LCOV - differential code coverage report
Current view: top level - src/backend/executor - execTuples.c (source / functions) Coverage Total Hit LBC UIC UBC GBC GIC GNC CBC EUB ECB
Current: Differential Code Coverage HEAD vs 15 Lines: 93.7 % 759 711 14 4 30 6 348 357 12 340
Current Date: 2023-04-08 15:15:32 Functions: 96.3 % 82 79 3 56 1 22 56
Baseline: 15
Baseline Date: 2023-04-08 15:09:40
Legend: Lines: hit not hit

           TLA  Line data    Source code
       1                 : /*-------------------------------------------------------------------------
       2                 :  *
       3                 :  * execTuples.c
       4                 :  *    Routines dealing with TupleTableSlots.  These are used for resource
       5                 :  *    management associated with tuples (eg, releasing buffer pins for
       6                 :  *    tuples in disk buffers, or freeing the memory occupied by transient
       7                 :  *    tuples).  Slots also provide access abstraction that lets us implement
       8                 :  *    "virtual" tuples to reduce data-copying overhead.
       9                 :  *
      10                 :  *    Routines dealing with the type information for tuples. Currently,
      11                 :  *    the type information for a tuple is an array of FormData_pg_attribute.
      12                 :  *    This information is needed by routines manipulating tuples
      13                 :  *    (getattribute, formtuple, etc.).
      14                 :  *
      15                 :  *
      16                 :  *   EXAMPLE OF HOW TABLE ROUTINES WORK
      17                 :  *      Suppose we have a query such as SELECT emp.name FROM emp and we have
      18                 :  *      a single SeqScan node in the query plan.
      19                 :  *
      20                 :  *      At ExecutorStart()
      21                 :  *      ----------------
      22                 :  *
      23                 :  *      - ExecInitSeqScan() calls ExecInitScanTupleSlot() to construct a
      24                 :  *        TupleTableSlots for the tuples returned by the access method, and
      25                 :  *        ExecInitResultTypeTL() to define the node's return
      26                 :  *        type. ExecAssignScanProjectionInfo() will, if necessary, create
      27                 :  *        another TupleTableSlot for the tuples resulting from performing
      28                 :  *        target list projections.
      29                 :  *
      30                 :  *      During ExecutorRun()
      31                 :  *      ----------------
      32                 :  *      - SeqNext() calls ExecStoreBufferHeapTuple() to place the tuple
      33                 :  *        returned by the access method into the scan tuple slot.
      34                 :  *
      35                 :  *      - ExecSeqScan() (via ExecScan), if necessary, calls ExecProject(),
      36                 :  *        putting the result of the projection in the result tuple slot. If
      37                 :  *        not necessary, it directly returns the slot returned by SeqNext().
      38                 :  *
      39                 :  *      - ExecutePlan() calls the output function.
      40                 :  *
      41                 :  *      The important thing to watch in the executor code is how pointers
      42                 :  *      to the slots containing tuples are passed instead of the tuples
      43                 :  *      themselves.  This facilitates the communication of related information
      44                 :  *      (such as whether or not a tuple should be pfreed, what buffer contains
      45                 :  *      this tuple, the tuple's tuple descriptor, etc).  It also allows us
      46                 :  *      to avoid physically constructing projection tuples in many cases.
      47                 :  *
      48                 :  *
      49                 :  * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
      50                 :  * Portions Copyright (c) 1994, Regents of the University of California
      51                 :  *
      52                 :  *
      53                 :  * IDENTIFICATION
      54                 :  *    src/backend/executor/execTuples.c
      55                 :  *
      56                 :  *-------------------------------------------------------------------------
      57                 :  */
      58                 : #include "postgres.h"
      59                 : 
      60                 : #include "access/heaptoast.h"
      61                 : #include "access/htup_details.h"
      62                 : #include "access/tupdesc_details.h"
      63                 : #include "catalog/pg_type.h"
      64                 : #include "funcapi.h"
      65                 : #include "nodes/nodeFuncs.h"
      66                 : #include "storage/bufmgr.h"
      67                 : #include "utils/builtins.h"
      68                 : #include "utils/expandeddatum.h"
      69                 : #include "utils/lsyscache.h"
      70                 : #include "utils/typcache.h"
      71                 : 
      72                 : static TupleDesc ExecTypeFromTLInternal(List *targetList,
      73                 :                                         bool skipjunk);
      74                 : static pg_attribute_always_inline void slot_deform_heap_tuple(TupleTableSlot *slot, HeapTuple tuple, uint32 *offp,
      75                 :                                                               int natts);
      76                 : static inline void tts_buffer_heap_store_tuple(TupleTableSlot *slot,
      77                 :                                                HeapTuple tuple,
      78                 :                                                Buffer buffer,
      79                 :                                                bool transfer_pin);
      80                 : static void tts_heap_store_tuple(TupleTableSlot *slot, HeapTuple tuple, bool shouldFree);
      81                 : 
      82                 : 
      83                 : const TupleTableSlotOps TTSOpsVirtual;
      84                 : const TupleTableSlotOps TTSOpsHeapTuple;
      85                 : const TupleTableSlotOps TTSOpsMinimalTuple;
      86                 : const TupleTableSlotOps TTSOpsBufferHeapTuple;
      87                 : 
      88                 : 
      89                 : /*
      90                 :  * TupleTableSlotOps implementations.
