LCOV - differential code coverage report
Current view: top level - src/backend/lib - bloomfilter.c (source / functions) Coverage Total Hit UBC CBC
Current: Differential Code Coverage HEAD vs 15 Lines: 92.7 % 55 51 4 51
Current Date: 2023-04-08 15:15:32 Functions: 88.9 % 9 8 1 8
Baseline: 15
Baseline Date: 2023-04-08 15:09:40
Legend: Lines: hit not hit

           TLA  Line data    Source code
       1                 : /*-------------------------------------------------------------------------
       2                 :  *
       3                 :  * bloomfilter.c
       4                 :  *      Space-efficient set membership testing
       5                 :  *
       6                 :  * A Bloom filter is a probabilistic data structure that is used to test an
       7                 :  * element's membership of a set.  False positives are possible, but false
       8                 :  * negatives are not; a test of membership of the set returns either "possibly
       9                 :  * in set" or "definitely not in set".  This is typically very space efficient,
      10                 :  * which can be a decisive advantage.
      11                 :  *
      12                 :  * Elements can be added to the set, but not removed.  The more elements that
      13                 :  * are added, the larger the probability of false positives.  Caller must hint
      14                 :  * an estimated total size of the set when the Bloom filter is initialized.
      15                 :  * This is used to balance the use of memory against the final false positive
      16                 :  * rate.
      17                 :  *
      18                 :  * The implementation is well suited to data synchronization problems between
      19                 :  * unordered sets, especially where predictable performance is important and
      20                 :  * some false positives are acceptable.  It's also well suited to cache
      21                 :  * filtering problems where a relatively small and/or low cardinality set is
      22                 :  * fingerprinted, especially when many subsequent membership tests end up
      23                 :  * indicating that values of interest are not present.  That should save the
      24                 :  * caller many authoritative lookups, such as expensive probes of a much larger
      25                 :  * on-disk structure.
      26                 :  *
      27                 :  * Copyright (c) 2018-2023, PostgreSQL Global Development Group
      28                 :  *
      29                 :  * IDENTIFICATION
      30                 :  *    src/backend/lib/bloomfilter.c
      31                 :  *
      32                 :  *-------------------------------------------------------------------------
      33                 :  */
      34                 : #include "postgres.h"
      35                 : 
      36                 : #include <math.h>
      37                 : 
      38                 : #include "common/hashfn.h"
      39                 : #include "lib/bloomfilter.h"
      40                 : #include "port/pg_bitutils.h"
      41                 : 
      42                 : #define MAX_HASH_FUNCS      10
      43                 : 
      44                 : struct bloom_filter
      45                 : {
      46                 :     /* K hash functions are used, seeded by caller's seed */
      47                 :     int         k_hash_funcs;
      48                 :     uint64      seed;
      49                 :     /* m is bitset size, in bits.  Must be a power of two <= 2^32.  */
      50                 :     uint64      m;
      51                 :     unsigned char bitset[FLEXIBLE_ARRAY_MEMBER];
      52                 : };
      53                 : 
      54                 : static int  my_bloom_power(uint64 target_bitset_bits);
      55                 : static int  optimal_k(uint64 bitset_bits, int64 total_elems);
      56                 : static void k_hashes(bloom_filter *filter, uint32 *hashes, unsigned char *elem,
      57                 :                      size_t len);
      58                 : static inline uint32 mod_m(uint32 val, uint64 m);
      59                 : 
      60                 : /*
      61                 :  * Create Bloom filter in caller's memory context.  We aim for a false positive
      62                 :  * rate of between 1% and 2% when bitset size is not constrained by memory
      63                 :  * availability.
      64                 :  *
      65                 :  * total_elems is an estimate of the final size of the set.  It should be
      66                 :  * approximately correct, but the implementation can cope well with it being
      67                 :  * off by perhaps a factor of five or more.  See "Bloom Filters in
      68                 :  * Probabilistic Verification" (Dillinger & Manolios, 2004) for details of why
      69                 :  * this is the case.
      70                 :  *
      71                 :  * bloom_work_mem is sized in KB, in line with the general work_mem convention.
      72                 :  * This determines the size of the underlying bitset (trivial bookkeeping space
      73                 :  * isn't counted).  The bitset is always sized as a power of two number of
      74                 :  * bits, and the largest possible bitset is 512MB (2^32 bits).  The
      75                 :  * implementation allocates only enough memory to target its standard false
      76                 :  * positive rate, using a simple formula with caller's total_elems estimate as
      77                 :  * an input.  The bitset might be as small as 1MB, even when bloom_work_mem is
      78                 :  * much higher.
      79                 :  *
      80                 :  * The Bloom filter is seeded using a value provided by the caller.  Using a
      81                 :  * distinct seed value on every call makes it unlikely that the same false
      82                 :  * positives will reoccur when the same set is fingerprinted a second time.
      83                 :  * Callers that don't care about this pass a constant as their seed, typically
      84                 :  * 0.  Callers can also use a pseudo-random seed, eg from pg_prng_uint64().
