723                 :  */
    3724                 : static MergeScanSelCache *
    3725 GIC      427070 : cached_scansel(PlannerInfo *root, RestrictInfo *rinfo, PathKey *pathkey)
    3726                 : {
    3727                 :     MergeScanSelCache *cache;
    3728                 :     ListCell   *lc;
    3729                 :     Selectivity leftstartsel,
    3730 ECB             :                 leftendsel,
    3731                 :                 rightstartsel,
    3732                 :                 rightendsel;
    3733                 :     MemoryContext oldcontext;
    3734                 : 
    3735                 :     /* Do we have this result already? */
    3736 CBC      427091 :     foreach(lc, rinfo->scansel_cache)
    3737                 :     {
    3738          384912 :         cache = (MergeScanSelCache *) lfirst(lc);
    3739          384912 :         if (cache->opfamily == pathkey->pk_opfamily &&
    3740          384912 :             cache->collation == pathkey->pk_eclass->ec_collation &&
    3741 GIC      384912 :             cache->strategy == pathkey->pk_strategy &&
    3742          384891 :             cache->nulls_first == pathkey->pk_nulls_first)
    3743          384891 :             return cache;
    3744                 :     }
    3745                 : 
    3746 ECB             :     /* Nope, do the computation */
    3747 GIC       42179 :     mergejoinscansel(root,
    3748           42179 :                      (Node *) rinfo->clause,
    3749                 :                      pathkey->pk_opfamily,
    3750                 :                      pathkey->pk_strategy,
    3751           42179 :                      pathkey->pk_nulls_first,
    3752                 :                      &leftstartsel,
    3753                 :                      &leftendsel,
    3754                 :                      &rightstartsel,
    3755                 :                      &rightendsel);
    3756                 : 
    3757 ECB             :     /* Cache the result in suitably long-lived workspace */
    3758 GIC       42179 :     oldcontext = MemoryContextSwitchTo(root->planner_cxt);
    3759 ECB             : 
    3760 CBC       42179 :     cache = (MergeScanSelCache *) palloc(sizeof(MergeScanSelCache));
    3761           42179 :     cache->opfamily = pathkey->pk_opfamily;
    3762           42179 :     cache->collation = pathkey->pk_eclass->ec_collation;
    3763           42179 :     cache->strategy = pathkey->pk_strategy;
    3764           42179 :     cache->nulls_first = pathkey->pk_nulls_first;
    3765 GIC       42179 :     cache->leftstartsel = leftstartsel;
    3766           42179 :     cache->leftendsel = leftendsel;
    3767           42179 :     cache->rightstartsel = rightstartsel;
    3768 CBC       42179 :     cache->rightendsel = rightendsel;
    3769 ECB             : 
    3770 GIC       42179 :     rinfo->scansel_cache = lappend(rinfo->scansel_cache, cache);
    3771                 : 
    3772 CBC       42179 :     MemoryContextSwitchTo(oldcontext);
    3773                 : 
    3774 GIC       42179 :     return cache;
    3775                 : }
    3776                 : 
    3777                 : /*
    3778                 :  * initial_cost_hashjoin
    3779 ECB             :  *    Preliminary estimate of the cost of a hashjoin path.
    3780                 :  *
    3781                 :  * This must quickly produce lower-bound estimates of the path's startup and
    3782                 :  * total costs.  If we are unable to eliminate the proposed path from
    3783                 :  * consideration using the lower bounds, final_cost_hashjoin will be called
    3784                 :  * to obtain the final estimates.
    3785                 :  *
    3786                 :  * The exact division of labor between this function and final_cost_hashjoin
    3787                 :  * is private to them, and represents a tradeoff between speed of the initial
    3788                 :  * estimate and getting a tight lower bound.  We choose to not examine the
    3789                 :  * join quals here (other than by counting the number of hash clauses),
    3790                 :  * so we can't do much with CPU costs.  We do assume that
    3791                 :  * ExecChooseHashTableSize is cheap enough to use here.
    3792                 :  *
    3793                 :  * 'workspace' is to be filled with startup_cost, total_cost, and perhaps
    3794                 :  *      other data to be used by final_cost_hashjoin
    3795                 :  * 'jointype' is the type of join to be performed
    3796                 :  * 'hashclauses' is the list of joinclauses to be used as hash clauses
    3797                 :  * 'outer_path' is the outer input to the join
    3798                 :  * 'inner_path' is the inner input to the join
    3799                 :  * 'extra' contains miscellaneous information about the join
    3800                 :  * 'parallel_hash' indicates that inner_path is partial and that a shared
    3801                 :  *      hash table will be built in parallel
    3802                 :  */
    3803                 : void
    3804 GIC      226678 : initial_cost_hashjoin(PlannerInfo *root, JoinCostWorkspace *workspace,
    3805                 :                       JoinType jointype,
    3806                 :                       List *hashclauses,
    3807                 :                       Path *outer_path, Path *inner_path,
    3808                 :                       JoinPathExtraData *extra,
    3809                 :                       bool parallel_hash)
    3810                 : {
    3811          226678 :     Cost        startup_cost = 0;
    3812          226678 :     Cost        run_cost = 0;
    3813          226678 :     double      outer_path_rows = outer_path->rows;
    3814          226678 :     double      inner_path_rows = inner_path->rows;
    3815          226678 :     double      inner_path_rows_total = inner_path_rows;
    3816          226678 :     int         num_hashclauses = list_length(hashclauses);
    3817                 :     int         numbuckets;
    3818                 :     int         numbatches;
    3819                 :     int         num_skew_mcvs;
    3820                 :     size_t      space_allowed;  /* unused */
    3821                 : 
    3822                 :     /* cost of source data */
    3823          226678 :     startup_cost += outer_path->startup_cost;
    3824          226678 :     run_cost += outer_path->total_cost - outer_path->startup_cost;
    3825 CBC      226678 :     startup_cost += inner_path->total_cost;
    3826                 : 
    3827                 :     /*
    3828                 :      * Cost of computing hash function: must do it once per input tuple. We
    3829                 :      * charge one cpu_operator_cost for each column's hash function.  Also,
    3830                 :      * tack on one cpu_tuple_cost per inner row, to model the costs of
    3831                 :      * inserting the row into the hashtable.
    3832 ECB             :      *
    3833                 :      * XXX when a hashclause is more complex than a single operator, we really
    3834                 :      * should charge the extra eval costs of the left or right side, as
    3835                 :      * appropriate, here.  This seems more work than it's worth at the moment.
    3836                 :      */
    3837 CBC      226678 :     startup_cost += (cpu_operator_cost * num_hashclauses + cpu_tuple_cost)
    3838 GIC      226678 :         * inner_path_rows;
    3839          226678 :     run_cost += cpu_operator_cost * num_hashclauses * outer_path_rows;
    3840                 : 
    3841                 :     /*
    3842                 :      * If this is a parallel hash build, then the value we have for
    3843                 :      * inner_rows_total currently refers only to the rows returned by each
    3844 ECB             :      * participant.  For shared hash table size estimation, we need the total
    3845                 :      * number, so we need to undo the division.
    3846                 :      */
    3847 GIC      226678 :     if (parallel_hash)
    3848            5589 :         inner_path_rows_total *= get_parallel_divisor(inner_path);
    3849                 : 
    3850                 :     /*
    3851                 :      * Get hash table size that executor would use for inner relation.
    3852                 :      *
    3853                 :      * XXX for the moment, always assume that skew optimization will be
    3854                 :      * performed.  As long as SKEW_HASH_MEM_PERCENT is small, it's not worth
    3855                 :      * trying to determine that for sure.
    3856                 :      *
    3857                 :      * XXX at some point it might be interesting to try to account for skew
    3858 ECB             :      * optimization in the cost estimate, but for now, we don't.
    3859                 :      */
    3860 CBC      226678 :     ExecChooseHashTableSize(inner_path_rows_total,
    3861 GIC      226678 :                             inner_path->pathtarget->width,
    3862                 :                             true,   /* useskew */
    3863                 :                             parallel_hash,  /* try_combined_hash_mem */
    3864                 :                             outer_path->parallel_workers,
    3865                 :                             &space_allowed,
    3866                 :                             &numbuckets,
    3867                 :                             &numbatches,
    3868 ECB             :                             &num_skew_mcvs);
    3869                 : 
    3870                 :     /*
    3871                 :      * If inner relation is too big then we will need to "batch" the join,
    3872                 :      * which implies writing and reading most of the tuples to disk an extra
    3873                 :      * time.  Charge seq_page_cost per page, since the I/O should be nice and
    3874                 :      * sequential.  Writing the inner rel counts as startup cost, all the rest
    3875                 :      * as run cost.
    3876                 :      */
    3877 GIC      226678 :     if (numbatches > 1)
    3878                 :     {
    3879            2161 :         double      outerpages = page_size(outer_path_rows,
    3880            2161 :                                            outer_path->pathtarget->width);
    3881 CBC        2161 :         double      innerpages = page_size(inner_path_rows,
    3882            2161 :                                            inner_path->pathtarget->width);
    3883                 : 
    3884 GIC        2161 :         startup_cost += seq_page_cost * innerpages;
    3885            2161 :         run_cost += seq_page_cost * (innerpages + 2 * outerpages);
    3886                 :     }
    3887                 : 
    3888                 :     /* CPU costs left for later */
    3889                 : 
    3890                 :     /* Public result fields */
    3891          226678 :     workspace->startup_cost = startup_cost;
    3892          226678 :     workspace->total_cost = startup_cost + run_cost;
    3893                 :     /* Save private data for final_cost_hashjoin */
    3894          226678 :     workspace->run_cost = run_cost;
    3895          226678 :     workspace->numbuckets = numbuckets;
    3896          226678 :     workspace->numbatches = numbatches;
    3897          226678 :     workspace->inner_rows_total = inner_path_rows_total;
    3898 CBC      226678 : }
    3899                 : 
    3900 ECB             : /*
    3901                 :  * final_cost_hashjoin
    3902                 :  *    Final estimate of the cost and result size of a hashjoin path.
    3903                 :  *
    3904                 :  * Note: the numbatches estimate is also saved into 'path' for use later
    3905                 :  *
    3906                 :  * 'path' is already filled in except for the rows and cost fields and
    3907                 :  *      num_batches
    3908                 :  * 'workspace' is the result from initial_cost_hashjoin
    3909                 :  * 'extra' contains miscellaneous information about the join
    3910                 :  */
    3911                 : void
    3912 CBC       97728 : final_cost_hashjoin(PlannerInfo *root, HashPath *path,
    3913 ECB             :                     JoinCostWorkspace *workspace,
    3914                 :                     JoinPathExtraData *extra)
    3915                 : {
    3916 CBC       97728 :     Path       *outer_path = path->jpath.outerjoinpath;
    3917           97728 :     Path       *inner_path = path->jpath.innerjoinpath;
    3918           97728 :     double      outer_path_rows = outer_path->rows;
    3919           97728 :     double      inner_path_rows = inner_path->rows;
    3920 GIC       97728 :     double      inner_path_rows_total = workspace->inner_rows_total;
    3921           97728 :     List       *hashclauses = path->path_hashclauses;
    3922           97728 :     Cost        startup_cost = workspace->startup_cost;
    3923           97728 :     Cost        run_cost = workspace->run_cost;
    3924           97728 :     int         numbuckets = workspace->numbuckets;
    3925           97728 :     int         numbatches = workspace->numbatches;
    3926                 :     Cost        cpu_per_tuple;
    3927                 :     QualCost    hash_qual_cost;
    3928                 :     QualCost    qp_qual_cost;
    3929                 :     double      hashjointuples;
    3930                 :     double      virtualbuckets;
    3931                 :     Selectivity innerbucketsize;
    3932                 :     Selectivity innermcvfreq;
    3933 ECB             :     ListCell   *hcl;
    3934                 : 
    3935                 :     /* Mark the path with the correct row estimate */
    3936 GIC       97728 :     if (path->jpath.path.param_info)
    3937 CBC         474 :         path->jpath.path.rows = path->jpath.path.param_info->ppi_rows;
    3938 ECB             :     else
    3939 CBC       97254 :         path->jpath.path.rows = path->jpath.path.parent->rows;
    3940 ECB             : 
    3941                 :     /* For partial paths, scale row estimate. */
    3942 CBC       97728 :     if (path->jpath.path.parallel_workers > 0)
    3943 ECB             :     {
    3944 CBC        5089 :         double      parallel_divisor = get_parallel_divisor(&path->jpath.path);
    3945 ECB             : 
    3946 CBC        5089 :         path->jpath.path.rows =
    3947 GIC        5089 :             clamp_row_est(path->jpath.path.rows / parallel_divisor);
    3948                 :     }
    3949                 : 
    3950                 :     /*
    3951                 :      * We could include disable_cost in the preliminary estimate, but that
    3952                 :      * would amount to optimizing for the case where the join method is
    3953                 :      * disabled, which doesn't seem like the way to bet.
    3954                 :      */
    3955           97728 :     if (!enable_hashjoin)
    3956             102 :         startup_cost += disable_cost;
    3957 ECB             : 
    3958                 :     /* mark the path with estimated # of batches */
    3959 GIC       97728 :     path->num_batches = numbatches;
    3960 ECB             : 
    3961                 :     /* store the total number of tuples (sum of partial row estimates) */
    3962 GIC       97728 :     path->inner_rows_total = inner_path_rows_total;
    3963 ECB             : 
    3964                 :     /* and compute the number of "virtual" buckets in the whole join */
    3965 CBC       97728 :     virtualbuckets = (double) numbuckets * (double) numbatches;
    3966                 : 
    3967 ECB             :     /*
    3968                 :      * Determine bucketsize fraction and MCV frequency for the inner relation.
    3969                 :      * We use the smallest bucketsize or MCV frequency estimated for any
    3970                 :      * individual hashclause; this is undoubtedly conservative.
    3971                 :      *
    3972                 :      * BUT: if inner relation has been unique-ified, we can assume it's good
    3973                 :      * for hashing.  This is important both because it's the right answer, and
    3974                 :      * because we avoid contaminating the cache with a value that's wrong for
    3975                 :      * non-unique-ified paths.
    3976                 :      */
    3977 CBC       97728 :     if (IsA(inner_path, UniquePath))
    3978                 :     {
    3979 GIC         537 :         innerbucketsize = 1.0 / virtualbuckets;
    3980 CBC         537 :         innermcvfreq = 0.0;
    3981                 :     }
    3982                 :     else
    3983 ECB             :     {
    3984 GIC       97191 :         innerbucketsize = 1.0;
    3985           97191 :         innermcvfreq = 1.0;
    3986 CBC      204945 :         foreach(hcl, hashclauses)
    3987                 :         {
    3988 GIC      107754 :             RestrictInfo *restrictinfo = lfirst_node(RestrictInfo, hcl);
    3989                 :             Selectivity thisbucketsize;
    3990                 :             Selectivity thismcvfreq;
    3991                 : 
    3992                 :             /*
    3993                 :              * First we have to figure out which side of the hashjoin clause
    3994                 :              * is the inner side.