      91                 :  */
      92                 : 
      93                 : /*
      94                 :  * TupleTableSlotOps implementation for VirtualTupleTableSlot.
      95                 :  */
      96                 : static void
      97 CBC      588860 : tts_virtual_init(TupleTableSlot *slot)
      98                 : {
      99          588860 : }
     100                 : 
     101                 : static void
     102          577451 : tts_virtual_release(TupleTableSlot *slot)
     103                 : {
     104          577451 : }
     105                 : 
     106                 : static void
     107        40183402 : tts_virtual_clear(TupleTableSlot *slot)
     108                 : {
     109        40183402 :     if (unlikely(TTS_SHOULDFREE(slot)))
     110                 :     {
     111          872835 :         VirtualTupleTableSlot *vslot = (VirtualTupleTableSlot *) slot;
     112                 : 
     113          872835 :         pfree(vslot->data);
     114          872835 :         vslot->data = NULL;
     115                 : 
     116          872835 :         slot->tts_flags &= ~TTS_FLAG_SHOULDFREE;
     117                 :     }
     118                 : 
     119        40183402 :     slot->tts_nvalid = 0;
     120        40183402 :     slot->tts_flags |= TTS_FLAG_EMPTY;
     121        40183402 :     ItemPointerSetInvalid(&slot->tts_tid);
     122        40183402 : }
     123                 : 
     124                 : /*
     125                 :  * VirtualTupleTableSlots always have fully populated tts_values and
     126                 :  * tts_isnull arrays.  So this function should never be called.
     127                 :  */
     128                 : static void
     129 UBC           0 : tts_virtual_getsomeattrs(TupleTableSlot *slot, int natts)
     130                 : {
     131               0 :     elog(ERROR, "getsomeattrs is not required to be called on a virtual tuple table slot");
     132                 : }
     133                 : 
     134                 : /*
     135                 :  * VirtualTupleTableSlots never provide system attributes (except those
     136                 :  * handled generically, such as tableoid).  We generally shouldn't get
     137                 :  * here, but provide a user-friendly message if we do.
     138                 :  */
     139                 : static Datum
     140 CBC           6 : tts_virtual_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull)
     141                 : {
     142               6 :     Assert(!TTS_EMPTY(slot));
     143                 : 
     144               6 :     ereport(ERROR,
     145                 :             (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     146                 :              errmsg("cannot retrieve a system column in this context")));
     147                 : 
     148                 :     return 0;                   /* silence compiler warnings */
     149                 : }
     150                 : 
     151                 : /*
     152                 :  * To materialize a virtual slot all the datums that aren't passed by value
     153                 :  * have to be copied into the slot's memory context.  To do so, compute the
     154                 :  * required size, and allocate enough memory to store all attributes.  That's
     155                 :  * good for cache hit ratio, but more importantly requires only memory
     156                 :  * allocation/deallocation.
     157                 :  */
     158                 : static void
     159         2138818 : tts_virtual_materialize(TupleTableSlot *slot)
     160                 : {
     161         2138818 :     VirtualTupleTableSlot *vslot = (VirtualTupleTableSlot *) slot;
     162         2138818 :     TupleDesc   desc = slot->tts_tupleDescriptor;
     163         2138818 :     Size        sz = 0;
     164                 :     char       *data;
     165                 : 
     166                 :     /* already materialized */
     167         2138818 :     if (TTS_SHOULDFREE(slot))
     168          191837 :         return;
     169                 : 
     170                 :     /* compute size of memory required */
     171         6044915 :     for (int natt = 0; natt < desc->natts; natt++)
     172                 :     {
     173         4097934 :         Form_pg_attribute att = TupleDescAttr(desc, natt);
     174                 :         Datum       val;
     175                 : 
     176         4097934 :         if (att->attbyval || slot->tts_isnull[natt])
     177         3184533 :             continue;
     178                 : 
     179          913401 :         val = slot->tts_values[natt];
     180                 : 
     181          913401 :         if (att->attlen == -1 &&
     182          617926 :             VARATT_IS_EXTERNAL_EXPANDED(DatumGetPointer(val)))
     183                 :         {
     184                 :             /*
     185                 :              * We want to flatten the expanded value so that the materialized
     186                 :              * slot doesn't depend on it.
     187                 :              */
     188 UBC           0 :             sz = att_align_nominal(sz, att->attalign);
     189               0 :             sz += EOH_get_flat_size(DatumGetEOHP(val));
     190                 :         }
     191                 :         else
     192                 :         {
     193 CBC      913401 :             sz = att_align_nominal(sz, att->attalign);
     194          913401 :             sz = att_addlength_datum(sz, att->attlen, val);
     195                 :         }
     196                 :     }
     197                 : 
     198                 :     /* all data is byval */
     199         1946981 :     if (sz == 0)
     200         1074063 :         return;
     201                 : 
     202                 :     /* allocate memory */
     203          872918 :     vslot->data = data = MemoryContextAlloc(slot->tts_mcxt, sz);
     204          872918 :     slot->tts_flags |= TTS_FLAG_SHOULDFREE;
     205                 : 
     206                 :     /* and copy all attributes into the pre-allocated space */
     207         3348112 :     for (int natt = 0; natt < desc->natts; natt++)
     208                 :     {
     209         2475194 :         Form_pg_attribute att = TupleDescAttr(desc, natt);
     210                 :         Datum       val;
     211                 : 
     212         2475194 :         if (att->attbyval || slot->tts_isnull[natt])
     213         1561793 :             continue;
     214                 : 
     215          913401 :         val = slot->tts_values[natt];
     216                 : 
     217          913401 :         if (att->attlen == -1 &&
     218          617926 :             VARATT_IS_EXTERNAL_EXPANDED(DatumGetPointer(val)))
     219 UBC           0 :         {
     220                 :             Size        data_length;
     221                 : 
     222                 :             /*
     223                 :              * We want to flatten the expanded value so that the materialized
     224                 :              * slot doesn't depend on it.