      85                 :  */
      86                 : bloom_filter *
      87 CBC          57 : bloom_create(int64 total_elems, int bloom_work_mem, uint64 seed)
      88                 : {
      89                 :     bloom_filter *filter;
      90                 :     int         bloom_power;
      91                 :     uint64      bitset_bytes;
      92                 :     uint64      bitset_bits;
      93                 : 
      94                 :     /*
      95                 :      * Aim for two bytes per element; this is sufficient to get a false
      96                 :      * positive rate below 1%, independent of the size of the bitset or total
      97                 :      * number of elements.  Also, if rounding down the size of the bitset to
      98                 :      * the next lowest power of two turns out to be a significant drop, the
      99                 :      * false positive rate still won't exceed 2% in almost all cases.
     100                 :      */
     101              57 :     bitset_bytes = Min(bloom_work_mem * UINT64CONST(1024), total_elems * 2);
     102              57 :     bitset_bytes = Max(1024 * 1024, bitset_bytes);
     103                 : 
     104                 :     /*
     105                 :      * Size in bits should be the highest power of two <= target.  bitset_bits
     106                 :      * is uint64 because PG_UINT32_MAX is 2^32 - 1, not 2^32
     107                 :      */
     108              57 :     bloom_power = my_bloom_power(bitset_bytes * BITS_PER_BYTE);
     109              57 :     bitset_bits = UINT64CONST(1) << bloom_power;
     110              57 :     bitset_bytes = bitset_bits / BITS_PER_BYTE;
     111                 : 
     112                 :     /* Allocate bloom filter with unset bitset */
     113              57 :     filter = palloc0(offsetof(bloom_filter, bitset) +
     114                 :                      sizeof(unsigned char) * bitset_bytes);
     115              57 :     filter->k_hash_funcs = optimal_k(bitset_bits, total_elems);
     116              57 :     filter->seed = seed;
     117              57 :     filter->m = bitset_bits;
     118                 : 
     119              57 :     return filter;
     120                 : }
     121                 : 
     122                 : /*
     123                 :  * Free Bloom filter
     124                 :  */
     125                 : void
     126              55 : bloom_free(bloom_filter *filter)
     127                 : {
     128              55 :     pfree(filter);
     129              55 : }
     130                 : 
     131                 : /*
     132                 :  * Add element to Bloom filter
     133                 :  */
     134                 : void
     135         1249518 : bloom_add_element(bloom_filter *filter, unsigned char *elem, size_t len)
     136                 : {
     137                 :     uint32      hashes[MAX_HASH_FUNCS];
     138                 :     int         i;
     139                 : 
     140         1249518 :     k_hashes(filter, hashes, elem, len);
     141                 : 
     142                 :     /* Map a bit-wise address to a byte-wise address + bit offset */
     143        11228115 :     for (i = 0; i < filter->k_hash_funcs; i++)
     144                 :     {
     145         9978597 :         filter->bitset[hashes[i] >> 3] |= 1 << (hashes[i] & 7);
     146                 :     }
     147         1249518 : }
     148                 : 
     149                 : /*
     150                 :  * Test if Bloom filter definitely lacks element.
     151                 :  *
     152                 :  * Returns true if the element is definitely not in the set of elements
     153                 :  * observed by bloom_add_element().  Otherwise, returns false, indicating that
     154                 :  * element is probably present in set.
     155                 :  */
     156                 : bool
     157         1249476 : bloom_lacks_element(bloom_filter *filter, unsigned char *elem, size_t len)
     158                 : {
     159                 :     uint32      hashes[MAX_HASH_FUNCS];
     160                 :     int         i;
     161                 : 
     162         1249476 :     k_hashes(filter, hashes, elem, len);
     163                 : 
     164                 :     /* Map a bit-wise address to a byte-wise address + bit offset */
     165         6200587 :     for (i = 0; i < filter->k_hash_funcs; i++)
     166                 :     {
     167         5783051 :         if (!(filter->bitset[hashes[i] >> 3] & (1 << (hashes[i] & 7))))
     168          831940 :             return true;
     169                 :     }
     170                 : 
     171          417536 :     return false;
     172                 : }
     173                 : 
     174                 : /*
     175                 :  * What proportion of bits are currently set?
     176                 :  *
     177                 :  * Returns proportion, expressed as a multiplier of filter size.  That should
     178                 :  * generally be close to 0.5, even when we have more than enough memory to
     179                 :  * ensure a false positive rate within target 1% to 2% band, since more hash
     180                 :  * functions are used as more memory is available per element.
     181                 :  *
     182                 :  * This is the only instrumentation that is low overhead enough to appear in
     183                 :  * debug traces.  When debugging Bloom filter code, it's likely to be far more
     184                 :  * interesting to directly test the false positive rate.