    3995                 :              *
    3996                 :              * Since we tend to visit the same clauses over and over when
    3997                 :              * planning a large query, we cache the bucket stats estimates in
    3998 ECB             :              * the RestrictInfo node to avoid repeated lookups of statistics.
    3999                 :              */
    4000 CBC      107754 :             if (bms_is_subset(restrictinfo->right_relids,
    4001          107754 :                               inner_path->parent->relids))
    4002                 :             {
    4003                 :                 /* righthand side is inner */
    4004 GIC       57916 :                 thisbucketsize = restrictinfo->right_bucketsize;
    4005 CBC       57916 :                 if (thisbucketsize < 0)
    4006 ECB             :                 {
    4007                 :                     /* not cached yet */
    4008 GIC       32400 :                     estimate_hash_bucket_stats(root,
    4009 CBC       32400 :                                                get_rightop(restrictinfo->clause),
    4010                 :                                                virtualbuckets,
    4011                 :                                                &restrictinfo->right_mcvfreq,
    4012                 :                                                &restrictinfo->right_bucketsize);
    4013 GIC       32400 :                     thisbucketsize = restrictinfo->right_bucketsize;
    4014                 :                 }
    4015           57916 :                 thismcvfreq = restrictinfo->right_mcvfreq;
    4016                 :             }
    4017                 :             else
    4018                 :             {
    4019           49838 :                 Assert(bms_is_subset(restrictinfo->left_relids,
    4020                 :                                      inner_path->parent->relids));
    4021 ECB             :                 /* lefthand side is inner */
    4022 CBC       49838 :                 thisbucketsize = restrictinfo->left_bucketsize;
    4023 GIC       49838 :                 if (thisbucketsize < 0)
    4024                 :                 {
    4025 ECB             :                     /* not cached yet */
    4026 CBC       27324 :                     estimate_hash_bucket_stats(root,
    4027 GIC       27324 :                                                get_leftop(restrictinfo->clause),
    4028                 :                                                virtualbuckets,
    4029 ECB             :                                                &restrictinfo->left_mcvfreq,
    4030                 :                                                &restrictinfo->left_bucketsize);
    4031 GIC       27324 :                     thisbucketsize = restrictinfo->left_bucketsize;
    4032                 :                 }
    4033           49838 :                 thismcvfreq = restrictinfo->left_mcvfreq;
    4034 ECB             :             }
    4035                 : 
    4036 CBC      107754 :             if (innerbucketsize > thisbucketsize)
    4037 GIC       70901 :                 innerbucketsize = thisbucketsize;
    4038          107754 :             if (innermcvfreq > thismcvfreq)
    4039           99121 :                 innermcvfreq = thismcvfreq;
    4040 ECB             :         }
    4041                 :     }
    4042                 : 
    4043                 :     /*
    4044                 :      * If the bucket holding the inner MCV would exceed hash_mem, we don't
    4045                 :      * want to hash unless there is really no other alternative, so apply
    4046                 :      * disable_cost.  (The executor normally copes with excessive memory usage
    4047                 :      * by splitting batches, but obviously it cannot separate equal values
    4048                 :      * that way, so it will be unable to drive the batch size below hash_mem
    4049                 :      * when this is true.)
    4050                 :      */
    4051 GIC       97728 :     if (relation_byte_size(clamp_row_est(inner_path_rows * innermcvfreq),
    4052 CBC      195456 :                            inner_path->pathtarget->width) > get_hash_memory_limit())
    4053 UIC           0 :         startup_cost += disable_cost;
    4054 ECB             : 
    4055                 :     /*
    4056                 :      * Compute cost of the hashquals and qpquals (other restriction clauses)
    4057                 :      * separately.
    4058                 :      */
    4059 CBC       97728 :     cost_qual_eval(&hash_qual_cost, hashclauses, root);
    4060           97728 :     cost_qual_eval(&qp_qual_cost, path->jpath.joinrestrictinfo, root);
    4061 GIC       97728 :     qp_qual_cost.startup -= hash_qual_cost.startup;
    4062           97728 :     qp_qual_cost.per_tuple -= hash_qual_cost.per_tuple;
    4063                 : 
    4064                 :     /* CPU costs */
    4065                 : 
    4066           97728 :     if (path->jpath.jointype == JOIN_SEMI ||
    4067           96784 :         path->jpath.jointype == JOIN_ANTI ||
    4068           93205 :         extra->inner_unique)
    4069           43275 :     {
    4070                 :         double      outer_matched_rows;
    4071                 :         Selectivity inner_scan_frac;
    4072 ECB             : 
    4073                 :         /*
    4074 EUB             :          * With a SEMI or ANTI join, or if the innerrel is known unique, the
    4075                 :          * executor will stop after the first match.
    4076                 :          *
    4077                 :          * For an outer-rel row that has at least one match, we can expect the
    4078                 :          * bucket scan to stop after a fraction 1/(match_count+1) of the
    4079                 :          * bucket's rows, if the matches are evenly distributed.  Since they
    4080 ECB             :          * probably aren't quite evenly distributed, we apply a fuzz factor of
    4081                 :          * 2.0 to that fraction.  (If we used a larger fuzz factor, we'd have
    4082                 :          * to clamp inner_scan_frac to at most 1.0; but since match_count is
    4083                 :          * at least 1, no such clamp is needed now.)
    4084                 :          */
    4085 GIC       43275 :         outer_matched_rows = rint(outer_path_rows * extra->semifactors.outer_match_frac);
    4086           43275 :         inner_scan_frac = 2.0 / (extra->semifactors.match_count + 1.0);
    4087 ECB             : 
    4088 CBC       43275 :         startup_cost += hash_qual_cost.startup;
    4089           86550 :         run_cost += hash_qual_cost.per_tuple * outer_matched_rows *
    4090           43275 :             clamp_row_est(inner_path_rows * innerbucketsize * inner_scan_frac) * 0.5;
    4091                 : 
    4092                 :         /*
    4093                 :          * For unmatched outer-rel rows, the picture is quite a lot different.
    4094                 :          * In the first place, there is no reason to assume that these rows
    4095                 :          * preferentially hit heavily-populated buckets; instead assume they
    4096                 :          * are uncorrelated with the inner distribution and so they see an
    4097                 :          * average bucket size of inner_path_rows / virtualbuckets.  In the
    4098                 :          * second place, it seems likely that they will have few if any exact
    4099                 :          * hash-code matches and so very few of the tuples in the bucket will
    4100                 :          * actually require eval of the hash quals.  We don't have any good
    4101                 :          * way to estimate how many will, but for the moment assume that the
    4102                 :          * effective cost per bucket entry is one-tenth what it is for
    4103                 :          * matchable tuples.
    4104                 :          */
    4105 GIC       86550 :         run_cost += hash_qual_cost.per_tuple *
    4106 CBC       86550 :             (outer_path_rows - outer_matched_rows) *
    4107           43275 :             clamp_row_est(inner_path_rows / virtualbuckets) * 0.05;
    4108                 : 
    4109 ECB             :         /* Get # of tuples that will pass the basic join */
    4110 CBC       43275 :         if (path->jpath.jointype == JOIN_ANTI)
    4111            3579 :             hashjointuples = outer_path_rows - outer_matched_rows;
    4112                 :         else
    4113 GIC       39696 :             hashjointuples = outer_matched_rows;
    4114                 :     }
    4115                 :     else
    4116                 :     {
    4117                 :         /*
    4118                 :          * The number of tuple comparisons needed is the number of outer
    4119                 :          * tuples times the typical number of tuples in a hash bucket, which
    4120                 :          * is the inner relation size times its bucketsize fraction.  At each
    4121                 :          * one, we need to evaluate the hashjoin quals.  But actually,
    4122                 :          * charging the full qual eval cost at each tuple is pessimistic,
    4123                 :          * since we don't evaluate the quals unless the hash values match
    4124                 :          * exactly.  For lack of a better idea, halve the cost estimate to
    4125                 :          * allow for that.
    4126 ECB             :          */
    4127 CBC       54453 :         startup_cost += hash_qual_cost.startup;
    4128          108906 :         run_cost += hash_qual_cost.per_tuple * outer_path_rows *
    4129 GIC       54453 :             clamp_row_est(inner_path_rows * innerbucketsize) * 0.5;
    4130                 : 
    4131 ECB             :         /*
    4132                 :          * Get approx # tuples passing the hashquals.  We use
    4133                 :          * approx_tuple_count here because we need an estimate done with
    4134                 :          * JOIN_INNER semantics.
    4135                 :          */
    4136 GIC       54453 :         hashjointuples = approx_tuple_count(root, &path->jpath, hashclauses);
    4137                 :     }
    4138                 : 
    4139                 :     /*
    4140                 :      * For each tuple that gets through the hashjoin proper, we charge
    4141                 :      * cpu_tuple_cost plus the cost of evaluating additional restriction
    4142                 :      * clauses that are to be applied at the join.  (This is pessimistic since
    4143                 :      * not all of the quals may get evaluated at each tuple.)
    4144                 :      */
    4145           97728 :     startup_cost += qp_qual_cost.startup;
    4146           97728 :     cpu_per_tuple = cpu_tuple_cost + qp_qual_cost.per_tuple;
    4147           97728 :     run_cost += cpu_per_tuple * hashjointuples;
    4148 ECB             : 
    4149                 :     /* tlist eval costs are paid per output row, not per tuple scanned */
    4150 CBC       97728 :     startup_cost += path->jpath.path.pathtarget->cost.startup;
    4151 GIC       97728 :     run_cost += path->jpath.path.pathtarget->cost.per_tuple * path->jpath.path.rows;
    4152                 : 
    4153           97728 :     path->jpath.path.startup_cost = startup_cost;
    4154           97728 :     path->jpath.path.total_cost = startup_cost + run_cost;
    4155           97728 : }
    4156                 : 
    4157 ECB             : 
    4158                 : /*
    4159                 :  * cost_subplan
    4160                 :  *      Figure the costs for a SubPlan (or initplan).
    4161                 :  *
    4162                 :  * Note: we could dig the subplan's Plan out of the root list, but in practice
    4163                 :  * all callers have it handy already, so we make them pass it.
    4164                 :  */
    4165                 : void
    4166 CBC       18986 : cost_subplan(PlannerInfo *root, SubPlan *subplan, Plan *plan)
    4167 ECB             : {
    4168                 :     QualCost    sp_cost;
    4169                 : 
    4170                 :     /* Figure any cost for evaluating the testexpr */
    4171 CBC       18986 :     cost_qual_eval(&sp_cost,
    4172           18986 :                    make_ands_implicit((Expr *) subplan->testexpr),
    4173                 :                    root);
    4174 ECB             : 
    4175 CBC       18986 :     if (subplan->useHashTable)
    4176 ECB             :     {
    4177                 :         /*
    4178                 :          * If we are using a hash table for the subquery outputs, then the
    4179                 :          * cost of evaluating the query is a one-time cost.  We charge one
    4180                 :          * cpu_operator_cost per tuple for the work of loading the hashtable,
    4181                 :          * too.
    4182                 :          */
    4183 GIC         895 :         sp_cost.startup += plan->total_cost +
    4184             895 :             cpu_operator_cost * plan->plan_rows;
    4185                 : 
    4186                 :         /*
    4187 ECB             :          * The per-tuple costs include the cost of evaluating the lefthand
    4188                 :          * expressions, plus the cost of probing the hashtable.  We already
    4189                 :          * accounted for the lefthand expressions as part of the testexpr, and
    4190                 :          * will also have counted one cpu_operator_cost for each comparison
    4191                 :          * operator.  That is probably too low for the probing cost, but it's
    4192                 :          * hard to make a better estimate, so live with it for now.
    4193                 :          */
    4194                 :     }
    4195                 :     else
    4196                 :     {
    4197                 :         /*
    4198                 :          * Otherwise we will be rescanning the subplan output on each
    4199                 :          * evaluation.  We need to estimate how much of the output we will
    4200                 :          * actually need to scan.  NOTE: this logic should agree with the
    4201                 :          * tuple_fraction estimates used by make_subplan() in
    4202                 :          * plan/subselect.c.
    4203                 :          */
    4204 CBC       18091 :         Cost        plan_run_cost = plan->total_cost - plan->startup_cost;
    4205 ECB             : 
    4206 GIC       18091 :         if (subplan->subLinkType == EXISTS_SUBLINK)
    4207                 :         {
    4208                 :             /* we only need to fetch 1 tuple; clamp to avoid zero divide */
    4209             940 :             sp_cost.per_tuple += plan_run_cost / clamp_row_est(plan->plan_rows);
    4210                 :         }
    4211           17151 :         else if (subplan->subLinkType == ALL_SUBLINK ||
    4212           17142 :                  subplan->subLinkType == ANY_SUBLINK)
    4213                 :         {
    4214                 :             /* assume we need 50% of the tuples */
    4215              65 :             sp_cost.per_tuple += 0.50 * plan_run_cost;
    4216                 :             /* also charge a cpu_operator_cost per row examined */
    4217              65 :             sp_cost.per_tuple += 0.50 * plan->plan_rows * cpu_operator_cost;
    4218                 :         }
    4219                 :         else
    4220                 :         {
    4221                 :             /* assume we need all tuples */
    4222           17086 :             sp_cost.per_tuple += plan_run_cost;
    4223                 :         }
    4224                 : 
    4225 ECB             :         /*
    4226                 :          * Also account for subplan's startup cost. If the subplan is
    4227                 :          * uncorrelated or undirect correlated, AND its topmost node is one
    4228                 :          * that materializes its output, assume that we'll only need to pay
    4229                 :          * its startup cost once; otherwise assume we pay the startup cost
    4230                 :          * every time.
    4231                 :          */
    4232 CBC       26280 :         if (subplan->parParam == NIL &&
    4233            8189 :             ExecMaterializesOutput(nodeTag(plan)))
    4234 GIC         214 :             sp_cost.startup += plan->startup_cost;
    4235                 :         else
    4236 CBC       17877 :             sp_cost.per_tuple += plan->startup_cost;
    4237                 :     }
    4238 ECB             : 
    4239 GIC       18986 :     subplan->startup_cost = sp_cost.startup;
    4240           18986 :     subplan->per_call_cost = sp_cost.per_tuple;
    4241           18986 : }
    4242                 : 
    4243 ECB             : 
    4244                 : /*
    4245                 :  * cost_rescan
    4246                 :  *      Given a finished Path, estimate the costs of rescanning it after
    4247                 :  *      having done so the first time.  For some Path types a rescan is
    4248                 :  *      cheaper than an original scan (if no parameters change), and this
    4249                 :  *      function embodies knowledge about that.  The default is to return
    4250                 :  *      the same costs stored in the Path.  (Note that the cost estimates
    4251                 :  *      actually stored in Paths are always for first scans.)
    4252                 :  *
    4253                 :  * This function is not currently intended to model effects such as rescans
    4254                 :  * being cheaper due to disk block caching; what we are concerned with is
    4255                 :  * plan types wherein the executor caches results explicitly, or doesn't
    4256                 :  * redo startup calculations, etc.
    4257                 :  */
    4258                 : static void
    4259 GIC      920500 : cost_rescan(PlannerInfo *root, Path *path,
    4260 ECB             :             Cost *rescan_startup_cost,  /* output parameters */
    4261                 :             Cost *rescan_total_cost)
    4262                 : {
    4263 GIC      920500 :     switch (path->pathtype)
    4264                 :     {
    4265           16600 :         case T_FunctionScan:
    4266                 : 
    4267                 :             /*
    4268                 :              * Currently, nodeFunctionscan.c always executes the function to
    4269                 :              * completion before returning any rows, and caches the results in
    4270                 :              * a tuplestore.  So the function eval cost is all startup cost
    4271                 :              * and isn't paid over again on rescans. However, all run costs
    4272                 :              * will be paid over again.
    4273                 :              */
    4274           16600 :             *rescan_startup_cost = 0;
    4275           16600 :             *rescan_total_cost = path->total_cost - path->startup_cost;
    4276           16600 :             break;
    4277           43325 :         case T_HashJoin:
    4278                 : 
    4279                 :             /*
    4280 ECB             :              * If it's a single-batch join, we don't need to rebuild the hash
    4281                 :              * table during a rescan.
    4282                 :              */
    4283 GIC       43325 :             if (((HashPath *) path)->num_batches == 1)
    4284 ECB             :             {
    4285                 :                 /* Startup cost is exactly the cost of hash table building */
    4286 CBC       43325 :                 *rescan_startup_cost = 0;
    4287 GIC       43325 :                 *rescan_total_cost = path->total_cost - path->startup_cost;
    4288                 :             }
    4289                 :             else
    4290                 :             {
    4291                 :                 /* Otherwise, no special treatment */
    4292 UIC           0 :                 *rescan_startup_cost = path->startup_cost;
    4293               0 :                 *rescan_total_cost = path->total_cost;
    4294                 :             }
    4295 CBC       43325 :             break;
    4296            2444 :         case T_CteScan:
    4297 ECB             :         case T_WorkTableScan:
    4298                 :             {
    4299                 :                 /*
    4300                 :                  * These plan types materialize their final result in a
    4301                 :                  * tuplestore or tuplesort object.  So the rescan cost is only
    4302                 :                  * cpu_tuple_cost per tuple, unless the result is large enough
    4303                 :                  * to spill to disk.
    4304                 :                  */
    4305 GIC        2444 :                 Cost        run_cost = cpu_tuple_cost * path->rows;
    4306            2444 :                 double      nbytes = relation_byte_size(path->rows,
    4307 CBC        2444 :                                                         path->pathtarget->width);
    4308            2444 :                 long        work_mem_bytes = work_mem * 1024L;
    4309                 : 
    4310 GIC        2444 :                 if (nbytes > work_mem_bytes)
    4311                 :                 {
    4312                 :                     /* It will spill, so account for re-read cost */
    4313 GBC          48 :                     double      npages = ceil(nbytes / BLCKSZ);
    4314 EUB             : 
    4315 GIC          48 :                     run_cost += seq_page_cost * npages;
    4316 ECB             :                 }
    4317 CBC        2444 :                 *rescan_startup_cost = 0;
    4318 GIC        2444 :                 *rescan_total_cost = run_cost;
    4319                 :             }
    4320            2444 :             break;
    4321          310594 :         case T_Material:
    4322                 :         case T_Sort:
    4323                 :             {
    4324                 :                 /*
    4325                 :                  * These plan types not only materialize their results, but do
    4326 ECB             :                  * not implement qual filtering or projection.  So they are
    4327                 :                  * even cheaper to rescan than the ones above.  We charge only
    4328                 :                  * cpu_operator_cost per tuple.  (Note: keep that in sync with
    4329                 :                  * the run_cost charge in cost_sort, and also see comments in
    4330                 :                  * cost_material before you change it.)