     225                 :              */
     226               0 :             ExpandedObjectHeader *eoh = DatumGetEOHP(val);
     227                 : 
     228               0 :             data = (char *) att_align_nominal(data,
     229                 :                                               att->attalign);
     230               0 :             data_length = EOH_get_flat_size(eoh);
     231               0 :             EOH_flatten_into(eoh, data, data_length);
     232                 : 
     233               0 :             slot->tts_values[natt] = PointerGetDatum(data);
     234               0 :             data += data_length;
     235                 :         }
     236                 :         else
     237                 :         {
     238 CBC      913401 :             Size        data_length = 0;
     239                 : 
     240          913401 :             data = (char *) att_align_nominal(data, att->attalign);
     241          913401 :             data_length = att_addlength_datum(data_length, att->attlen, val);
     242                 : 
     243          913401 :             memcpy(data, DatumGetPointer(val), data_length);
     244                 : 
     245          913401 :             slot->tts_values[natt] = PointerGetDatum(data);
     246          913401 :             data += data_length;
     247                 :         }
     248                 :     }
     249                 : }
     250                 : 
     251                 : static void
     252           70477 : tts_virtual_copyslot(TupleTableSlot *dstslot, TupleTableSlot *srcslot)
     253                 : {
     254           70477 :     TupleDesc   srcdesc = srcslot->tts_tupleDescriptor;
     255                 : 
     256           70477 :     Assert(srcdesc->natts <= dstslot->tts_tupleDescriptor->natts);
     257                 : 
     258           70477 :     tts_virtual_clear(dstslot);
     259                 : 
     260           70477 :     slot_getallattrs(srcslot);
     261                 : 
     262          145187 :     for (int natt = 0; natt < srcdesc->natts; natt++)
     263                 :     {
     264           74710 :         dstslot->tts_values[natt] = srcslot->tts_values[natt];
     265           74710 :         dstslot->tts_isnull[natt] = srcslot->tts_isnull[natt];
     266                 :     }
     267                 : 
     268           70477 :     dstslot->tts_nvalid = srcdesc->natts;
     269           70477 :     dstslot->tts_flags &= ~TTS_FLAG_EMPTY;
     270                 : 
     271                 :     /* make sure storage doesn't depend on external memory */
     272           70477 :     tts_virtual_materialize(dstslot);
     273           70477 : }
     274                 : 
     275                 : static HeapTuple
     276         7068537 : tts_virtual_copy_heap_tuple(TupleTableSlot *slot)
     277                 : {
     278         7068537 :     Assert(!TTS_EMPTY(slot));
     279                 : 
     280         7068537 :     return heap_form_tuple(slot->tts_tupleDescriptor,
     281                 :                            slot->tts_values,
     282                 :                            slot->tts_isnull);
     283                 : }
     284                 : 
     285                 : static MinimalTuple
     286        13270380 : tts_virtual_copy_minimal_tuple(TupleTableSlot *slot)
     287                 : {
     288        13270380 :     Assert(!TTS_EMPTY(slot));
     289                 : 
     290        13270380 :     return heap_form_minimal_tuple(slot->tts_tupleDescriptor,
     291                 :                                    slot->tts_values,
     292                 :                                    slot->tts_isnull);
     293                 : }
     294                 : 
     295                 : 
     296                 : /*
     297                 :  * TupleTableSlotOps implementation for HeapTupleTableSlot.
     298                 :  */
     299                 : 
     300                 : static void
     301         5239628 : tts_heap_init(TupleTableSlot *slot)
     302                 : {
     303         5239628 : }
     304                 : 
     305                 : static void
     306         5239231 : tts_heap_release(TupleTableSlot *slot)
     307                 : {
     308         5239231 : }
     309                 : 
     310                 : static void
     311        11572437 : tts_heap_clear(TupleTableSlot *slot)
     312                 : {
     313        11572437 :     HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;
     314                 : 
     315                 :     /* Free the memory for the heap tuple if it's allowed. */
     316        11572437 :     if (TTS_SHOULDFREE(slot))
     317                 :     {
     318         2309132 :         heap_freetuple(hslot->tuple);
     319         2309132 :         slot->tts_flags &= ~TTS_FLAG_SHOULDFREE;
     320                 :     }
     321                 : 
     322        11572437 :     slot->tts_nvalid = 0;
     323        11572437 :     slot->tts_flags |= TTS_FLAG_EMPTY;
     324        11572437 :     ItemPointerSetInvalid(&slot->tts_tid);
     325        11572437 :     hslot->off = 0;
     326        11572437 :     hslot->tuple = NULL;
     327        11572437 : }
     328                 : 
     329                 : static void
     330        11676807 : tts_heap_getsomeattrs(TupleTableSlot *slot, int natts)
     331                 : {
     332        11676807 :     HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;
     333                 : 
     334        11676807 :     Assert(!TTS_EMPTY(slot));
     335                 : 
     336        11676807 :     slot_deform_heap_tuple(slot, hslot->tuple, &hslot->off, natts);
     337        11676807 : }
     338                 : 
     339                 : static Datum
     340 UBC           0 : tts_heap_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull)
     341                 : {
     342               0 :     HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;
     343                 : 
     344               0 :     Assert(!TTS_EMPTY(slot));
     345                 : 
     346                 :     /*
     347                 :      * In some code paths it's possible to get here with a non-materialized
     348                 :      * slot, in which case we can't retrieve system columns.