     185                 :  */
     186                 : double
     187 UBC           0 : bloom_prop_bits_set(bloom_filter *filter)
     188                 : {
     189               0 :     int         bitset_bytes = filter->m / BITS_PER_BYTE;
     190               0 :     uint64      bits_set = pg_popcount((char *) filter->bitset, bitset_bytes);
     191                 : 
     192               0 :     return bits_set / (double) filter->m;
     193                 : }
     194                 : 
     195                 : /*
     196                 :  * Which element in the sequence of powers of two is less than or equal to
     197                 :  * target_bitset_bits?
     198                 :  *
     199                 :  * Value returned here must be generally safe as the basis for actual bitset
     200                 :  * size.
     201                 :  *
     202                 :  * Bitset is never allowed to exceed 2 ^ 32 bits (512MB).  This is sufficient
     203                 :  * for the needs of all current callers, and allows us to use 32-bit hash
     204                 :  * functions.  It also makes it easy to stay under the MaxAllocSize restriction
     205                 :  * (caller needs to leave room for non-bitset fields that appear before
     206                 :  * flexible array member, so a 1GB bitset would use an allocation that just
     207                 :  * exceeds MaxAllocSize).
     208                 :  */
     209                 : static int
     210 CBC          57 : my_bloom_power(uint64 target_bitset_bits)
     211                 : {
     212              57 :     int         bloom_power = -1;
     213                 : 
     214            1425 :     while (target_bitset_bits > 0 && bloom_power < 32)
     215                 :     {
     216            1368 :         bloom_power++;
     217            1368 :         target_bitset_bits >>= 1;
     218                 :     }
     219                 : 
     220              57 :     return bloom_power;
     221                 : }
     222                 : 
     223                 : /*
     224                 :  * Determine optimal number of hash functions based on size of filter in bits,
     225                 :  * and projected total number of elements.  The optimal number is the number
     226                 :  * that minimizes the false positive rate.
     227                 :  */
     228                 : static int
     229              57 : optimal_k(uint64 bitset_bits, int64 total_elems)
     230                 : {
     231              57 :     int         k = rint(log(2.0) * bitset_bits / total_elems);
     232                 : 
     233              57 :     return Max(1, Min(k, MAX_HASH_FUNCS));
     234                 : }
     235                 : 
     236                 : /*
     237                 :  * Generate k hash values for element.
     238                 :  *
     239                 :  * Caller passes array, which is filled-in with k values determined by hashing
     240                 :  * caller's element.
     241                 :  *
     242                 :  * Only 2 real independent hash functions are actually used to support an
     243                 :  * interface of up to MAX_HASH_FUNCS hash functions; enhanced double hashing is
     244                 :  * used to make this work.  The main reason we prefer enhanced double hashing
     245                 :  * to classic double hashing is that the latter has an issue with collisions
     246                 :  * when using power of two sized bitsets.  See Dillinger & Manolios for full
     247                 :  * details.
     248                 :  */
     249                 : static void
     250         2498994 : k_hashes(bloom_filter *filter, uint32 *hashes, unsigned char *elem, size_t len)
     251                 : {
     252                 :     uint64      hash;
     253                 :     uint32      x,
     254                 :                 y;
     255                 :     uint64      m;
     256                 :     int         i;
     257                 : 
     258                 :     /* Use 64-bit hashing to get two independent 32-bit hashes */
     259         2498994 :     hash = DatumGetUInt64(hash_any_extended(elem, len, filter->seed));
     260         2498994 :     x = (uint32) hash;
     261         2498994 :     y = (uint32) (hash >> 32);
     262         2498994 :     m = filter->m;
     263                 : 
     264         2498994 :     x = mod_m(x, m);
     265         2498994 :     y = mod_m(y, m);
     266                 : 
     267                 :     /* Accumulate hashes */
     268         2498994 :     hashes[0] = x;
     269        19956774 :     for (i = 1; i < filter->k_hash_funcs; i++)
     270                 :     {
     271        17457780 :         x = mod_m(x + y, m);
     272        17457780 :         y = mod_m(y + i, m);
     273                 : 
     274        17457780 :         hashes[i] = x;
     275                 :     }
     276         2498994 : }
     277                 : 
     278                 : /*
     279                 :  * Calculate "val MOD m" inexpensively.
     280                 :  *
     281                 :  * Assumes that m (which is bitset size) is a power of two.
     282                 :  *
     283                 :  * Using a power of two number of bits for bitset size allows us to use bitwise
     284                 :  * AND operations to calculate the modulo of a hash value.  It's also a simple
     285                 :  * way of avoiding the modulo bias effect.
     286                 :  */
     287                 : static inline uint32
     288        39913548 : mod_m(uint32 val, uint64 m)
     289                 : {
     290        39913548 :     Assert(m <= PG_UINT32_MAX + UINT64CONST(1));
     291        39913548 :     Assert(((m - 1) & m) == 0);
     292                 : 
     293        39913548 :     return val & (m - 1);
     294                 : }
        

Generated by: LCOV version v1.16-55-g56c0a2a