    4331                 :                  */
    4332 GIC      310594 :                 Cost        run_cost = cpu_operator_cost * path->rows;
    4333          310594 :                 double      nbytes = relation_byte_size(path->rows,
    4334 CBC      310594 :                                                         path->pathtarget->width);
    4335 GIC      310594 :                 long        work_mem_bytes = work_mem * 1024L;
    4336 ECB             : 
    4337 GIC      310594 :                 if (nbytes > work_mem_bytes)
    4338 ECB             :                 {
    4339                 :                     /* It will spill, so account for re-read cost */
    4340 GIC        3978 :                     double      npages = ceil(nbytes / BLCKSZ);
    4341 ECB             : 
    4342 CBC        3978 :                     run_cost += seq_page_cost * npages;
    4343                 :                 }
    4344 GIC      310594 :                 *rescan_startup_cost = 0;
    4345          310594 :                 *rescan_total_cost = run_cost;
    4346                 :             }
    4347          310594 :             break;
    4348           89794 :         case T_Memoize:
    4349                 :             /* All the hard work is done by cost_memoize_rescan */
    4350           89794 :             cost_memoize_rescan(root, (MemoizePath *) path,
    4351                 :                                 rescan_startup_cost, rescan_total_cost);
    4352           89794 :             break;
    4353 CBC      457743 :         default:
    4354          457743 :             *rescan_startup_cost = path->startup_cost;
    4355          457743 :             *rescan_total_cost = path->total_cost;
    4356          457743 :             break;
    4357                 :     }
    4358          920500 : }
    4359                 : 
    4360                 : 
    4361 ECB             : /*
    4362                 :  * cost_qual_eval
    4363                 :  *      Estimate the CPU costs of evaluating a WHERE clause.
    4364                 :  *      The input can be either an implicitly-ANDed list of boolean
    4365                 :  *      expressions, or a list of RestrictInfo nodes.  (The latter is
    4366                 :  *      preferred since it allows caching of the results.)
    4367                 :  *      The result includes both a one-time (startup) component,
    4368                 :  *      and a per-evaluation component.
    4369                 :  */
    4370                 : void
    4371 CBC     1334909 : cost_qual_eval(QualCost *cost, List *quals, PlannerInfo *root)
    4372                 : {
    4373 ECB             :     cost_qual_eval_context context;
    4374                 :     ListCell   *l;
    4375                 : 
    4376 CBC     1334909 :     context.root = root;
    4377         1334909 :     context.total.startup = 0;
    4378 GIC     1334909 :     context.total.per_tuple = 0;
    4379 ECB             : 
    4380                 :     /* We don't charge any cost for the implicit ANDing at top level ... */
    4381                 : 
    4382 GIC     2470078 :     foreach(l, quals)
    4383                 :     {
    4384         1135169 :         Node       *qual = (Node *) lfirst(l);
    4385                 : 
    4386         1135169 :         cost_qual_eval_walker(qual, &context);
    4387                 :     }
    4388                 : 
    4389         1334909 :     *cost = context.total;
    4390         1334909 : }
    4391                 : 
    4392 ECB             : /*
    4393                 :  * cost_qual_eval_node
    4394                 :  *      As above, for a single RestrictInfo or expression.
    4395                 :  */
    4396                 : void
    4397 CBC      712599 : cost_qual_eval_node(QualCost *cost, Node *qual, PlannerInfo *root)
    4398 ECB             : {
    4399                 :     cost_qual_eval_context context;
    4400                 : 
    4401 GIC      712599 :     context.root = root;
    4402          712599 :     context.total.startup = 0;
    4403 CBC      712599 :     context.total.per_tuple = 0;
    4404                 : 
    4405          712599 :     cost_qual_eval_walker(qual, &context);
    4406                 : 
    4407          712599 :     *cost = context.total;
    4408 GIC      712599 : }
    4409                 : 
    4410 ECB             : static bool
    4411 CBC     3064025 : cost_qual_eval_walker(Node *node, cost_qual_eval_context *context)
    4412                 : {
    4413 GIC     3064025 :     if (node == NULL)
    4414           28407 :         return false;
    4415                 : 
    4416                 :     /*
    4417                 :      * RestrictInfo nodes contain an eval_cost field reserved for this
    4418 ECB             :      * routine's use, so that it's not necessary to evaluate the qual clause's
    4419                 :      * cost more than once.  If the clause's cost hasn't been computed yet,
    4420                 :      * the field's startup value will contain -1.
    4421                 :      */
    4422 CBC     3035618 :     if (IsA(node, RestrictInfo))
    4423 ECB             :     {
    4424 CBC     1199066 :         RestrictInfo *rinfo = (RestrictInfo *) node;
    4425                 : 
    4426         1199066 :         if (rinfo->eval_cost.startup < 0)
    4427                 :         {
    4428 ECB             :             cost_qual_eval_context locContext;
    4429                 : 
    4430 GIC      212365 :             locContext.root = context->root;
    4431          212365 :             locContext.total.startup = 0;
    4432 CBC      212365 :             locContext.total.per_tuple = 0;
    4433                 : 
    4434 ECB             :             /*
    4435                 :              * For an OR clause, recurse into the marked-up tree so that we
    4436                 :              * set the eval_cost for contained RestrictInfos too.
    4437                 :              */
    4438 GIC      212365 :             if (rinfo->orclause)
    4439            3374 :                 cost_qual_eval_walker((Node *) rinfo->orclause, &locContext);
    4440                 :             else
    4441          208991 :                 cost_qual_eval_walker((Node *) rinfo->clause, &locContext);
    4442                 : 
    4443 ECB             :             /*
    4444                 :              * If the RestrictInfo is marked pseudoconstant, it will be tested
    4445                 :              * only once, so treat its cost as all startup cost.
    4446                 :              */
    4447 CBC      212365 :             if (rinfo->pseudoconstant)
    4448                 :             {
    4449                 :                 /* count one execution during startup */
    4450 GIC        3710 :                 locContext.total.startup += locContext.total.per_tuple;
    4451 CBC        3710 :                 locContext.total.per_tuple = 0;
    4452 ECB             :             }
    4453 CBC      212365 :             rinfo->eval_cost = locContext.total;
    4454                 :         }
    4455 GIC     1199066 :         context->total.startup += rinfo->eval_cost.startup;
    4456         1199066 :         context->total.per_tuple += rinfo->eval_cost.per_tuple;
    4457                 :         /* do NOT recurse into children */
    4458         1199066 :         return false;
    4459 ECB             :     }
    4460                 : 
    4461                 :     /*
    4462                 :      * For each operator or function node in the given tree, we charge the
    4463                 :      * estimated execution cost given by pg_proc.procost (remember to multiply
    4464                 :      * this by cpu_operator_cost).
    4465                 :      *
    4466                 :      * Vars and Consts are charged zero, and so are boolean operators (AND,
    4467                 :      * OR, NOT). Simplistic, but a lot better than no model at all.
    4468                 :      *
    4469                 :      * Should we try to account for the possibility of short-circuit
    4470                 :      * evaluation of AND/OR?  Probably *not*, because that would make the
    4471                 :      * results depend on the clause ordering, and we are not in any position
    4472                 :      * to expect that the current ordering of the clauses is the one that's
    4473                 :      * going to end up being used.  The above per-RestrictInfo caching would
    4474                 :      * not mix well with trying to re-order clauses anyway.
    4475                 :      *
    4476                 :      * Another issue that is entirely ignored here is that if a set-returning
    4477                 :      * function is below top level in the tree, the functions/operators above
    4478                 :      * it will need to be evaluated multiple times.  In practical use, such
    4479                 :      * cases arise so seldom as to not be worth the added complexity needed;
    4480                 :      * moreover, since our rowcount estimates for functions tend to be pretty
    4481                 :      * phony, the results would also be pretty phony.
    4482                 :      */
    4483 GIC     1836552 :     if (IsA(node, FuncExpr))
    4484                 :     {
    4485          137015 :         add_function_cost(context->root, ((FuncExpr *) node)->funcid, node,
    4486                 :                           &context->total);
    4487                 :     }
    4488         1699537 :     else if (IsA(node, OpExpr) ||
    4489         1469619 :              IsA(node, DistinctExpr) ||
    4490         1469258 :              IsA(node, NullIfExpr))
    4491                 :     {
    4492                 :         /* rely on struct equivalence to treat these all alike */
    4493          230346 :         set_opfuncid((OpExpr *) node);
    4494          230346 :         add_function_cost(context->root, ((OpExpr *) node)->opfuncid, node,
    4495                 :                           &context->total);
    4496                 :     }
    4497         1469191 :     else if (IsA(node, ScalarArrayOpExpr))
    4498                 :     {
    4499           16679 :         ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) node;
    4500           16679 :         Node       *arraynode = (Node *) lsecond(saop->args);
    4501                 :         QualCost    sacosts;
    4502                 :         QualCost    hcosts;
    4503           16679 :         int         estarraylen = estimate_array_length(arraynode);
    4504 ECB             : 
    4505 GIC       16679 :         set_sa_opfuncid(saop);
    4506 CBC       16679 :         sacosts.startup = sacosts.per_tuple = 0;
    4507 GIC       16679 :         add_function_cost(context->root, saop->opfuncid, NULL,
    4508                 :                           &sacosts);
    4509 ECB             : 
    4510 CBC       16679 :         if (OidIsValid(saop->hashfuncid))
    4511 ECB             :         {
    4512                 :             /* Handle costs for hashed ScalarArrayOpExpr */
    4513 GIC         133 :             hcosts.startup = hcosts.per_tuple = 0;
    4514 ECB             : 
    4515 CBC         133 :             add_function_cost(context->root, saop->hashfuncid, NULL, &hcosts);
    4516 GIC         133 :             context->total.startup += sacosts.startup + hcosts.startup;
    4517                 : 
    4518 ECB             :             /* Estimate the cost of building the hashtable. */
    4519 GIC         133 :             context->total.startup += estarraylen * hcosts.per_tuple;
    4520 ECB             : 
    4521                 :             /*
    4522                 :              * XXX should we charge a little bit for sacosts.per_tuple when
    4523                 :              * building the table, or is it ok to assume there will be zero
    4524                 :              * hash collision?
    4525                 :              */
    4526                 : 
    4527                 :             /*
    4528                 :              * Charge for hashtable lookups.  Charge a single hash and a
    4529                 :              * single comparison.
    4530                 :              */
    4531 CBC         133 :             context->total.per_tuple += hcosts.per_tuple + sacosts.per_tuple;
    4532                 :         }
    4533                 :         else
    4534 ECB             :         {
    4535                 :             /*
    4536                 :              * Estimate that the operator will be applied to about half of the
    4537                 :              * array elements before the answer is determined.
    4538                 :              */
    4539 GIC       16546 :             context->total.startup += sacosts.startup;
    4540 CBC       33092 :             context->total.per_tuple += sacosts.per_tuple *
    4541 GIC       16546 :                 estimate_array_length(arraynode) * 0.5;
    4542                 :         }
    4543                 :     }
    4544         1452512 :     else if (IsA(node, Aggref) ||
    4545         1428742 :              IsA(node, WindowFunc))
    4546                 :     {
    4547                 :         /*
    4548                 :          * Aggref and WindowFunc nodes are (and should be) treated like Vars,
    4549                 :          * ie, zero execution cost in the current model, because they behave
    4550                 :          * essentially like Vars at execution.  We disregard the costs of
    4551                 :          * their input expressions for the same reason.  The actual execution
    4552 ECB             :          * costs of the aggregate/window functions and their arguments have to
    4553                 :          * be factored into plan-node-specific costing of the Agg or WindowAgg
    4554                 :          * plan node.
    4555                 :          */
    4556 GIC       25231 :         return false;           /* don't recurse into children */
    4557                 :     }
    4558         1427281 :     else if (IsA(node, GroupingFunc))
    4559                 :     {
    4560 ECB             :         /* Treat this as having cost 1 */
    4561 CBC         175 :         context->total.per_tuple += cpu_operator_cost;
    4562             175 :         return false;           /* don't recurse into children */
    4563                 :     }
    4564 GIC     1427106 :     else if (IsA(node, CoerceViaIO))
    4565 ECB             :     {
    4566 CBC        8325 :         CoerceViaIO *iocoerce = (CoerceViaIO *) node;
    4567                 :         Oid         iofunc;
    4568                 :         Oid         typioparam;
    4569                 :         bool        typisvarlena;
    4570                 : 
    4571                 :         /* check the result type's input function */
    4572 GIC        8325 :         getTypeInputInfo(iocoerce->resulttype,
    4573                 :                          &iofunc, &typioparam);
    4574            8325 :         add_function_cost(context->root, iofunc, NULL,
    4575                 :                           &context->total);
    4576                 :         /* check the input type's output function */
    4577 CBC        8325 :         getTypeOutputInfo(exprType((Node *) iocoerce->arg),
    4578                 :                           &iofunc, &typisvarlena);
    4579            8325 :         add_function_cost(context->root, iofunc, NULL,
    4580                 :                           &context->total);
    4581                 :     }
    4582         1418781 :     else if (IsA(node, ArrayCoerceExpr))
    4583 ECB             :     {
    4584 GIC        1950 :         ArrayCoerceExpr *acoerce = (ArrayCoerceExpr *) node;
    4585 ECB             :         QualCost    perelemcost;
    4586                 : 
    4587 CBC        1950 :         cost_qual_eval_node(&perelemcost, (Node *) acoerce->elemexpr,
    4588                 :                             context->root);
    4589 GIC        1950 :         context->total.startup += perelemcost.startup;
    4590            1950 :         if (perelemcost.per_tuple > 0)
    4591              24 :             context->total.per_tuple += perelemcost.per_tuple *
    4592              24 :                 estimate_array_length((Node *) acoerce->arg);
    4593 ECB             :     }
    4594 GIC     1416831 :     else if (IsA(node, RowCompareExpr))
    4595 ECB             :     {
    4596                 :         /* Conservatively assume we will check all the columns */
    4597 GIC          78 :         RowCompareExpr *rcexpr = (RowCompareExpr *) node;
    4598 ECB             :         ListCell   *lc;
    4599                 : 
    4600 CBC         261 :         foreach(lc, rcexpr->opnos)
    4601                 :         {
    4602 GIC         183 :             Oid         opid = lfirst_oid(lc);
    4603 ECB             : 
    4604 GIC         183 :             add_function_cost(context->root, get_opcode(opid), NULL,
    4605 ECB             :                               &context->total);
    4606                 :         }
    4607                 :     }
    4608 CBC     1416753 :     else if (IsA(node, MinMaxExpr) ||
    4609         1416651 :              IsA(node, XmlExpr) ||
    4610         1416306 :              IsA(node, CoerceToDomain) ||
    4611         1393644 :              IsA(node, NextValueExpr))
    4612 ECB             :     {
    4613                 :         /* Treat all these as having cost 1 */
    4614 CBC       23243 :         context->total.per_tuple += cpu_operator_cost;
    4615                 :     }
    4616 GIC     1393510 :     else if (IsA(node, CurrentOfExpr))
    4617 ECB             :     {
    4618                 :         /* Report high cost to prevent selection of anything but TID scan */
    4619 GIC         197 :         context->total.startup += disable_cost;
    4620 ECB             :     }
    4621 GIC     1393313 :     else if (IsA(node, SubLink))
    4622 ECB             :     {
    4623                 :         /* This routine should not be applied to un-planned expressions */
    4624 LBC           0 :         elog(ERROR, "cannot handle unplanned sub-select");
    4625                 :     }
    4626 GIC     1393313 :     else if (IsA(node, SubPlan))
    4627                 :     {
    4628 ECB             :         /*
    4629                 :          * A subplan node in an expression typically indicates that the
    4630                 :          * subplan will be executed on each evaluation, so charge accordingly.
    4631                 :          * (Sub-selects that can be executed as InitPlans have already been
    4632                 :          * removed from the expression.)