     349                 :      */
     350               0 :     if (!hslot->tuple)
     351               0 :         ereport(ERROR,
     352                 :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     353                 :                  errmsg("cannot retrieve a system column in this context")));
     354                 : 
     355               0 :     return heap_getsysattr(hslot->tuple, attnum,
     356                 :                            slot->tts_tupleDescriptor, isnull);
     357                 : }
     358                 : 
     359                 : static void
     360 CBC     4286930 : tts_heap_materialize(TupleTableSlot *slot)
     361                 : {
     362         4286930 :     HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;
     363                 :     MemoryContext oldContext;
     364                 : 
     365         4286930 :     Assert(!TTS_EMPTY(slot));
     366                 : 
     367                 :     /* If slot has its tuple already materialized, nothing to do. */
     368         4286930 :     if (TTS_SHOULDFREE(slot))
     369         2178839 :         return;
     370                 : 
     371         2108091 :     oldContext = MemoryContextSwitchTo(slot->tts_mcxt);
     372                 : 
     373                 :     /*
     374                 :      * Have to deform from scratch, otherwise tts_values[] entries could point
     375                 :      * into the non-materialized tuple (which might be gone when accessed).
     376                 :      */
     377         2108091 :     slot->tts_nvalid = 0;
     378         2108091 :     hslot->off = 0;
     379                 : 
     380         2108091 :     if (!hslot->tuple)
     381         2108084 :         hslot->tuple = heap_form_tuple(slot->tts_tupleDescriptor,
     382                 :                                        slot->tts_values,
     383                 :                                        slot->tts_isnull);
     384                 :     else
     385                 :     {
     386                 :         /*
     387                 :          * The tuple contained in this slot is not allocated in the memory
     388                 :          * context of the given slot (else it would have TTS_FLAG_SHOULDFREE
     389                 :          * set).  Copy the tuple into the given slot's memory context.
     390                 :          */
     391               7 :         hslot->tuple = heap_copytuple(hslot->tuple);
     392                 :     }
     393                 : 
     394         2108091 :     slot->tts_flags |= TTS_FLAG_SHOULDFREE;
     395                 : 
     396         2108091 :     MemoryContextSwitchTo(oldContext);
     397                 : }
     398                 : 
     399                 : static void
     400          140898 : tts_heap_copyslot(TupleTableSlot *dstslot, TupleTableSlot *srcslot)
     401                 : {
     402                 :     HeapTuple   tuple;
     403                 :     MemoryContext oldcontext;
     404                 : 
     405          140898 :     oldcontext = MemoryContextSwitchTo(dstslot->tts_mcxt);
     406          140898 :     tuple = ExecCopySlotHeapTuple(srcslot);
     407          140898 :     MemoryContextSwitchTo(oldcontext);
     408                 : 
     409          140898 :     ExecStoreHeapTuple(tuple, dstslot, true);
     410          140898 : }
     411                 : 
     412                 : static HeapTuple
     413         4215951 : tts_heap_get_heap_tuple(TupleTableSlot *slot)
     414                 : {
     415         4215951 :     HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;
     416                 : 
     417         4215951 :     Assert(!TTS_EMPTY(slot));
     418         4215951 :     if (!hslot->tuple)
     419 UBC           0 :         tts_heap_materialize(slot);
     420                 : 
     421 CBC     4215951 :     return hslot->tuple;
     422                 : }
     423                 : 
     424                 : static HeapTuple
     425           70343 : tts_heap_copy_heap_tuple(TupleTableSlot *slot)
     426                 : {
     427           70343 :     HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;
     428                 : 
     429           70343 :     Assert(!TTS_EMPTY(slot));
     430           70343 :     if (!hslot->tuple)
     431 UBC           0 :         tts_heap_materialize(slot);
     432                 : 
     433 CBC       70343 :     return heap_copytuple(hslot->tuple);
     434                 : }
     435                 : 
     436                 : static MinimalTuple
     437            2711 : tts_heap_copy_minimal_tuple(TupleTableSlot *slot)
     438                 : {
     439            2711 :     HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;
     440                 : 
     441            2711 :     if (!hslot->tuple)
     442              19 :         tts_heap_materialize(slot);
     443                 : 
     444            2711 :     return minimal_tuple_from_heap_tuple(hslot->tuple);
     445                 : }
     446                 : 
     447                 : static void
     448         4222627 : tts_heap_store_tuple(TupleTableSlot *slot, HeapTuple tuple, bool shouldFree)
     449                 : {
     450         4222627 :     HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;
     451                 : 
     452         4222627 :     tts_heap_clear(slot);
     453                 : 
     454         4222627 :     slot->tts_nvalid = 0;
     455         4222627 :     hslot->tuple = tuple;
     456         4222627 :     hslot->off = 0;
     457         4222627 :     slot->tts_flags &= ~(TTS_FLAG_EMPTY | TTS_FLAG_SHOULDFREE);
     458         4222627 :     slot->tts_tid = tuple->t_self;
     459                 : 
     460         4222627 :     if (shouldFree)
     461          201050 :         slot->tts_flags |= TTS_FLAG_SHOULDFREE;
     462         4222627 : }
     463                 : 
     464                 : 
     465                 : /*
     466                 :  * TupleTableSlotOps implementation for MinimalTupleTableSlot.
     467                 :  */
     468                 : 
     469                 : static void
     470          211882 : tts_minimal_init(TupleTableSlot *slot)
     471                 : {
     472          211882 :     MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot;
     473                 : 
     474                 :     /*
     475                 :      * Initialize the heap tuple pointer to access attributes of the minimal
     476                 :      * tuple contained in the slot as if its a heap tuple.
     477                 :      */
     478          211882 :     mslot->tuple = &mslot->minhdr;
     479          211882 : }
     480                 : 
     481                 : static void
     482          194488 : tts_minimal_release(TupleTableSlot *slot)
     483                 : {
     484          194488 : }
     485                 : 
     486                 : static void
     487        33384260 : tts_minimal_clear(TupleTableSlot *slot)
     488                 : {
     489        33384260 :     MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot;
     490                 : 
     491        33384260 :     if (TTS_SHOULDFREE(slot))
     492                 :     {
     493         7778642 :         heap_free_minimal_tuple(mslot->mintuple);
     494         7778642 :         slot->tts_flags &= ~TTS_FLAG_SHOULDFREE;
     495                 :     }
     496                 : 
     497        33384260 :     slot->tts_nvalid = 0;
     498        33384260 :     slot->tts_flags |= TTS_FLAG_EMPTY;
     499        33384260 :     ItemPointerSetInvalid(&slot->tts_tid);
     500        33384260 :     mslot->off = 0;
     501        33384260 :     mslot->mintuple = NULL;
     502        33384260 : }
     503                 : 
     504                 : static void
     505        22396059 : tts_minimal_getsomeattrs(TupleTableSlot *slot, int natts)
     506                 : {
     507        22396059 :     MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot;
     508                 : 
     509        22396059 :     Assert(!TTS_EMPTY(slot));
     510                 : 
     511        22396059 :     slot_deform_heap_tuple(slot, mslot->tuple, &mslot->off, natts);
     512        22396059 : }
     513                 : 
     514                 : static Datum
     515 UBC           0 : tts_minimal_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull)
     516                 : {
     517               0 :     Assert(!TTS_EMPTY(slot));
     518                 : 
     519               0 :     ereport(ERROR,
     520                 :             (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     521                 :              errmsg("cannot retrieve a system column in this context")));
     522                 : 
     523                 :     return 0;                   /* silence compiler warnings */
     524                 : }
     525                 : 
     526                 : static void
     527 CBC      785209 : tts_minimal_materialize(TupleTableSlot *slot)
     528                 : {
     529          785209 :     MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot;
     530                 :     MemoryContext oldContext;
     531                 : 
     532          785209 :     Assert(!TTS_EMPTY(slot));
     533                 : 
     534                 :     /* If slot has its tuple already materialized, nothing to do. */
     535          785209 :     if (TTS_SHOULDFREE(slot))
     536           72006 :         return;
     537                 : 
     538          713203 :     oldContext = MemoryContextSwitchTo(slot->tts_mcxt);
     539                 : 
     540                 :     /*
     541                 :      * Have to deform from scratch, otherwise tts_values[] entries could point
     542                 :      * into the non-materialized tuple (which might be gone when accessed).
     543                 :      */
     544          713203 :     slot->tts_nvalid = 0;
     545          713203 :     mslot->off = 0;
     546                 : 
     547          713203 :     if (!mslot->mintuple)
     548                 :     {
     549          657675 :         mslot->mintuple = heap_form_minimal_tuple(slot->tts_tupleDescriptor,
     550                 :                                                   slot->tts_values,
     551                 :                                                   slot->tts_isnull);
     552                 :     }
     553                 :     else
     554                 :     {
     555                 :         /*
     556                 :          * The minimal tuple contained in this slot is not allocated in the
     557                 :          * memory context of the given slot (else it would have
     558                 :          * TTS_FLAG_SHOULDFREE set).  Copy the minimal tuple into the given
     559                 :          * slot's memory context.