    4633                 :          */
    4634 CBC       15397 :         SubPlan    *subplan = (SubPlan *) node;
    4635                 : 
    4636           15397 :         context->total.startup += subplan->startup_cost;
    4637 GIC       15397 :         context->total.per_tuple += subplan->per_call_cost;
    4638                 : 
    4639 ECB             :         /*
    4640                 :          * We don't want to recurse into the testexpr, because it was already
    4641                 :          * counted in the SubPlan node's costs.  So we're done.
    4642                 :          */
    4643 GIC       15397 :         return false;
    4644 EUB             :     }
    4645 GIC     1377916 :     else if (IsA(node, AlternativeSubPlan))
    4646 ECB             :     {
    4647                 :         /*
    4648                 :          * Arbitrarily use the first alternative plan for costing.  (We should
    4649                 :          * certainly only include one alternative, and we don't yet have
    4650                 :          * enough information to know which one the executor is most likely to
    4651                 :          * use.)
    4652                 :          */
    4653 GIC         762 :         AlternativeSubPlan *asplan = (AlternativeSubPlan *) node;
    4654 ECB             : 
    4655 GIC         762 :         return cost_qual_eval_walker((Node *) linitial(asplan->subplans),
    4656 ECB             :                                      context);
    4657                 :     }
    4658 GIC     1377154 :     else if (IsA(node, PlaceHolderVar))
    4659                 :     {
    4660                 :         /*
    4661                 :          * A PlaceHolderVar should be given cost zero when considering general
    4662                 :          * expression evaluation costs.  The expense of doing the contained
    4663 ECB             :          * expression is charged as part of the tlist eval costs of the scan
    4664                 :          * or join where the PHV is first computed (see set_rel_width and
    4665                 :          * add_placeholders_to_joinrel).  If we charged it again here, we'd be
    4666                 :          * double-counting the cost for each level of plan that the PHV
    4667                 :          * bubbles up through.  Hence, return without recursing into the
    4668                 :          * phexpr.
    4669                 :          */
    4670 GIC        1023 :         return false;
    4671                 :     }
    4672                 : 
    4673 ECB             :     /* recurse into children */
    4674 GIC     1793964 :     return expression_tree_walker(node, cost_qual_eval_walker,
    4675 ECB             :                                   (void *) context);
    4676                 : }
    4677                 : 
    4678                 : /*
    4679                 :  * get_restriction_qual_cost
    4680                 :  *    Compute evaluation costs of a baserel's restriction quals, plus any
    4681                 :  *    movable join quals that have been pushed down to the scan.
    4682                 :  *    Results are returned into *qpqual_cost.
    4683                 :  *
    4684                 :  * This is a convenience subroutine that works for seqscans and other cases
    4685                 :  * where all the given quals will be evaluated the hard way.  It's not useful
    4686                 :  * for cost_index(), for example, where the index machinery takes care of
    4687                 :  * some of the quals.  We assume baserestrictcost was previously set by
    4688                 :  * set_baserel_size_estimates().
    4689                 :  */
    4690                 : static void
    4691 GIC      381093 : get_restriction_qual_cost(PlannerInfo *root, RelOptInfo *baserel,
    4692                 :                           ParamPathInfo *param_info,
    4693                 :                           QualCost *qpqual_cost)
    4694 ECB             : {
    4695 GIC      381093 :     if (param_info)
    4696                 :     {
    4697                 :         /* Include costs of pushed-down clauses */
    4698           78594 :         cost_qual_eval(qpqual_cost, param_info->ppi_clauses, root);
    4699                 : 
    4700           78594 :         qpqual_cost->startup += baserel->baserestrictcost.startup;
    4701           78594 :         qpqual_cost->per_tuple += baserel->baserestrictcost.per_tuple;
    4702                 :     }
    4703                 :     else
    4704          302499 :         *qpqual_cost = baserel->baserestrictcost;
    4705          381093 : }
    4706                 : 
    4707                 : 
    4708                 : /*
    4709                 :  * compute_semi_anti_join_factors
    4710                 :  *    Estimate how much of the inner input a SEMI, ANTI, or inner_unique join
    4711 ECB             :  *    can be expected to scan.
    4712                 :  *
    4713                 :  * In a hash or nestloop SEMI/ANTI join, the executor will stop scanning
    4714                 :  * inner rows as soon as it finds a match to the current outer row.
    4715                 :  * The same happens if we have detected the inner rel is unique.
    4716                 :  * We should therefore adjust some of the cost components for this effect.
    4717                 :  * This function computes some estimates needed for these adjustments.
    4718                 :  * These estimates will be the same regardless of the particular paths used
    4719                 :  * for the outer and inner relation, so we compute these once and then pass
    4720                 :  * them to all the join cost estimation functions.
    4721                 :  *
    4722                 :  * Input parameters:
    4723                 :  *  joinrel: join relation under consideration
    4724                 :  *  outerrel: outer relation under consideration
    4725                 :  *  innerrel: inner relation under consideration
    4726                 :  *  jointype: if not JOIN_SEMI or JOIN_ANTI, we assume it's inner_unique
    4727                 :  *  sjinfo: SpecialJoinInfo relevant to this join
    4728                 :  *  restrictlist: join quals
    4729                 :  * Output parameters:
    4730                 :  *  *semifactors is filled in (see pathnodes.h for field definitions)
    4731                 :  */
    4732                 : void
    4733 GIC       77000 : compute_semi_anti_join_factors(PlannerInfo *root,
    4734                 :                                RelOptInfo *joinrel,
    4735                 :                                RelOptInfo *outerrel,
    4736                 :                                RelOptInfo *innerrel,
    4737                 :                                JoinType jointype,
    4738                 :                                SpecialJoinInfo *sjinfo,
    4739                 :                                List *restrictlist,
    4740                 :                                SemiAntiJoinFactors *semifactors)
    4741                 : {
    4742                 :     Selectivity jselec;
    4743                 :     Selectivity nselec;
    4744                 :     Selectivity avgmatch;
    4745                 :     SpecialJoinInfo norm_sjinfo;
    4746                 :     List       *joinquals;
    4747                 :     ListCell   *l;
    4748                 : 
    4749                 :     /*
    4750                 :      * In an ANTI join, we must ignore clauses that are "pushed down", since
    4751                 :      * those won't affect the match logic.  In a SEMI join, we do not
    4752                 :      * distinguish joinquals from "pushed down" quals, so just use the whole
    4753 ECB             :      * restrictinfo list.  For other outer join types, we should consider only
    4754                 :      * non-pushed-down quals, so that this devolves to an IS_OUTER_JOIN check.
    4755                 :      */
    4756 GIC       77000 :     if (IS_OUTER_JOIN(jointype))
    4757                 :     {
    4758           33349 :         joinquals = NIL;
    4759           71566 :         foreach(l, restrictlist)
    4760                 :         {
    4761           38217 :             RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
    4762                 : 
    4763           38217 :             if (!RINFO_IS_PUSHED_DOWN(rinfo, joinrel->relids))
    4764           35911 :                 joinquals = lappend(joinquals, rinfo);
    4765                 :         }
    4766                 :     }
    4767                 :     else
    4768           43651 :         joinquals = restrictlist;
    4769                 : 
    4770                 :     /*
    4771                 :      * Get the JOIN_SEMI or JOIN_ANTI selectivity of the join clauses.
    4772                 :      */
    4773           77000 :     jselec = clauselist_selectivity(root,
    4774                 :                                     joinquals,
    4775                 :                                     0,
    4776 ECB             :                                     (jointype == JOIN_ANTI) ? JOIN_ANTI : JOIN_SEMI,
    4777                 :                                     sjinfo);
    4778                 : 
    4779                 :     /*
    4780                 :      * Also get the normal inner-join selectivity of the join clauses.
    4781                 :      */
    4782 GIC       77000 :     norm_sjinfo.type = T_SpecialJoinInfo;
    4783 CBC       77000 :     norm_sjinfo.min_lefthand = outerrel->relids;
    4784           77000 :     norm_sjinfo.min_righthand = innerrel->relids;
    4785 GIC       77000 :     norm_sjinfo.syn_lefthand = outerrel->relids;
    4786           77000 :     norm_sjinfo.syn_righthand = innerrel->relids;
    4787           77000 :     norm_sjinfo.jointype = JOIN_INNER;
    4788 GNC       77000 :     norm_sjinfo.ojrelid = 0;
    4789           77000 :     norm_sjinfo.commute_above_l = NULL;
    4790           77000 :     norm_sjinfo.commute_above_r = NULL;
    4791           77000 :     norm_sjinfo.commute_below = NULL;
    4792 ECB             :     /* we don't bother trying to make the remaining fields valid */
    4793 GIC       77000 :     norm_sjinfo.lhs_strict = false;
    4794           77000 :     norm_sjinfo.semi_can_btree = false;
    4795           77000 :     norm_sjinfo.semi_can_hash = false;
    4796 CBC       77000 :     norm_sjinfo.semi_operators = NIL;
    4797 GIC       77000 :     norm_sjinfo.semi_rhs_exprs = NIL;
    4798                 : 
    4799           77000 :     nselec = clauselist_selectivity(root,
    4800                 :                                     joinquals,
    4801                 :                                     0,
    4802                 :                                     JOIN_INNER,
    4803                 :                                     &norm_sjinfo);
    4804                 : 
    4805 ECB             :     /* Avoid leaking a lot of ListCells */
    4806 CBC       77000 :     if (IS_OUTER_JOIN(jointype))
    4807           33349 :         list_free(joinquals);
    4808 ECB             : 
    4809                 :     /*
    4810                 :      * jselec can be interpreted as the fraction of outer-rel rows that have
    4811                 :      * any matches (this is true for both SEMI and ANTI cases).  And nselec is
    4812                 :      * the fraction of the Cartesian product that matches.  So, the average
    4813                 :      * number of matches for each outer-rel row that has at least one match is
    4814                 :      * nselec * inner_rows / jselec.
    4815                 :      *
    4816                 :      * Note: it is correct to use the inner rel's "rows" count here, even
    4817                 :      * though we might later be considering a parameterized inner path with
    4818                 :      * fewer rows.  This is because we have included all the join clauses in
    4819                 :      * the selectivity estimate.
    4820                 :      */
    4821 GIC       77000 :     if (jselec > 0)              /* protect against zero divide */
    4822 ECB             :     {
    4823 GIC       76984 :         avgmatch = nselec * innerrel->rows / jselec;
    4824                 :         /* Clamp to sane range */
    4825           76984 :         avgmatch = Max(1.0, avgmatch);
    4826                 :     }
    4827                 :     else
    4828              16 :         avgmatch = 1.0;
    4829 ECB             : 
    4830 CBC       77000 :     semifactors->outer_match_frac = jselec;
    4831 GIC       77000 :     semifactors->match_count = avgmatch;
    4832           77000 : }
    4833                 : 
    4834                 : /*
    4835                 :  * has_indexed_join_quals
    4836                 :  *    Check whether all the joinquals of a nestloop join are used as
    4837                 :  *    inner index quals.
    4838                 :  *
    4839                 :  * If the inner path of a SEMI/ANTI join is an indexscan (including bitmap
    4840                 :  * indexscan) that uses all the joinquals as indexquals, we can assume that an
    4841                 :  * unmatched outer tuple is cheap to process, whereas otherwise it's probably
    4842                 :  * expensive.
    4843                 :  */
    4844 ECB             : static bool
    4845 GIC      287577 : has_indexed_join_quals(NestPath *path)
    4846 ECB             : {
    4847 GIC      287577 :     JoinPath   *joinpath = &path->jpath;
    4848 CBC      287577 :     Relids      joinrelids = joinpath->path.parent->relids;
    4849 GIC      287577 :     Path       *innerpath = joinpath->innerjoinpath;
    4850                 :     List       *indexclauses;
    4851 ECB             :     bool        found_one;
    4852                 :     ListCell   *lc;
    4853                 : 
    4854                 :     /* If join still has quals to evaluate, it's not fast */
    4855 CBC      287577 :     if (joinpath->joinrestrictinfo != NIL)
    4856 GIC      200782 :         return false;
    4857                 :     /* Nor if the inner path isn't parameterized at all */
    4858           86795 :     if (innerpath->param_info == NULL)
    4859            2382 :         return false;
    4860                 : 
    4861                 :     /* Find the indexclauses list for the inner scan */
    4862           84413 :     switch (innerpath->pathtype)
    4863                 :     {
    4864           54742 :         case T_IndexScan:
    4865                 :         case T_IndexOnlyScan:
    4866           54742 :             indexclauses = ((IndexPath *) innerpath)->indexclauses;
    4867           54742 :             break;
    4868 CBC         135 :         case T_BitmapHeapScan:
    4869                 :             {
    4870 ECB             :                 /* Accept only a simple bitmap scan, not AND/OR cases */
    4871 CBC         135 :                 Path       *bmqual = ((BitmapHeapPath *) innerpath)->bitmapqual;
    4872 ECB             : 
    4873 GIC         135 :                 if (IsA(bmqual, IndexPath))
    4874             111 :                     indexclauses = ((IndexPath *) bmqual)->indexclauses;
    4875                 :                 else
    4876              24 :                     return false;
    4877             111 :                 break;
    4878 ECB             :             }
    4879 CBC       29536 :         default:
    4880                 : 
    4881 ECB             :             /*
    4882                 :              * If it's not a simple indexscan, it probably doesn't run quickly
    4883                 :              * for zero rows out, even if it's a parameterized path using all
    4884                 :              * the joinquals.
    4885                 :              */
    4886 GIC       29536 :             return false;
    4887 ECB             :     }
    4888                 : 
    4889                 :     /*
    4890                 :      * Examine the inner path's param clauses.  Any that are from the outer
    4891                 :      * path must be found in the indexclauses list, either exactly or in an
    4892                 :      * equivalent form generated by equivclass.c.  Also, we must find at least
    4893                 :      * one such clause, else it's a clauseless join which isn't fast.
    4894                 :      */
    4895 GIC       54853 :     found_one = false;
    4896 CBC      109422 :     foreach(lc, innerpath->param_info->ppi_clauses)
    4897 ECB             :     {
    4898 GIC       55869 :         RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
    4899 ECB             : 
    4900 CBC       55869 :         if (join_clause_is_movable_into(rinfo,
    4901 GIC       55869 :                                         innerpath->parent->relids,
    4902 ECB             :                                         joinrelids))
    4903                 :         {
    4904 GIC       55869 :             if (!is_redundant_with_indexclauses(rinfo, indexclauses))
    4905            1300 :                 return false;
    4906           54569 :             found_one = true;
    4907                 :         }
    4908                 :     }
    4909 CBC       53553 :     return found_one;
    4910                 : }
    4911                 : 
    4912                 : 
    4913                 : /*
    4914                 :  * approx_tuple_count
    4915                 :  *      Quick-and-dirty estimation of the number of join rows passing
    4916                 :  *      a set of qual conditions.
    4917                 :  *
    4918 ECB             :  * The quals can be either an implicitly-ANDed list of boolean expressions,
    4919                 :  * or a list of RestrictInfo nodes (typically the latter).
    4920                 :  *
    4921                 :  * We intentionally compute the selectivity under JOIN_INNER rules, even
    4922                 :  * if it's some type of outer join.  This is appropriate because we are
    4923                 :  * trying to figure out how many tuples pass the initial merge or hash
    4924                 :  * join step.
    4925                 :  *
    4926                 :  * This is quick-and-dirty because we bypass clauselist_selectivity, and
    4927                 :  * simply multiply the independent clause selectivities together.  Now
    4928                 :  * clauselist_selectivity often can't do any better than that anyhow, but
    4929                 :  * for some situations (such as range constraints) it is smarter.  However,
    4930                 :  * we can't effectively cache the results of clauselist_selectivity, whereas
    4931                 :  * the individual clause selectivities can be and are cached.
    4932                 :  *
    4933                 :  * Since we are only using the results to estimate how many potential
    4934                 :  * output tuples are generated and passed through qpqual checking, it
    4935                 :  * seems OK to live with the approximation.
    4936                 :  */
    4937                 : static double
    4938 GIC      161284 : approx_tuple_count(PlannerInfo *root, JoinPath *path, List *quals)
    4939                 : {
    4940                 :     double      tuples;
    4941          161284 :     double      outer_tuples = path->outerjoinpath->rows;
    4942          161284 :     double      inner_tuples = path->innerjoinpath->rows;
    4943                 :     SpecialJoinInfo sjinfo;
    4944          161284 :     Selectivity selec = 1.0;
    4945                 :     ListCell   *l;
    4946                 : 
    4947                 :     /*
    4948                 :      * Make up a SpecialJoinInfo for JOIN_INNER semantics.
    4949                 :      */
    4950          161284 :     sjinfo.type = T_SpecialJoinInfo;
    4951          161284 :     sjinfo.min_lefthand = path->outerjoinpath->parent->relids;
    4952          161284 :     sjinfo.min_righthand = path->innerjoinpath->parent->relids;
    4953          161284 :     sjinfo.syn_lefthand = path->outerjoinpath->parent->relids;
    4954          161284 :     sjinfo.syn_righthand = path->innerjoinpath->parent->relids;
    4955          161284 :     sjinfo.jointype = JOIN_INNER;
    4956 GNC      161284 :     sjinfo.ojrelid = 0;
    4957          161284 :     sjinfo.commute_above_l = NULL;
    4958          161284 :     sjinfo.commute_above_r = NULL;
    4959          161284 :     sjinfo.commute_below = NULL;
    4960                 :     /* we don't bother trying to make the remaining fields valid */
    4961 GIC      161284 :     sjinfo.lhs_strict = false;
    4962          161284 :     sjinfo.semi_can_btree = false;
    4963          161284 :     sjinfo.semi_can_hash = false;
    4964 CBC      161284 :     sjinfo.semi_operators = NIL;
    4965 GIC      161284 :     sjinfo.semi_rhs_exprs = NIL;
    4966                 : 
    4967 ECB             :     /* Get the approximate selectivity */
    4968 CBC      347354 :     foreach(l, quals)
    4969                 :     {
    4970          186070 :         Node       *qual = (Node *) lfirst(l);
    4971                 : 
    4972                 :         /* Note that clause_selectivity will be able to cache its result */
    4973 GIC      186070 :         selec *= clause_selectivity(root, qual, 0, JOIN_INNER, &sjinfo);
    4974                 :     }
    4975                 : 
    4976 ECB             :     /* Apply it to the input relation sizes */
    4977 CBC      161284 :     tuples = selec * outer_tuples * inner_tuples;
    4978 ECB             : 
    4979 CBC      161284 :     return clamp_row_est(tuples);
    4980 ECB             : }
    4981                 : 
    4982                 : 
    4983                 : /*
    4984                 :  * set_baserel_size_estimates
    4985                 :  *      Set the size estimates for the given base relation.
    4986                 :  *
    4987                 :  * The rel's targetlist and restrictinfo list must have been constructed
    4988                 :  * already, and rel->tuples must be set.
    4989                 :  *
    4990                 :  * We set the following fields of the rel node:
    4991                 :  *  rows: the estimated number of output tuples (after applying
    4992                 :  *        restriction clauses).
    4993                 :  *  width: the estimated average output tuple width in bytes.
    4994                 :  *  baserestrictcost: estimated cost of evaluating baserestrictinfo clauses.
    4995                 :  */
    4996                 : void
    4997 GIC      192405 : set_baserel_size_estimates(PlannerInfo *root, RelOptInfo *rel)
    4998                 : {
    4999 ECB             :     double      nrows;
    5000                 : 
    5001                 :     /* Should only be applied to base relations */
    5002 GIC      192405 :     Assert(rel->relid > 0);
    5003 ECB             : 
    5004 GIC      384798 :     nrows = rel->tuples *
    5005 CBC      192405 :         clauselist_selectivity(root,
    5006                 :                                rel->baserestrictinfo,
    5007                 :                                0,
    5008                 :                                JOIN_INNER,
    5009                 :                                NULL);
    5010                 : 
    5011 GIC      192393 :     rel->rows = clamp_row_est(nrows);
    5012                 : 
    5013          192393 :     cost_qual_eval(&rel->baserestrictcost, rel->baserestrictinfo, root);
    5014                 : 
    5015          192393 :     set_rel_width(root, rel);
    5016          192393 : }
    5017                 : 
    5018                 : /*
    5019                 :  * get_parameterized_baserel_size
    5020                 :  *      Make a size estimate for a parameterized scan of a base relation.
    5021                 :  *
    5022                 :  * 'param_clauses' lists the additional join clauses to be used.
    5023 ECB             :  *
    5024                 :  * set_baserel_size_estimates must have been applied already.
    5025                 :  */
    5026                 : double
    5027 GIC       52958 : get_parameterized_baserel_size(PlannerInfo *root, RelOptInfo *rel,
    5028 ECB             :                                List *param_clauses)
    5029                 : {
    5030                 :     List       *allclauses;
    5031                 :     double      nrows;
    5032                 : 
    5033                 :     /*
    5034                 :      * Estimate the number of rows returned by the parameterized scan, knowing
    5035                 :      * that it will apply all the extra join clauses as well as the rel's own
    5036                 :      * restriction clauses.  Note that we force the clauses to be treated as
    5037                 :      * non-join clauses during selectivity estimation.
    5038                 :      */
    5039 CBC       52958 :     allclauses = list_concat_copy(param_clauses, rel->baserestrictinfo);
    5040 GIC      105916 :     nrows = rel->tuples *
    5041 CBC       52958 :         clauselist_selectivity(root,
    5042 ECB             :                                allclauses,
    5043 GIC       52958 :                                rel->relid,   /* do not use 0! */
    5044                 :                                JOIN_INNER,
    5045                 :                                NULL);
    5046           52958 :     nrows = clamp_row_est(nrows);
    5047                 :     /* For safety, make sure result is not more than the base estimate */
    5048           52958 :     if (nrows > rel->rows)
    5049 UIC           0 :         nrows = rel->rows;
    5050 GIC       52958 :     return nrows;
    5051                 : }
    5052                 : 
    5053 ECB             : /*
    5054                 :  * set_joinrel_size_estimates
    5055                 :  *      Set the size estimates for the given join relation.
    5056                 :  *
    5057                 :  * The rel's targetlist must have been constructed already, and a
    5058                 :  * restriction clause list that matches the given component rels must
    5059                 :  * be provided.
    5060                 :  *
    5061                 :  * Since there is more than one way to make a joinrel for more than two
    5062                 :  * base relations, the results we get here could depend on which component
    5063                 :  * rel pair is provided.  In theory we should get the same answers no matter
    5064                 :  * which pair is provided; in practice, since the selectivity estimation
    5065                 :  * routines don't handle all cases equally well, we might not.  But there's
    5066                 :  * not much to be done about it.  (Would it make sense to repeat the
    5067                 :  * calculations for each pair of input rels that's encountered, and somehow
    5068                 :  * average the results?  Probably way more trouble than it's worth, and
    5069                 :  * anyway we must keep the rowcount estimate the same for all paths for the
    5070                 :  * joinrel.)
    5071                 :  *
    5072                 :  * We set only the rows field here.  The reltarget field was already set by
    5073                 :  * build_joinrel_tlist, and baserestrictcost is not used for join rels.
    5074                 :  */
    5075 EUB             : void
    5076 CBC       76713 : set_joinrel_size_estimates(PlannerInfo *root, RelOptInfo *rel,
    5077                 :                            RelOptInfo *outer_rel,
    5078                 :                            RelOptInfo *inner_rel,
    5079                 :                            SpecialJoinInfo *sjinfo,
    5080                 :                            List *restrictlist)
    5081                 : {
    5082 GIC       76713 :     rel->rows = calc_joinrel_size_estimate(root,
    5083                 :                                            rel,
    5084                 :                                            outer_rel,
    5085                 :                                            inner_rel,
    5086                 :                                            outer_rel->rows,
    5087                 :                                            inner_rel->rows,
    5088                 :                                            sjinfo,
    5089                 :                                            restrictlist);
    5090           76713 : }
    5091                 : 
    5092                 : /*
    5093                 :  * get_parameterized_joinrel_size
    5094                 :  *      Make a size estimate for a parameterized scan of a join relation.
    5095                 :  *
    5096                 :  * 'rel' is the joinrel under consideration.
    5097                 :  * 'outer_path', 'inner_path' are (probably also parameterized) Paths that
    5098                 :  *      produce the relations being joined.
    5099                 :  * 'sjinfo' is any SpecialJoinInfo relevant to this join.
    5100                 :  * 'restrict_clauses' lists the join clauses that need to be applied at the
    5101                 :  * join node (including any movable clauses that were moved down to this join,
    5102 ECB             :  * and not including any movable clauses that were pushed down into the
    5103                 :  * child paths).
    5104                 :  *
    5105                 :  * set_joinrel_size_estimates must have been applied already.
    5106                 :  */
    5107                 : double
    5108 CBC        2706 : get_parameterized_joinrel_size(PlannerInfo *root, RelOptInfo *rel,
    5109                 :                                Path *outer_path,
    5110                 :                                Path *inner_path,
    5111                 :                                SpecialJoinInfo *sjinfo,
    5112                 :                                List *restrict_clauses)
    5113                 : {
    5114                 :     double      nrows;
    5115                 : 
    5116 ECB             :     /*
    5117                 :      * Estimate the number of rows returned by the parameterized join as the
    5118                 :      * sizes of the input paths times the selectivity of the clauses that have
    5119                 :      * ended up at this join node.
    5120                 :      *
    5121                 :      * As with set_joinrel_size_estimates, the rowcount estimate could depend
    5122                 :      * on the pair of input paths provided, though ideally we'd get the same
    5123                 :      * estimate for any pair with the same parameterization.
    5124                 :      */
    5125 GIC        2706 :     nrows = calc_joinrel_size_estimate(root,
    5126                 :                                        rel,
    5127                 :                                        outer_path->parent,
    5128                 :                                        inner_path->parent,
    5129                 :                                        outer_path->rows,
    5130                 :                                        inner_path->rows,
    5131                 :                                        sjinfo,
    5132                 :                                        restrict_clauses);
    5133                 :     /* For safety, make sure result is not more than the base estimate */
    5134 CBC        2706 :     if (nrows > rel->rows)
    5135 GIC           6 :         nrows = rel->rows;
    5136            2706 :     return nrows;
    5137                 : }
    5138                 : 
    5139                 : /*
    5140                 :  * calc_joinrel_size_estimate
    5141                 :  *      Workhorse for set_joinrel_size_estimates and
    5142                 :  *      get_parameterized_joinrel_size.
    5143                 :  *
    5144                 :  * outer_rel/inner_rel are the relations being joined, but they should be
    5145                 :  * assumed to have sizes outer_rows/inner_rows; those numbers might be less
    5146                 :  * than what rel->rows says, when we are considering parameterized paths.
    5147                 :  */
    5148                 : static double
    5149           79419 : calc_joinrel_size_estimate(PlannerInfo *root,
    5150                 :                            RelOptInfo *joinrel,
    5151 ECB             :                            RelOptInfo *outer_rel,
    5152                 :                            RelOptInfo *inner_rel,
    5153                 :                            double outer_rows,
    5154                 :                            double inner_rows,
    5155                 :                            SpecialJoinInfo *sjinfo,
    5156                 :                            List *restrictlist)
    5157                 : {
    5158 CBC       79419 :     JoinType    jointype = sjinfo->jointype;
    5159 ECB             :     Selectivity fkselec;
    5160                 :     Selectivity jselec;
    5161                 :     Selectivity pselec;
    5162                 :     double      nrows;
    5163                 : 
    5164                 :     /*
    5165                 :      * Compute joinclause selectivity.  Note that we are only considering
    5166                 :      * clauses that become restriction clauses at this join level; we are not
    5167                 :      * double-counting them because they were not considered in estimating the
    5168                 :      * sizes of the component rels.
    5169                 :      *
    5170                 :      * First, see whether any of the joinclauses can be matched to known FK
    5171                 :      * constraints.  If so, drop those clauses from the restrictlist, and
    5172                 :      * instead estimate their selectivity using FK semantics.  (We do this
    5173                 :      * without regard to whether said clauses are local or "pushed down".
    5174                 :      * Probably, an FK-matching clause could never be seen as pushed down at
    5175                 :      * an outer join, since it would be strict and hence would be grounds for
    5176                 :      * join strength reduction.)  fkselec gets the net selectivity for
    5177                 :      * FK-matching clauses, or 1.0 if there are none.
    5178                 :      */
    5179 GIC       79419 :     fkselec = get_foreign_key_join_selectivity(root,
    5180                 :                                                outer_rel->relids,
    5181                 :                                                inner_rel->relids,
    5182 ECB             :                                                sjinfo,
    5183                 :                                                &restrictlist);
    5184                 : 
    5185                 :     /*
    5186                 :      * For an outer join, we have to distinguish the selectivity of the join's
    5187                 :      * own clauses (JOIN/ON conditions) from any clauses that were "pushed
    5188                 :      * down".  For inner joins we just count them all as joinclauses.
    5189                 :      */
    5190 GIC       79419 :     if (IS_OUTER_JOIN(jointype))
    5191                 :     {
    5192           30975 :         List       *joinquals = NIL;
    5193           30975 :         List       *pushedquals = NIL;
    5194                 :         ListCell   *l;
    5195                 : 
    5196                 :         /* Grovel through the clauses to separate into two lists */
    5197           68743 :         foreach(l, restrictlist)
    5198                 :         {
    5199           37768 :             RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
    5200                 : 
    5201           37768 :             if (RINFO_IS_PUSHED_DOWN(rinfo, joinrel->relids))
    5202            3341 :                 pushedquals = lappend(pushedquals, rinfo);
    5203 ECB             :             else
    5204 GIC       34427 :                 joinquals = lappend(joinquals, rinfo);
    5205                 :         }
    5206                 : 
    5207                 :         /* Get the separate selectivities */
    5208           30975 :         jselec = clauselist_selectivity(root,
    5209                 :                                         joinquals,
    5210                 :                                         0,
    5211                 :                                         jointype,
    5212                 :                                         sjinfo);
    5213           30975 :         pselec = clauselist_selectivity(root,
    5214 ECB             :                                         pushedquals,
    5215                 :                                         0,
    5216                 :                                         jointype,
    5217                 :                                         sjinfo);
    5218                 : 
    5219                 :         /* Avoid leaking a lot of ListCells */
    5220 GIC       30975 :         list_free(joinquals);
    5221 CBC       30975 :         list_free(pushedquals);
    5222                 :     }
    5223 ECB             :     else
    5224                 :     {
    5225 CBC       48444 :         jselec = clauselist_selectivity(root,
    5226 ECB             :                                         restrictlist,
    5227                 :                                         0,
    5228                 :                                         jointype,
    5229                 :                                         sjinfo);
    5230 GIC       48444 :         pselec = 0.0;           /* not used, keep compiler quiet */
    5231                 :     }
    5232 ECB             : 
    5233                 :     /*
    5234                 :      * Basically, we multiply size of Cartesian product by selectivity.
    5235                 :      *
    5236                 :      * If we are doing an outer join, take that into account: the joinqual
    5237                 :      * selectivity has to be clamped using the knowledge that the output must
    5238                 :      * be at least as large as the non-nullable input.  However, any
    5239                 :      * pushed-down quals are applied after the outer join, so their
    5240                 :      * selectivity applies fully.
    5241                 :      *
    5242                 :      * For JOIN_SEMI and JOIN_ANTI, the selectivity is defined as the fraction
    5243                 :      * of LHS rows that have matches, and we apply that straightforwardly.
    5244                 :      */
    5245 CBC       79419 :     switch (jointype)
    5246                 :     {
    5247 GIC       46696 :         case JOIN_INNER:
    5248           46696 :             nrows = outer_rows * inner_rows * fkselec * jselec;
    5249 ECB             :             /* pselec not used */
    5250 GIC       46696 :             break;
    5251           26807 :         case JOIN_LEFT:
    5252           26807 :             nrows = outer_rows * inner_rows * fkselec * jselec;
    5253           26807 :             if (nrows < outer_rows)
    5254 CBC       10778 :                 nrows = outer_rows;
    5255 GIC       26807 :             nrows *= pselec;
    5256           26807 :             break;
    5257             782 :         case JOIN_FULL:
    5258             782 :             nrows = outer_rows * inner_rows * fkselec * jselec;
    5259             782 :             if (nrows < outer_rows)
    5260             516 :                 nrows = outer_rows;
    5261             782 :             if (nrows < inner_rows)
    5262              55 :                 nrows = inner_rows;
    5263             782 :             nrows *= pselec;
    5264             782 :             break;
    5265            1748 :         case JOIN_SEMI:
    5266            1748 :             nrows = outer_rows * fkselec * jselec;
    5267                 :             /* pselec not used */
    5268            1748 :             break;
    5269 CBC        3386 :         case JOIN_ANTI:
    5270 GIC        3386 :             nrows = outer_rows * (1.0 - fkselec * jselec);
    5271 CBC        3386 :             nrows *= pselec;
    5272            3386 :             break;
    5273 UIC           0 :         default:
    5274 ECB             :             /* other values not expected here */
    5275 LBC           0 :             elog(ERROR, "unrecognized join type: %d", (int) jointype);
    5276 ECB             :             nrows = 0;          /* keep compiler quiet */
    5277                 :             break;
    5278                 :     }
    5279                 : 
    5280 CBC       79419 :     return clamp_row_est(nrows);
    5281 ECB             : }
    5282                 : 
    5283                 : /*
    5284                 :  * get_foreign_key_join_selectivity
    5285                 :  *      Estimate join selectivity for foreign-key-related clauses.