     560                 :          */
     561 GIC       55528 :         mslot->mintuple = heap_copy_minimal_tuple(mslot->mintuple);
     562 ECB             :     }
     563                 : 
     564 GIC      713203 :     slot->tts_flags |= TTS_FLAG_SHOULDFREE;
     565 ECB             : 
     566 GIC      713203 :     Assert(mslot->tuple == &mslot->minhdr);
     567 ECB             : 
     568 GIC      713203 :     mslot->minhdr.t_len = mslot->mintuple->t_len + MINIMAL_TUPLE_OFFSET;
     569 CBC      713203 :     mslot->minhdr.t_data = (HeapTupleHeader) ((char *) mslot->mintuple - MINIMAL_TUPLE_OFFSET);
     570 ECB             : 
     571 GIC      713203 :     MemoryContextSwitchTo(oldContext);
     572 ECB             : }
     573                 : 
     574                 : static void
     575 GIC      531821 : tts_minimal_copyslot(TupleTableSlot *dstslot, TupleTableSlot *srcslot)
     576 ECB             : {
     577                 :     MemoryContext oldcontext;
     578                 :     MinimalTuple mintuple;
     579                 : 
     580 GIC      531821 :     oldcontext = MemoryContextSwitchTo(dstslot->tts_mcxt);
     581 CBC      531821 :     mintuple = ExecCopySlotMinimalTuple(srcslot);
     582          531821 :     MemoryContextSwitchTo(oldcontext);
     583 ECB             : 
     584 GIC      531821 :     ExecStoreMinimalTuple(mintuple, dstslot, true);
     585 CBC      531821 : }
     586 ECB             : 
     587                 : static MinimalTuple
     588 GIC     2447307 : tts_minimal_get_minimal_tuple(TupleTableSlot *slot)
     589 ECB             : {
     590 GIC     2447307 :     MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot;
     591 ECB             : 
     592 GIC     2447307 :     if (!mslot->mintuple)
     593 LBC           0 :         tts_minimal_materialize(slot);
     594 EUB             : 
     595 GIC     2447307 :     return mslot->mintuple;
     596 ECB             : }
     597                 : 
     598                 : static HeapTuple
     599 GIC      495682 : tts_minimal_copy_heap_tuple(TupleTableSlot *slot)
     600 ECB             : {
     601 GIC      495682 :     MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot;
     602 ECB             : 
     603 GIC      495682 :     if (!mslot->mintuple)
     604 CBC         734 :         tts_minimal_materialize(slot);
     605 ECB             : 
     606 GIC      495682 :     return heap_tuple_from_minimal_tuple(mslot->mintuple);
     607 ECB             : }
     608                 : 
     609                 : static MinimalTuple
     610 GIC     1322209 : tts_minimal_copy_minimal_tuple(TupleTableSlot *slot)
     611 ECB             : {
     612 GIC     1322209 :     MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot;
     613 ECB             : 
     614 GIC     1322209 :     if (!mslot->mintuple)
     615 CBC      598596 :         tts_minimal_materialize(slot);
     616 ECB             : 
     617 GIC     1322209 :     return heap_copy_minimal_tuple(mslot->mintuple);
     618 ECB             : }
     619                 : 
     620                 : static void
     621 GIC    27639388 : tts_minimal_store_tuple(TupleTableSlot *slot, MinimalTuple mtup, bool shouldFree)
     622 ECB             : {
     623 GIC    27639388 :     MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot;
     624 ECB             : 
     625 GIC    27639388 :     tts_minimal_clear(slot);
     626 ECB             : 
     627 GIC    27639388 :     Assert(!TTS_SHOULDFREE(slot));
     628 CBC    27639388 :     Assert(TTS_EMPTY(slot));
     629 ECB             : 
     630 GIC    27639388 :     slot->tts_flags &= ~TTS_FLAG_EMPTY;
     631 CBC    27639388 :     slot->tts_nvalid = 0;
     632        27639388 :     mslot->off = 0;
     633 ECB             : 
     634 GIC    27639388 :     mslot->mintuple = mtup;
     635 CBC    27639388 :     Assert(mslot->tuple == &mslot->minhdr);
     636        27639388 :     mslot->minhdr.t_len = mtup->t_len + MINIMAL_TUPLE_OFFSET;
     637        27639388 :     mslot->minhdr.t_data = (HeapTupleHeader) ((char *) mtup - MINIMAL_TUPLE_OFFSET);
     638 ECB             :     /* no need to set t_self or t_tableOid since we won't allow access */
     639                 : 
     640 GIC    27639388 :     if (shouldFree)
     641 CBC     7065907 :         slot->tts_flags |= TTS_FLAG_SHOULDFREE;
     642        27639388 : }
     643 ECB             : 
     644                 : 
     645                 : /*
     646                 :  * TupleTableSlotOps implementation for BufferHeapTupleTableSlot.
     647                 :  */
     648                 : 
     649                 : static void
     650 GIC    15861968 : tts_buffer_heap_init(TupleTableSlot *slot)
     651 ECB             : {
     652 GIC    15861968 : }
     653 ECB             : 
     654                 : static void
     655 GIC    15857121 : tts_buffer_heap_release(TupleTableSlot *slot)
     656 ECB             : {
     657 GIC    15857121 : }
     658 ECB             : 
     659                 : static void
     660 GIC    27431568 : tts_buffer_heap_clear(TupleTableSlot *slot)
     661 ECB             : {
     662 GIC    27431568 :     BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;
     663 ECB             : 
     664                 :     /*
     665                 :      * Free the memory for heap tuple if allowed. A tuple coming from buffer
     666                 :      * can never be freed. But we may have materialized a tuple from buffer.