    5286                 :  *
    5287                 :  * Remove any clauses that can be matched to FK constraints from *restrictlist,
    5288                 :  * and return a substitute estimate of their selectivity.  1.0 is returned
    5289                 :  * when there are no such clauses.
    5290                 :  *
    5291                 :  * The reason for treating such clauses specially is that we can get better
    5292                 :  * estimates this way than by relying on clauselist_selectivity(), especially
    5293                 :  * for multi-column FKs where that function's assumption that the clauses are
    5294                 :  * independent falls down badly.  But even with single-column FKs, we may be
    5295                 :  * able to get a better answer when the pg_statistic stats are missing or out
    5296                 :  * of date.
    5297 EUB             :  */
    5298                 : static Selectivity
    5299 GBC       79419 : get_foreign_key_join_selectivity(PlannerInfo *root,
    5300                 :                                  Relids outer_relids,
    5301                 :                                  Relids inner_relids,
    5302                 :                                  SpecialJoinInfo *sjinfo,
    5303                 :                                  List **restrictlist)
    5304 ECB             : {
    5305 GIC       79419 :     Selectivity fkselec = 1.0;
    5306           79419 :     JoinType    jointype = sjinfo->jointype;
    5307           79419 :     List       *worklist = *restrictlist;
    5308                 :     ListCell   *lc;
    5309                 : 
    5310                 :     /* Consider each FK constraint that is known to match the query */
    5311           80363 :     foreach(lc, root->fkey_list)
    5312                 :     {
    5313             944 :         ForeignKeyOptInfo *fkinfo = (ForeignKeyOptInfo *) lfirst(lc);
    5314                 :         bool        ref_is_outer;
    5315                 :         List       *removedlist;
    5316                 :         ListCell   *cell;
    5317                 : 
    5318                 :         /*
    5319                 :          * This FK is not relevant unless it connects a baserel on one side of
    5320                 :          * this join to a baserel on the other side.
    5321                 :          */
    5322            1715 :         if (bms_is_member(fkinfo->con_relid, outer_relids) &&
    5323 CBC         771 :             bms_is_member(fkinfo->ref_relid, inner_relids))
    5324 GIC         675 :             ref_is_outer = false;
    5325             442 :         else if (bms_is_member(fkinfo->ref_relid, outer_relids) &&
    5326             173 :                  bms_is_member(fkinfo->con_relid, inner_relids))
    5327              62 :             ref_is_outer = true;
    5328                 :         else
    5329 CBC         207 :             continue;
    5330 ECB             : 
    5331                 :         /*
    5332                 :          * If we're dealing with a semi/anti join, and the FK's referenced
    5333                 :          * relation is on the outside, then knowledge of the FK doesn't help
    5334                 :          * us figure out what we need to know (which is the fraction of outer
    5335                 :          * rows that have matches).  On the other hand, if the referenced rel
    5336                 :          * is on the inside, then all outer rows must have matches in the
    5337                 :          * referenced table (ignoring nulls).  But any restriction or join
    5338                 :          * clauses that filter that table will reduce the fraction of matches.
    5339                 :          * We can account for restriction clauses, but it's too hard to guess
    5340                 :          * how many table rows would get through a join that's inside the RHS.
    5341                 :          * Hence, if either case applies, punt and ignore the FK.
    5342                 :          */
    5343 GIC         737 :         if ((jointype == JOIN_SEMI || jointype == JOIN_ANTI) &&
    5344             479 :             (ref_is_outer || bms_membership(inner_relids) != BMS_SINGLETON))
    5345               3 :             continue;
    5346 ECB             : 
    5347                 :         /*
    5348                 :          * Modify the restrictlist by removing clauses that match the FK (and
    5349                 :          * putting them into removedlist instead).  It seems unsafe to modify
    5350                 :          * the originally-passed List structure, so we make a shallow copy the
    5351                 :          * first time through.
    5352                 :          */
    5353 CBC         734 :         if (worklist == *restrictlist)
    5354 GIC         622 :             worklist = list_copy(worklist);
    5355                 : 
    5356             734 :         removedlist = NIL;
    5357            1506 :         foreach(cell, worklist)
    5358                 :         {
    5359             772 :             RestrictInfo *rinfo = (RestrictInfo *) lfirst(cell);
    5360             772 :             bool        remove_it = false;
    5361                 :             int         i;
    5362                 : 
    5363                 :             /* Drop this clause if it matches any column of the FK */
    5364             965 :             for (i = 0; i < fkinfo->nkeys; i++)
    5365                 :             {
    5366             950 :                 if (rinfo->parent_ec)
    5367 ECB             :                 {
    5368                 :                     /*
    5369                 :                      * EC-derived clauses can only match by EC.  It is okay to
    5370                 :                      * consider any clause derived from the same EC as
    5371                 :                      * matching the FK: even if equivclass.c chose to generate
    5372                 :                      * a clause equating some other pair of Vars, it could
    5373                 :                      * have generated one equating the FK's Vars.  So for
    5374                 :                      * purposes of estimation, we can act as though it did so.
    5375                 :                      *
    5376                 :                      * Note: checking parent_ec is a bit of a cheat because
    5377                 :                      * there are EC-derived clauses that don't have parent_ec
    5378                 :                      * set; but such clauses must compare expressions that
    5379                 :                      * aren't just Vars, so they cannot match the FK anyway.
    5380                 :                      */
    5381 CBC         152 :                     if (fkinfo->eclass[i] == rinfo->parent_ec)
    5382                 :                     {
    5383             149 :                         remove_it = true;
    5384             149 :                         break;
    5385                 :                     }
    5386                 :                 }
    5387                 :                 else
    5388 ECB             :                 {
    5389                 :                     /*
    5390                 :                      * Otherwise, see if rinfo was previously matched to FK as
    5391                 :                      * a "loose" clause.
    5392                 :                      */
    5393 GIC         798 :                     if (list_member_ptr(fkinfo->rinfos[i], rinfo))
    5394                 :                     {
    5395             608 :                         remove_it = true;
    5396             608 :                         break;
    5397                 :                     }
    5398                 :                 }
    5399                 :             }
    5400             772 :             if (remove_it)
    5401                 :             {
    5402             757 :                 worklist = foreach_delete_current(worklist, cell);
    5403             757 :                 removedlist = lappend(removedlist, rinfo);
    5404                 :             }
    5405 ECB             :         }
    5406                 : 
    5407                 :         /*
    5408                 :          * If we failed to remove all the matching clauses we expected to
    5409                 :          * find, chicken out and ignore this FK; applying its selectivity
    5410                 :          * might result in double-counting.  Put any clauses we did manage to
    5411                 :          * remove back into the worklist.
    5412                 :          *
    5413                 :          * Since the matching clauses are known not outerjoin-delayed, they
    5414                 :          * would normally have appeared in the initial joinclause list.  If we
    5415                 :          * didn't find them, there are two possibilities:
    5416                 :          *
    5417                 :          * 1. If the FK match is based on an EC that is ec_has_const, it won't
    5418                 :          * have generated any join clauses at all.  We discount such ECs while
    5419                 :          * checking to see if we have "all" the clauses.  (Below, we'll adjust
    5420                 :          * the selectivity estimate for this case.)
    5421                 :          *
    5422                 :          * 2. The clauses were matched to some other FK in a previous
    5423                 :          * iteration of this loop, and thus removed from worklist.  (A likely
    5424                 :          * case is that two FKs are matched to the same EC; there will be only
    5425                 :          * one EC-derived clause in the initial list, so the first FK will
    5426                 :          * consume it.)  Applying both FKs' selectivity independently risks
    5427                 :          * underestimating the join size; in particular, this would undo one
    5428                 :          * of the main things that ECs were invented for, namely to avoid
    5429                 :          * double-counting the selectivity of redundant equality conditions.
    5430                 :          * Later we might think of a reasonable way to combine the estimates,
    5431                 :          * but for now, just punt, since this is a fairly uncommon situation.
    5432                 :          */
    5433 GIC         734 :         if (removedlist == NIL ||
    5434             591 :             list_length(removedlist) !=
    5435             591 :             (fkinfo->nmatched_ec - fkinfo->nconst_ec + fkinfo->nmatched_ri))
    5436                 :         {
    5437             143 :             worklist = list_concat(worklist, removedlist);
    5438             143 :             continue;
    5439                 :         }
    5440                 : 
    5441                 :         /*
    5442                 :          * Finally we get to the payoff: estimate selectivity using the
    5443                 :          * knowledge that each referencing row will match exactly one row in
    5444                 :          * the referenced table.
    5445                 :          *
    5446                 :          * XXX that's not true in the presence of nulls in the referencing
    5447                 :          * column(s), so in principle we should derate the estimate for those.
    5448                 :          * However (1) if there are any strict restriction clauses for the
    5449                 :          * referencing column(s) elsewhere in the query, derating here would
    5450                 :          * be double-counting the null fraction, and (2) it's not very clear
    5451                 :          * how to combine null fractions for multiple referencing columns. So
    5452                 :          * we do nothing for now about correcting for nulls.
    5453                 :          *
    5454                 :          * XXX another point here is that if either side of an FK constraint
    5455                 :          * is an inheritance parent, we estimate as though the constraint
    5456                 :          * covers all its children as well.  This is not an unreasonable
    5457 ECB             :          * assumption for a referencing table, ie the user probably applied
    5458                 :          * identical constraints to all child tables (though perhaps we ought
    5459                 :          * to check that).  But it's not possible to have done that for a
    5460                 :          * referenced table.  Fortunately, precisely because that doesn't
    5461                 :          * work, it is uncommon in practice to have an FK referencing a parent
    5462                 :          * table.  So, at least for now, disregard inheritance here.
    5463                 :          */
    5464 GIC         591 :         if (jointype == JOIN_SEMI || jointype == JOIN_ANTI)
    5465             367 :         {
    5466                 :             /*
    5467                 :              * For JOIN_SEMI and JOIN_ANTI, we only get here when the FK's
    5468                 :              * referenced table is exactly the inside of the join.  The join
    5469                 :              * selectivity is defined as the fraction of LHS rows that have
    5470                 :              * matches.  The FK implies that every LHS row has a match *in the
    5471                 :              * referenced table*; but any restriction clauses on it will
    5472                 :              * reduce the number of matches.  Hence we take the join
    5473                 :              * selectivity as equal to the selectivity of the table's
    5474                 :              * restriction clauses, which is rows / tuples; but we must guard
    5475                 :              * against tuples == 0.
    5476                 :              */
    5477             367 :             RelOptInfo *ref_rel = find_base_rel(root, fkinfo->ref_relid);
    5478             367 :             double      ref_tuples = Max(ref_rel->tuples, 1.0);
    5479                 : 
    5480             367 :             fkselec *= ref_rel->rows / ref_tuples;
    5481                 :         }
    5482                 :         else
    5483                 :         {
    5484                 :             /*
    5485                 :              * Otherwise, selectivity is exactly 1/referenced-table-size; but
    5486                 :              * guard against tuples == 0.  Note we should use the raw table
    5487                 :              * tuple count, not any estimate of its filtered or joined size.
    5488 ECB             :              */
    5489 CBC         224 :             RelOptInfo *ref_rel = find_base_rel(root, fkinfo->ref_relid);
    5490 GIC         224 :             double      ref_tuples = Max(ref_rel->tuples, 1.0);
    5491                 : 
    5492             224 :             fkselec *= 1.0 / ref_tuples;
    5493                 :         }
    5494                 : 
    5495                 :         /*
    5496                 :          * If any of the FK columns participated in ec_has_const ECs, then
    5497                 :          * equivclass.c will have generated "var = const" restrictions for
    5498                 :          * each side of the join, thus reducing the sizes of both input
    5499                 :          * relations.  Taking the fkselec at face value would amount to
    5500                 :          * double-counting the selectivity of the constant restriction for the
    5501 ECB             :          * referencing Var.  Hence, look for the restriction clause(s) that
    5502                 :          * were applied to the referencing Var(s), and divide out their
    5503                 :          * selectivity to correct for this.
    5504                 :          */
    5505 GIC         591 :         if (fkinfo->nconst_ec > 0)
    5506                 :         {
    5507              12 :             for (int i = 0; i < fkinfo->nkeys; i++)
    5508                 :             {
    5509               9 :                 EquivalenceClass *ec = fkinfo->eclass[i];
    5510                 : 
    5511               9 :                 if (ec && ec->ec_has_const)
    5512                 :                 {
    5513 CBC           3 :                     EquivalenceMember *em = fkinfo->fk_eclass_member[i];
    5514               3 :                     RestrictInfo *rinfo = find_derived_clause_for_ec_member(ec,
    5515                 :                                                                             em);
    5516 ECB             : 
    5517 GIC           3 :                     if (rinfo)
    5518                 :                     {
    5519                 :                         Selectivity s0;
    5520                 : 
    5521               3 :                         s0 = clause_selectivity(root,
    5522                 :                                                 (Node *) rinfo,
    5523                 :                                                 0,
    5524                 :                                                 jointype,
    5525                 :                                                 sjinfo);
    5526               3 :                         if (s0 > 0)
    5527               3 :                             fkselec /= s0;
    5528                 :                     }
    5529 ECB             :                 }
    5530                 :             }
    5531                 :         }
    5532                 :     }
    5533                 : 
    5534 GIC       79419 :     *restrictlist = worklist;
    5535 CBC       79419 :     CLAMP_PROBABILITY(fkselec);
    5536 GIC       79419 :     return fkselec;
    5537 ECB             : }
    5538                 : 
    5539                 : /*
    5540                 :  * set_subquery_size_estimates
    5541                 :  *      Set the size estimates for a base relation that is a subquery.
    5542                 :  *
    5543                 :  * The rel's targetlist and restrictinfo list must have been constructed
    5544                 :  * already, and the Paths for the subquery must have been completed.
    5545                 :  * We look at the subquery's PlannerInfo to extract data.
    5546                 :  *
    5547                 :  * We set the same fields as set_baserel_size_estimates.
    5548                 :  */
    5549                 : void
    5550 CBC       10277 : set_subquery_size_estimates(PlannerInfo *root, RelOptInfo *rel)
    5551 ECB             : {
    5552 GIC       10277 :     PlannerInfo *subroot = rel->subroot;
    5553                 :     RelOptInfo *sub_final_rel;
    5554                 :     ListCell   *lc;
    5555                 : 
    5556                 :     /* Should only be applied to base relations that are subqueries */
    5557           10277 :     Assert(rel->relid > 0);
    5558 CBC       10277 :     Assert(planner_rt_fetch(rel->relid, root)->rtekind == RTE_SUBQUERY);
    5559 ECB             : 
    5560                 :     /*
    5561                 :      * Copy raw number of output rows from subquery.  All of its paths should
    5562                 :      * have the same output rowcount, so just look at cheapest-total.
    5563                 :      */
    5564 GIC       10277 :     sub_final_rel = fetch_upper_rel(subroot, UPPERREL_FINAL, NULL);
    5565           10277 :     rel->tuples = sub_final_rel->cheapest_total_path->rows;
    5566                 : 
    5567                 :     /*
    5568                 :      * Compute per-output-column width estimates by examining the subquery's
    5569                 :      * targetlist.  For any output that is a plain Var, get the width estimate
    5570                 :      * that was made while planning the subquery.  Otherwise, we leave it to
    5571                 :      * set_rel_width to fill in a datatype-based default estimate.
    5572                 :      */
    5573           41248 :     foreach(lc, subroot->parse->targetList)
    5574 ECB             :     {
    5575 GIC       30971 :         TargetEntry *te = lfirst_node(TargetEntry, lc);
    5576 CBC       30971 :         Node       *texpr = (Node *) te->expr;
    5577 GIC       30971 :         int32       item_width = 0;
    5578                 : 
    5579                 :         /* junk columns aren't visible to upper query */
    5580           30971 :         if (te->resjunk)
    5581 CBC         829 :             continue;
    5582 ECB             : 
    5583                 :         /*
    5584                 :          * The subquery could be an expansion of a view that's had columns
    5585                 :          * added to it since the current query was parsed, so that there are
    5586                 :          * non-junk tlist columns in it that don't correspond to any column
    5587                 :          * visible at our query level.  Ignore such columns.
    5588                 :          */
    5589 CBC       30142 :         if (te->resno < rel->min_attr || te->resno > rel->max_attr)
    5590 UIC           0 :             continue;
    5591                 : 
    5592                 :         /*
    5593                 :          * XXX This currently doesn't work for subqueries containing set
    5594                 :          * operations, because the Vars in their tlists are bogus references
    5595                 :          * to the first leaf subquery, which wouldn't give the right answer
    5596                 :          * even if we could still get to its PlannerInfo.
    5597 ECB             :          *
    5598                 :          * Also, the subquery could be an appendrel for which all branches are
    5599                 :          * known empty due to constraint exclusion, in which case
    5600                 :          * set_append_rel_pathlist will have left the attr_widths set to zero.
    5601                 :          *
    5602                 :          * In either case, we just leave the width estimate zero until
    5603                 :          * set_rel_width fixes it.
    5604                 :          */
    5605 CBC       30142 :         if (IsA(texpr, Var) &&
    5606 GIC       12318 :             subroot->parse->setOperations == NULL)
    5607                 :         {
    5608           11405 :             Var        *var = (Var *) texpr;
    5609           11405 :             RelOptInfo *subrel = find_base_rel(subroot, var->varno);
    5610                 : 
    5611           11405 :             item_width = subrel->attr_widths[var->varattno - subrel->min_attr];
    5612                 :         }
    5613 CBC       30142 :         rel->attr_widths[te->resno - rel->min_attr] = item_width;
    5614 EUB             :     }
    5615                 : 
    5616                 :     /* Now estimate number of output rows, etc */
    5617 GIC       10277 :     set_baserel_size_estimates(root, rel);
    5618           10277 : }
    5619                 : 
    5620                 : /*
    5621                 :  * set_function_size_estimates
    5622                 :  *      Set the size estimates for a base relation that is a function call.
    5623                 :  *
    5624                 :  * The rel's targetlist and restrictinfo list must have been constructed
    5625                 :  * already.
    5626                 :  *
    5627                 :  * We set the same fields as set_baserel_size_estimates.
    5628                 :  */
    5629 ECB             : void
    5630 CBC       17699 : set_function_size_estimates(PlannerInfo *root, RelOptInfo *rel)
    5631                 : {
    5632 ECB             :     RangeTblEntry *rte;
    5633                 :     ListCell   *lc;
    5634                 : 
    5635                 :     /* Should only be applied to base relations that are functions */
    5636 GIC       17699 :     Assert(rel->relid > 0);
    5637 CBC       17699 :     rte = planner_rt_fetch(rel->relid, root);
    5638 GIC       17699 :     Assert(rte->rtekind == RTE_FUNCTION);
    5639                 : 
    5640                 :     /*
    5641 ECB             :      * Estimate number of rows the functions will return. The rowcount of the
    5642                 :      * node is that of the largest function result.
    5643                 :      */
    5644 GIC       17699 :     rel->tuples = 0;
    5645           35554 :     foreach(lc, rte->functions)
    5646                 :     {
    5647           17855 :         RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc);
    5648           17855 :         double      ntup = expression_returns_set_rows(root, rtfunc->funcexpr);
    5649                 : 
    5650           17855 :         if (ntup > rel->tuples)
    5651           17711 :             rel->tuples = ntup;
    5652                 :     }
    5653                 : 
    5654 ECB             :     /* Now estimate number of output rows, etc */
    5655 GIC       17699 :     set_baserel_size_estimates(root, rel);
    5656           17699 : }
    5657                 : 
    5658                 : /*
    5659                 :  * set_function_size_estimates
    5660 ECB             :  *      Set the size estimates for a base relation that is a function call.
    5661                 :  *
    5662                 :  * The rel's targetlist and restrictinfo list must have been constructed
    5663                 :  * already.
    5664                 :  *
    5665                 :  * We set the same fields as set_tablefunc_size_estimates.
    5666                 :  */
    5667                 : void
    5668 CBC         108 : set_tablefunc_size_estimates(PlannerInfo *root, RelOptInfo *rel)
    5669 ECB             : {
    5670                 :     /* Should only be applied to base relations that are functions */
    5671 CBC         108 :     Assert(rel->relid > 0);
    5672             108 :     Assert(planner_rt_fetch(rel->relid, root)->rtekind == RTE_TABLEFUNC);
    5673                 : 
    5674             108 :     rel->tuples = 100;
    5675 ECB             : 
    5676                 :     /* Now estimate number of output rows, etc */
    5677 GIC         108 :     set_baserel_size_estimates(root, rel);
    5678             108 : }
    5679 ECB             : 
    5680                 : /*
    5681                 :  * set_values_size_estimates
    5682                 :  *      Set the size estimates for a base relation that is a values list.
    5683                 :  *
    5684                 :  * The rel's targetlist and restrictinfo list must have been constructed
    5685                 :  * already.
    5686                 :  *
    5687                 :  * We set the same fields as set_baserel_size_estimates.
    5688                 :  */
    5689                 : void
    5690 GIC        3553 : set_values_size_estimates(PlannerInfo *root, RelOptInfo *rel)
    5691                 : {
    5692 ECB             :     RangeTblEntry *rte;
    5693                 : 
    5694                 :     /* Should only be applied to base relations that are values lists */
    5695 CBC        3553 :     Assert(rel->relid > 0);
    5696            3553 :     rte = planner_rt_fetch(rel->relid, root);
    5697 GIC        3553 :     Assert(rte->rtekind == RTE_VALUES);
    5698 ECB             : 
    5699                 :     /*
    5700                 :      * Estimate number of rows the values list will return. We know this
    5701                 :      * precisely based on the list length (well, barring set-returning
    5702                 :      * functions in list items, but that's a refinement not catered for
    5703                 :      * anywhere else either).
    5704                 :      */
    5705 GIC        3553 :     rel->tuples = list_length(rte->values_lists);
    5706                 : 
    5707                 :     /* Now estimate number of output rows, etc */
    5708            3553 :     set_baserel_size_estimates(root, rel);
    5709            3553 : }
    5710                 : 
    5711                 : /*
    5712                 :  * set_cte_size_estimates
    5713                 :  *      Set the size estimates for a base relation that is a CTE reference.
    5714 ECB             :  *
    5715                 :  * The rel's targetlist and restrictinfo list must have been constructed
    5716                 :  * already, and we need an estimate of the number of rows returned by the CTE
    5717                 :  * (if a regular CTE) or the non-recursive term (if a self-reference).
    5718                 :  *
    5719                 :  * We set the same fields as set_baserel_size_estimates.
    5720                 :  */
    5721                 : void
    5722 GIC        1597 : set_cte_size_estimates(PlannerInfo *root, RelOptInfo *rel, double cte_rows)
    5723                 : {
    5724                 :     RangeTblEntry *rte;
    5725                 : 
    5726                 :     /* Should only be applied to base relations that are CTE references */
    5727            1597 :     Assert(rel->relid > 0);
    5728            1597 :     rte = planner_rt_fetch(rel->relid, root);
    5729 CBC        1597 :     Assert(rte->rtekind == RTE_CTE);
    5730                 : 
    5731 GIC        1597 :     if (rte->self_reference)
    5732 ECB             :     {
    5733                 :         /*
    5734                 :          * In a self-reference, we assume the average worktable size is a
    5735                 :          * multiple of the nonrecursive term's size.  The best multiplier will
    5736                 :          * vary depending on query "fan-out", so make its value adjustable.
    5737                 :          */
    5738 GIC         357 :         rel->tuples = clamp_row_est(recursive_worktable_factor * cte_rows);
    5739                 :     }
    5740                 :     else
    5741                 :     {
    5742                 :         /* Otherwise just believe the CTE's rowcount estimate */
    5743            1240 :         rel->tuples = cte_rows;
    5744                 :     }
    5745                 : 
    5746 ECB             :     /* Now estimate number of output rows, etc */
    5747 GIC        1597 :     set_baserel_size_estimates(root, rel);
    5748            1597 : }
    5749                 : 
    5750                 : /*
    5751 ECB             :  * set_namedtuplestore_size_estimates
    5752                 :  *      Set the size estimates for a base relation that is a tuplestore reference.
    5753                 :  *
    5754                 :  * The rel's targetlist and restrictinfo list must have been constructed
    5755                 :  * already.
    5756                 :  *
    5757                 :  * We set the same fields as set_baserel_size_estimates.
    5758                 :  */
    5759                 : void
    5760 GIC         219 : set_namedtuplestore_size_estimates(PlannerInfo *root, RelOptInfo *rel)
    5761                 : {
    5762 ECB             :     RangeTblEntry *rte;
    5763                 : 
    5764                 :     /* Should only be applied to base relations that are tuplestore references */
    5765 GIC         219 :     Assert(rel->relid > 0);
    5766             219 :     rte = planner_rt_fetch(rel->relid, root);
    5767 CBC         219 :     Assert(rte->rtekind == RTE_NAMEDTUPLESTORE);
    5768                 : 
    5769                 :     /*
    5770                 :      * Use the estimate provided by the code which is generating the named
    5771 ECB             :      * tuplestore.  In some cases, the actual number might be available; in
    5772                 :      * others the same plan will be re-used, so a "typical" value might be
    5773                 :      * estimated and used.
    5774                 :      */
    5775 GIC         219 :     rel->tuples = rte->enrtuples;
    5776             219 :     if (rel->tuples < 0)
    5777 UIC           0 :         rel->tuples = 1000;
    5778                 : 
    5779                 :     /* Now estimate number of output rows, etc */
    5780 GIC         219 :     set_baserel_size_estimates(root, rel);
    5781             219 : }
    5782                 : 
    5783                 : /*
    5784 ECB             :  * set_result_size_estimates
    5785                 :  *      Set the size estimates for an RTE_RESULT base relation
    5786                 :  *
    5787                 :  * The rel's targetlist and restrictinfo list must have been constructed
    5788                 :  * already.
    5789                 :  *
    5790                 :  * We set the same fields as set_baserel_size_estimates.
    5791                 :  */
    5792                 : void
    5793 GIC         661 : set_result_size_estimates(PlannerInfo *root, RelOptInfo *rel)
    5794                 : {
    5795                 :     /* Should only be applied to RTE_RESULT base relations */
    5796             661 :     Assert(rel->relid > 0);
    5797             661 :     Assert(planner_rt_fetch(rel->relid, root)->rtekind == RTE_RESULT);
    5798                 : 
    5799 ECB             :     /* RTE_RESULT always generates a single row, natively */
    5800 CBC         661 :     rel->tuples = 1;
    5801 EUB             : 
    5802                 :     /* Now estimate number of output rows, etc */
    5803 GIC         661 :     set_baserel_size_estimates(root, rel);
    5804 CBC         661 : }
    5805 ECB             : 
    5806                 : /*
    5807                 :  * set_foreign_size_estimates
    5808                 :  *      Set the size estimates for a base relation that is a foreign table.
    5809                 :  *
    5810                 :  * There is not a whole lot that we can do here; the foreign-data wrapper
    5811                 :  * is responsible for producing useful estimates.  We can do a decent job
    5812                 :  * of estimating baserestrictcost, so we set that, and we also set up width
    5813                 :  * using what will be purely datatype-driven estimates from the targetlist.
    5814                 :  * There is no way to do anything sane with the rows value, so we just put
    5815                 :  * a default estimate and hope that the wrapper can improve on it.  The
    5816                 :  * wrapper's GetForeignRelSize function will be called momentarily.
    5817                 :  *
    5818                 :  * The rel's targetlist and restrictinfo list must have been constructed
    5819                 :  * already.
    5820                 :  */
    5821                 : void
    5822 GIC        1099 : set_foreign_size_estimates(PlannerInfo *root, RelOptInfo *rel)
    5823                 : {
    5824 ECB             :     /* Should only be applied to base relations */
    5825 GIC        1099 :     Assert(rel->relid > 0);
    5826                 : 
    5827 CBC        1099 :     rel->rows = 1000;            /* entirely bogus default estimate */
    5828 ECB             : 
    5829 GIC        1099 :     cost_qual_eval(&rel->baserestrictcost, rel->baserestrictinfo, root);
    5830                 : 
    5831            1099 :     set_rel_width(root, rel);
    5832            1099 : }
    5833                 : 
    5834                 : 
    5835                 : /*
    5836                 :  * set_rel_width
    5837                 :  *      Set the estimated output width of a base relation.
    5838                 :  *
    5839                 :  * The estimated output width is the sum of the per-attribute width estimates
    5840                 :  * for the actually-referenced columns, plus any PHVs or other expressions
    5841                 :  * that have to be calculated at this relation.  This is the amount of data
    5842                 :  * we'd need to pass upwards in case of a sort, hash, etc.
    5843                 :  *
    5844                 :  * This function also sets reltarget->cost, so it's a bit misnamed now.
    5845                 :  *
    5846 ECB             :  * NB: this works best on plain relations because it prefers to look at
    5847                 :  * real Vars.  For subqueries, set_subquery_size_estimates will already have
    5848                 :  * copied up whatever per-column estimates were made within the subquery,
    5849                 :  * and for other types of rels there isn't much we can do anyway.  We fall
    5850                 :  * back on (fairly stupid) datatype-based width estimates if we can't get
    5851                 :  * any better number.
    5852                 :  *
    5853                 :  * The per-attribute width estimates are cached for possible re-use while
    5854                 :  * building join relations or post-scan/join pathtargets.
    5855                 :  */
    5856                 : static void
    5857 GIC      193492 : set_rel_width(PlannerInfo *root, RelOptInfo *rel)
    5858                 : {
    5859          193492 :     Oid         reloid = planner_rt_fetch(rel->relid, root)->relid;
    5860          193492 :     int32       tuple_width = 0;
    5861          193492 :     bool        have_wholerow_var = false;
    5862                 :     ListCell   *lc;
    5863                 : 
    5864                 :     /* Vars are assumed to have cost zero, but other exprs do not */
    5865          193492 :     rel->reltarget->cost.startup = 0;
    5866          193492 :     rel->reltarget->cost.per_tuple = 0;
    5867                 : 
    5868          655895 :     foreach(lc, rel->reltarget->exprs)
    5869                 :     {
    5870          462403 :         Node       *node = (Node *) lfirst(lc);
    5871                 : 
    5872                 :         /*
    5873                 :          * Ordinarily, a Var in a rel's targetlist must belong to that rel;
    5874                 :          * but there are corner cases involving LATERAL references where that
    5875                 :          * isn't so.  If the Var has the wrong varno, fall through to the
    5876                 :          * generic case (it doesn't seem worth the trouble to be any smarter).
    5877                 :          */
    5878          462403 :         if (IsA(node, Var) &&
    5879          453477 :             ((Var *) node)->varno == rel->relid)
    5880          126625 :         {
    5881 CBC      453447 :             Var        *var = (Var *) node;
    5882                 :             int         ndx;
    5883 ECB             :             int32       item_width;
    5884                 : 
    5885 CBC      453447 :             Assert(var->varattno >= rel->min_attr);
    5886 GIC      453447 :             Assert(var->varattno <= rel->max_attr);
    5887                 : 
    5888          453447 :             ndx = var->varattno - rel->min_attr;
    5889 ECB             : 
    5890                 :             /*
    5891                 :              * If it's a whole-row Var, we'll deal with it below after we have
    5892                 :              * already cached as many attr widths as possible.
    5893                 :              */
    5894 CBC      453447 :             if (var->varattno == 0)
    5895                 :             {
    5896 GIC        1228 :                 have_wholerow_var = true;
    5897            1228 :                 continue;
    5898                 :             }
    5899                 : 
    5900                 :             /*
    5901                 :              * The width may have been cached already (especially if it's a
    5902 ECB             :              * subquery), so don't duplicate effort.
    5903                 :              */
    5904 CBC      452219 :             if (rel->attr_widths[ndx] > 0)
    5905 ECB             :             {
    5906 GIC       98022 :                 tuple_width += rel->attr_widths[ndx];
    5907           98022 :                 continue;
    5908                 :             }
    5909 ECB             : 
    5910                 :             /* Try to get column width from statistics */
    5911 GIC      354197 :             if (reloid != InvalidOid && var->varattno > 0)
    5912 ECB             :             {
    5913 GIC      271871 :                 item_width = get_attavgwidth(reloid, var->varattno);
    5914          271871 :                 if (item_width > 0)
    5915                 :                 {
    5916          227572 :                     rel->attr_widths[ndx] = item_width;
    5917          227572 :                     tuple_width += item_width;
    5918 CBC      227572 :                     continue;
    5919                 :                 }
    5920 ECB             :             }
    5921                 : 
    5922                 :             /*
    5923                 :              * Not a plain relation, or can't find statistics for it. Estimate
    5924                 :              * using just the type info.