     667                 :      * Such a tuple can be freed.
     668                 :      */
     669 GIC    27431568 :     if (TTS_SHOULDFREE(slot))
     670 ECB             :     {
     671                 :         /* We should have unpinned the buffer while materializing the tuple. */
     672 GIC     7105962 :         Assert(!BufferIsValid(bslot->buffer));
     673 ECB             : 
     674 GIC     7105962 :         heap_freetuple(bslot->base.tuple);
     675 CBC     7105962 :         slot->tts_flags &= ~TTS_FLAG_SHOULDFREE;
     676 ECB             :     }
     677                 : 
     678 GIC    27431568 :     if (BufferIsValid(bslot->buffer))
     679 CBC     6951583 :         ReleaseBuffer(bslot->buffer);
     680 ECB             : 
     681 GIC    27431568 :     slot->tts_nvalid = 0;
     682 CBC    27431568 :     slot->tts_flags |= TTS_FLAG_EMPTY;
     683        27431568 :     ItemPointerSetInvalid(&slot->tts_tid);
     684        27431568 :     bslot->base.tuple = NULL;
     685        27431568 :     bslot->base.off = 0;
     686        27431568 :     bslot->buffer = InvalidBuffer;
     687        27431568 : }
     688 ECB             : 
     689                 : static void
     690 GIC    71856093 : tts_buffer_heap_getsomeattrs(TupleTableSlot *slot, int natts)
     691 ECB             : {
     692 GIC    71856093 :     BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;
     693 ECB             : 
     694 GIC    71856093 :     Assert(!TTS_EMPTY(slot));
     695 ECB             : 
     696 GIC    71856093 :     slot_deform_heap_tuple(slot, bslot->base.tuple, &bslot->base.off, natts);
     697 CBC    71856093 : }
     698 ECB             : 
     699                 : static Datum
     700 GIC         630 : tts_buffer_heap_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull)
     701 ECB             : {
     702 GIC         630 :     BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;
     703 ECB             : 
     704 GIC         630 :     Assert(!TTS_EMPTY(slot));
     705 ECB             : 
     706                 :     /*
     707                 :      * In some code paths it's possible to get here with a non-materialized
     708                 :      * slot, in which case we can't retrieve system columns.
     709                 :      */
     710 GIC         630 :     if (!bslot->base.tuple)
     711 LBC           0 :         ereport(ERROR,
     712 EUB             :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     713                 :                  errmsg("cannot retrieve a system column in this context")));
     714                 : 
     715 GIC         630 :     return heap_getsysattr(bslot->base.tuple, attnum,
     716 ECB             :                            slot->tts_tupleDescriptor, isnull);
     717                 : }
     718                 : 
     719                 : static void
     720 GIC    14171478 : tts_buffer_heap_materialize(TupleTableSlot *slot)
     721 ECB             : {
     722 GIC    14171478 :     BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;
     723 ECB             :     MemoryContext oldContext;
     724                 : 
     725 GIC    14171478 :     Assert(!TTS_EMPTY(slot));
     726 ECB             : 
     727                 :     /* If slot has its tuple already materialized, nothing to do. */
     728 GIC    14171478 :     if (TTS_SHOULDFREE(slot))
     729 CBC    12581619 :         return;
     730 ECB             : 
     731 GIC     1589859 :     oldContext = MemoryContextSwitchTo(slot->tts_mcxt);
     732 ECB             : 
     733                 :     /*
     734                 :      * Have to deform from scratch, otherwise tts_values[] entries could point
     735                 :      * into the non-materialized tuple (which might be gone when accessed).
     736                 :      */
     737 GIC     1589859 :     bslot->base.off = 0;
     738 CBC     1589859 :     slot->tts_nvalid = 0;
     739 ECB             : 
     740 GIC     1589859 :     if (!bslot->base.tuple)
     741 ECB             :     {
     742                 :         /*
     743                 :          * Normally BufferHeapTupleTableSlot should have a tuple + buffer
     744                 :          * associated with it, unless it's materialized (which would've
     745                 :          * returned above). But when it's useful to allow storing virtual
     746                 :          * tuples in a buffer slot, which then also needs to be
     747                 :          * materializable.
     748                 :          */
     749 GIC     1393945 :         bslot->base.tuple = heap_form_tuple(slot->tts_tupleDescriptor,
     750 ECB             :                                             slot->tts_values,
     751                 :                                             slot->tts_isnull);
     752                 :     }
     753                 :     else
     754                 :     {
     755 GIC      195914 :         bslot->base.tuple = heap_copytuple(bslot->base.tuple);
     756 ECB             : 
     757                 :         /*
     758                 :          * A heap tuple stored in a BufferHeapTupleTableSlot should have a
     759                 :          * buffer associated with it, unless it's materialized or virtual.
     760                 :          */
     761 GIC      195914 :         if (likely(BufferIsValid(bslot->buffer)))
     762 CBC      195914 :             ReleaseBuffer(bslot->buffer);
     763          195914 :         bslot->buffer = InvalidBuffer;
     764 ECB             :     }
     765                 : 
     766                 :     /*
     767                 :      * We don't set TTS_FLAG_SHOULDFREE until after releasing the buffer, if
     768                 :      * any.  This avoids having a transient state that would fall foul of our
     769                 :      * assertions that a slot with TTS_FLAG_SHOULDFREE doesn't own a buffer.