    5925                 :              */
    5926 GIC      126625 :             item_width = get_typavgwidth(var->vartype, var->vartypmod);
    5927          126625 :             Assert(item_width > 0);
    5928 CBC      126625 :             rel->attr_widths[ndx] = item_width;
    5929 GIC      126625 :             tuple_width += item_width;
    5930 ECB             :         }
    5931 CBC        8956 :         else if (IsA(node, PlaceHolderVar))
    5932                 :         {
    5933                 :             /*
    5934                 :              * We will need to evaluate the PHV's contained expression while
    5935 ECB             :              * scanning this rel, so be sure to include it in reltarget->cost.
    5936                 :              */
    5937 CBC         473 :             PlaceHolderVar *phv = (PlaceHolderVar *) node;
    5938 GNC         473 :             PlaceHolderInfo *phinfo = find_placeholder_info(root, phv);
    5939                 :             QualCost    cost;
    5940 ECB             : 
    5941 CBC         473 :             tuple_width += phinfo->ph_width;
    5942             473 :             cost_qual_eval_node(&cost, (Node *) phv->phexpr, root);
    5943 GIC         473 :             rel->reltarget->cost.startup += cost.startup;
    5944             473 :             rel->reltarget->cost.per_tuple += cost.per_tuple;
    5945                 :         }
    5946                 :         else
    5947                 :         {
    5948                 :             /*
    5949                 :              * We could be looking at an expression pulled up from a subquery,
    5950 ECB             :              * or a ROW() representing a whole-row child Var, etc.  Do what we
    5951                 :              * can using the expression type information.
    5952                 :              */
    5953                 :             int32       item_width;
    5954                 :             QualCost    cost;
    5955                 : 
    5956 GIC        8483 :             item_width = get_typavgwidth(exprType(node), exprTypmod(node));
    5957            8483 :             Assert(item_width > 0);
    5958            8483 :             tuple_width += item_width;
    5959                 :             /* Not entirely clear if we need to account for cost, but do so */
    5960            8483 :             cost_qual_eval_node(&cost, node, root);
    5961 CBC        8483 :             rel->reltarget->cost.startup += cost.startup;
    5962            8483 :             rel->reltarget->cost.per_tuple += cost.per_tuple;
    5963                 :         }
    5964                 :     }
    5965 ECB             : 
    5966                 :     /*
    5967                 :      * If we have a whole-row reference, estimate its width as the sum of
    5968                 :      * per-column widths plus heap tuple header overhead.
    5969                 :      */
    5970 GIC      193492 :     if (have_wholerow_var)
    5971                 :     {
    5972            1228 :         int32       wholerow_width = MAXALIGN(SizeofHeapTupleHeader);
    5973                 : 
    5974            1228 :         if (reloid != InvalidOid)
    5975                 :         {
    5976                 :             /* Real relation, so estimate true tuple width */
    5977            1052 :             wholerow_width += get_relation_data_width(reloid,
    5978            1052 :                                                       rel->attr_widths - rel->min_attr);
    5979                 :         }
    5980 ECB             :         else
    5981                 :         {
    5982                 :             /* Do what we can with info for a phony rel */
    5983                 :             AttrNumber  i;
    5984                 : 
    5985 CBC         462 :             for (i = 1; i <= rel->max_attr; i++)
    5986             286 :                 wholerow_width += rel->attr_widths[i - rel->min_attr];
    5987                 :         }
    5988                 : 
    5989 GIC        1228 :         rel->attr_widths[0 - rel->min_attr] = wholerow_width;
    5990                 : 
    5991                 :         /*
    5992                 :          * Include the whole-row Var as part of the output tuple.  Yes, that
    5993                 :          * really is what happens at runtime.
    5994 ECB             :          */
    5995 GIC        1228 :         tuple_width += wholerow_width;
    5996 ECB             :     }
    5997                 : 
    5998 CBC      193492 :     Assert(tuple_width >= 0);
    5999 GIC      193492 :     rel->reltarget->width = tuple_width;
    6000          193492 : }
    6001 ECB             : 
    6002                 : /*
    6003                 :  * set_pathtarget_cost_width
    6004                 :  *      Set the estimated eval cost and output width of a PathTarget tlist.
    6005                 :  *
    6006                 :  * As a notational convenience, returns the same PathTarget pointer passed in.
    6007                 :  *
    6008                 :  * Most, though not quite all, uses of this function occur after we've run
    6009                 :  * set_rel_width() for base relations; so we can usually obtain cached width
    6010                 :  * estimates for Vars.  If we can't, fall back on datatype-based width
    6011                 :  * estimates.  Present early-planning uses of PathTargets don't need accurate
    6012                 :  * widths badly enough to justify going to the catalogs for better data.
    6013                 :  */
    6014                 : PathTarget *
    6015 GIC      256443 : set_pathtarget_cost_width(PlannerInfo *root, PathTarget *target)
    6016                 : {
    6017          256443 :     int32       tuple_width = 0;
    6018                 :     ListCell   *lc;
    6019 ECB             : 
    6020                 :     /* Vars are assumed to have cost zero, but other exprs do not */
    6021 GIC      256443 :     target->cost.startup = 0;
    6022 CBC      256443 :     target->cost.per_tuple = 0;
    6023 ECB             : 
    6024 CBC      883541 :     foreach(lc, target->exprs)
    6025                 :     {
    6026 GIC      627098 :         Node       *node = (Node *) lfirst(lc);
    6027                 : 
    6028 GNC      627098 :         tuple_width += get_expr_width(root, node);
    6029                 : 
    6030                 :         /* For non-Vars, account for evaluation cost */
    6031          627098 :         if (!IsA(node, Var))
    6032                 :         {
    6033                 :             QualCost    cost;
    6034                 : 
    6035 GIC      316565 :             cost_qual_eval_node(&cost, node, root);
    6036          316565 :             target->cost.startup += cost.startup;
    6037 CBC      316565 :             target->cost.per_tuple += cost.per_tuple;
    6038                 :         }
    6039                 :     }
    6040                 : 
    6041          256443 :     Assert(tuple_width >= 0);
    6042 GIC      256443 :     target->width = tuple_width;
    6043 ECB             : 
    6044 GIC      256443 :     return target;
    6045                 : }
    6046 ECB             : 
    6047                 : /*
    6048                 :  * get_expr_width
    6049                 :  *      Estimate the width of the given expr attempting to use the width
    6050                 :  *      cached in a Var's owning RelOptInfo, else fallback on the type's
    6051                 :  *      average width when unable to or when the given Node is not a Var.
    6052                 :  */
    6053                 : static int32
    6054 GNC      726524 : get_expr_width(PlannerInfo *root, const Node *expr)
    6055                 : {
    6056                 :     int32       width;
    6057                 : 
    6058          726524 :     if (IsA(expr, Var))
    6059                 :     {
    6060          404785 :         const Var  *var = (const Var *) expr;
    6061                 : 
    6062                 :         /* We should not see any upper-level Vars here */
    6063          404785 :         Assert(var->varlevelsup == 0);
    6064                 : 
    6065                 :         /* Try to get data from RelOptInfo cache */
    6066          404785 :         if (!IS_SPECIAL_VARNO(var->varno) &&
    6067          402446 :             var->varno < root->simple_rel_array_size)
    6068                 :         {
    6069          402446 :             RelOptInfo *rel = root->simple_rel_array[var->varno];
    6070                 : 
    6071          402446 :             if (rel != NULL &&
    6072          391151 :                 var->varattno >= rel->min_attr &&
    6073          391151 :                 var->varattno <= rel->max_attr)
    6074                 :             {
    6075          391151 :                 int         ndx = var->varattno - rel->min_attr;
    6076                 : 
    6077          391151 :                 if (rel->attr_widths[ndx] > 0)
    6078          379489 :                     return rel->attr_widths[ndx];
    6079                 :             }
    6080                 :         }
    6081                 : 
    6082                 :         /*
    6083                 :          * No cached data available, so estimate using just the type info.
    6084                 :          */
    6085           25296 :         width = get_typavgwidth(var->vartype, var->vartypmod);
    6086           25296 :         Assert(width > 0);
    6087                 : 
    6088           25296 :         return width;
    6089                 :     }
    6090                 : 
    6091          321739 :     width = get_typavgwidth(exprType(expr), exprTypmod(expr));
    6092          321739 :     Assert(width > 0);
    6093          321739 :     return width;
    6094                 : }
    6095                 : 
    6096                 : /*
    6097                 :  * relation_byte_size
    6098 ECB             :  *    Estimate the storage space in bytes for a given number of tuples
    6099                 :  *    of a given width (size in bytes).
    6100                 :  */
    6101                 : static double
    6102 GIC     1338195 : relation_byte_size(double tuples, int width)
    6103 ECB             : {
    6104 CBC     1338195 :     return tuples * (MAXALIGN(width) + MAXALIGN(SizeofHeapTupleHeader));
    6105 ECB             : }
    6106                 : 
    6107                 : /*
    6108                 :  * page_size
    6109                 :  *    Returns an estimate of the number of pages covered by a given
    6110                 :  *    number of tuples of a given width (size in bytes).
    6111                 :  */
    6112                 : static double
    6113 GIC        4322 : page_size(double tuples, int width)
    6114                 : {
    6115            4322 :     return ceil(relation_byte_size(tuples, width) / BLCKSZ);
    6116                 : }
    6117 ECB             : 
    6118                 : /*
    6119                 :  * Estimate the fraction of the work that each worker will do given the
    6120                 :  * number of workers budgeted for the path.
    6121                 :  */
    6122                 : static double
    6123 CBC       64881 : get_parallel_divisor(Path *path)
    6124 ECB             : {
    6125 CBC       64881 :     double      parallel_divisor = path->parallel_workers;
    6126                 : 
    6127                 :     /*
    6128                 :      * Early experience with parallel query suggests that when there is only
    6129                 :      * one worker, the leader often makes a very substantial contribution to
    6130                 :      * executing the parallel portion of the plan, but as more workers are
    6131                 :      * added, it does less and less, because it's busy reading tuples from the
    6132                 :      * workers and doing whatever non-parallel post-processing is needed.  By
    6133                 :      * the time we reach 4 workers, the leader no longer makes a meaningful
    6134 ECB             :      * contribution.  Thus, for now, estimate that the leader spends 30% of
    6135                 :      * its time servicing each worker, and the remainder executing the
    6136                 :      * parallel plan.
    6137                 :      */
    6138 GIC       64881 :     if (parallel_leader_participation)
    6139                 :     {
    6140                 :         double      leader_contribution;
    6141                 : 
    6142           64497 :         leader_contribution = 1.0 - (0.3 * path->parallel_workers);
    6143           64497 :         if (leader_contribution > 0)
    6144           64041 :             parallel_divisor += leader_contribution;
    6145 ECB             :     }
    6146                 : 
    6147 CBC       64881 :     return parallel_divisor;
    6148                 : }
    6149                 : 
    6150                 : /*
    6151                 :  * compute_bitmap_pages
    6152                 :  *
    6153                 :  * compute number of pages fetched from heap in bitmap heap scan.
    6154                 :  */
    6155 ECB             : double
    6156 GIC      233698 : compute_bitmap_pages(PlannerInfo *root, RelOptInfo *baserel, Path *bitmapqual,
    6157 ECB             :                      int loop_count, Cost *cost, double *tuple)
    6158                 : {
    6159                 :     Cost        indexTotalCost;
    6160                 :     Selectivity indexSelectivity;
    6161                 :     double      T;
    6162                 :     double      pages_fetched;
    6163                 :     double      tuples_fetched;
    6164                 :     double      heap_pages;
    6165                 :     long        maxentries;
    6166                 : 
    6167                 :     /*
    6168                 :      * Fetch total cost of obtaining the bitmap, as well as its total
    6169                 :      * selectivity.
    6170                 :      */
    6171 GIC      233698 :     cost_bitmap_tree_node(bitmapqual, &indexTotalCost, &indexSelectivity);
    6172                 : 
    6173                 :     /*
    6174 ECB             :      * Estimate number of main-table pages fetched.
    6175                 :      */
    6176 CBC      233698 :     tuples_fetched = clamp_row_est(indexSelectivity * baserel->tuples);
    6177                 : 
    6178 GIC      233698 :     T = (baserel->pages > 1) ? (double) baserel->pages : 1.0;
    6179 ECB             : 
    6180                 :     /*
    6181                 :      * For a single scan, the number of heap pages that need to be fetched is
    6182                 :      * the same as the Mackert and Lohman formula for the case T <= b (ie, no
    6183                 :      * re-reads needed).
    6184                 :      */
    6185 GIC      233698 :     pages_fetched = (2.0 * T * tuples_fetched) / (2.0 * T + tuples_fetched);
    6186                 : 
    6187                 :     /*
    6188 ECB             :      * Calculate the number of pages fetched from the heap.  Then based on
    6189                 :      * current work_mem estimate get the estimated maxentries in the bitmap.
    6190                 :      * (Note that we always do this calculation based on the number of pages
    6191                 :      * that would be fetched in a single iteration, even if loop_count > 1.
    6192                 :      * That's correct, because only that number of entries will be stored in
    6193                 :      * the bitmap at one time.)
    6194                 :      */
    6195 GIC      233698 :     heap_pages = Min(pages_fetched, baserel->pages);
    6196          233698 :     maxentries = tbm_calculate_entries(work_mem * 1024L);
    6197                 : 
    6198          233698 :     if (loop_count > 1)
    6199                 :     {
    6200                 :         /*
    6201                 :          * For repeated bitmap scans, scale up the number of tuples fetched in
    6202                 :          * the Mackert and Lohman formula by the number of scans, so that we
    6203 ECB             :          * estimate the number of pages fetched by all the scans. Then
    6204                 :          * pro-rate for one scan.
    6205                 :          */
    6206 GIC       47275 :         pages_fetched = index_pages_fetched(tuples_fetched * loop_count,
    6207                 :                                             baserel->pages,
    6208 ECB             :                                             get_indexpath_pages(bitmapqual),
    6209                 :                                             root);
    6210 CBC       47275 :         pages_fetched /= loop_count;
    6211                 :     }
    6212                 : 
    6213 GIC      233698 :     if (pages_fetched >= T)
    6214           22028 :         pages_fetched = T;
    6215                 :     else
    6216          211670 :         pages_fetched = ceil(pages_fetched);
    6217 ECB             : 
    6218 GIC      233698 :     if (maxentries < heap_pages)
    6219                 :     {
    6220                 :         double      exact_pages;
    6221                 :         double      lossy_pages;
    6222                 : 
    6223                 :         /*
    6224                 :          * Crude approximation of the number of lossy pages.  Because of the
    6225                 :          * way tbm_lossify() is coded, the number of lossy pages increases
    6226                 :          * very sharply as soon as we run short of memory; this formula has
    6227 ECB             :          * that property and seems to perform adequately in testing, but it's
    6228                 :          * possible we could do better somehow.
    6229                 :          */
    6230 CBC           9 :         lossy_pages = Max(0, heap_pages - maxentries / 2);
    6231 GIC           9 :         exact_pages = heap_pages - lossy_pages;
    6232                 : 
    6233                 :         /*
    6234                 :          * If there are lossy pages then recompute the number of tuples
    6235                 :          * processed by the bitmap heap node.  We assume here that the chance
    6236                 :          * of a given tuple coming from an exact page is the same as the
    6237                 :          * chance that a given page is exact.  This might not be true, but
    6238 ECB             :          * it's not clear how we can do any better.
    6239                 :          */
    6240 GIC           9 :         if (lossy_pages > 0)
    6241                 :             tuples_fetched =
    6242 CBC           9 :                 clamp_row_est(indexSelectivity *
    6243 GIC           9 :                               (exact_pages / heap_pages) * baserel->tuples +
    6244               9 :                               (lossy_pages / heap_pages) * baserel->tuples);
    6245 ECB             :     }
    6246                 : 
    6247 GIC      233698 :     if (cost)
    6248 CBC      182089 :         *cost = indexTotalCost;
    6249 GIC      233698 :     if (tuple)
    6250 CBC      182089 :         *tuple = tuples_fetched;
    6251                 : 
    6252 GIC      233698 :     return pages_fetched;
    6253                 : }
        

Generated by: LCOV version v1.16-55-g56c0a2a