     770                 :      * In the unlikely event that ReleaseBuffer() above errors out, we'd
     771                 :      * effectively leak the copied tuple, but that seems fairly harmless.
     772                 :      */
     773 GIC     1589859 :     slot->tts_flags |= TTS_FLAG_SHOULDFREE;
     774 ECB             : 
     775 GIC     1589859 :     MemoryContextSwitchTo(oldContext);
     776 ECB             : }
     777                 : 
     778                 : static void
     779 GIC     5682685 : tts_buffer_heap_copyslot(TupleTableSlot *dstslot, TupleTableSlot *srcslot)
     780 ECB             : {
     781 GIC     5682685 :     BufferHeapTupleTableSlot *bsrcslot = (BufferHeapTupleTableSlot *) srcslot;
     782 CBC     5682685 :     BufferHeapTupleTableSlot *bdstslot = (BufferHeapTupleTableSlot *) dstslot;
     783 ECB             : 
     784                 :     /*
     785                 :      * If the source slot is of a different kind, or is a buffer slot that has
     786                 :      * been materialized / is virtual, make a new copy of the tuple. Otherwise
     787                 :      * make a new reference to the in-buffer tuple.
     788                 :      */
     789 GIC     5682685 :     if (dstslot->tts_ops != srcslot->tts_ops ||
     790 CBC        4377 :         TTS_SHOULDFREE(srcslot) ||
     791            4375 :         !bsrcslot->base.tuple)
     792         5678310 :     {
     793 ECB             :         MemoryContext oldContext;
     794                 : 
     795 GIC     5678310 :         ExecClearTuple(dstslot);
     796 CBC     5678310 :         dstslot->tts_flags &= ~TTS_FLAG_EMPTY;
     797         5678310 :         oldContext = MemoryContextSwitchTo(dstslot->tts_mcxt);
     798         5678310 :         bdstslot->base.tuple = ExecCopySlotHeapTuple(srcslot);
     799         5678310 :         dstslot->tts_flags |= TTS_FLAG_SHOULDFREE;
     800         5678310 :         MemoryContextSwitchTo(oldContext);
     801 ECB             :     }
     802                 :     else
     803                 :     {
     804 GIC        4375 :         Assert(BufferIsValid(bsrcslot->buffer));
     805 ECB             : 
     806 GIC        4375 :         tts_buffer_heap_store_tuple(dstslot, bsrcslot->base.tuple,
     807 ECB             :                                     bsrcslot->buffer, false);
     808                 : 
     809                 :         /*
     810                 :          * The HeapTupleData portion of the source tuple might be shorter
     811                 :          * lived than the destination slot. Therefore copy the HeapTuple into
     812                 :          * our slot's tupdata, which is guaranteed to live long enough (but
     813                 :          * will still point into the buffer).
     814                 :          */
     815 GIC        4375 :         memcpy(&bdstslot->base.tupdata, bdstslot->base.tuple, sizeof(HeapTupleData));
     816 CBC        4375 :         bdstslot->base.tuple = &bdstslot->base.tupdata;
     817 ECB             :     }
     818 GIC     5682685 : }
     819 ECB             : 
     820                 : static HeapTuple
     821 GIC    21901000 : tts_buffer_heap_get_heap_tuple(TupleTableSlot *slot)
     822 ECB             : {
     823 GIC    21901000 :     BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;
     824 ECB             : 
     825 GIC    21901000 :     Assert(!TTS_EMPTY(slot));
     826 ECB             : 
     827 GIC    21901000 :     if (!bslot->base.tuple)
     828 LBC           0 :         tts_buffer_heap_materialize(slot);
     829 EUB             : 
     830 GIC    21901000 :     return bslot->base.tuple;
     831 ECB             : }
     832                 : 
     833                 : static HeapTuple
     834 GIC    10126320 : tts_buffer_heap_copy_heap_tuple(TupleTableSlot *slot)
     835 ECB             : {
     836 GIC    10126320 :     BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;
     837 ECB             : 
     838 GIC    10126320 :     Assert(!TTS_EMPTY(slot));
     839 ECB             : 
     840 GIC    10126320 :     if (!bslot->base.tuple)
     841 LBC           0 :         tts_buffer_heap_materialize(slot);
     842 EUB             : 
     843 GIC    10126320 :     return heap_copytuple(bslot->base.tuple);
     844 ECB             : }
     845                 : 
     846                 : static MinimalTuple
     847 GIC     1264956 : tts_buffer_heap_copy_minimal_tuple(TupleTableSlot *slot)
     848 ECB             : {
     849 GIC     1264956 :     BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;
     850 ECB             : 
     851 GIC     1264956 :     Assert(!TTS_EMPTY(slot));
     852 ECB             : 
     853 GIC     1264956 :     if (!bslot->base.tuple)
     854 LBC           0 :         tts_buffer_heap_materialize(slot);
     855 EUB             : 
     856 GIC     1264956 :     return minimal_tuple_from_heap_tuple(bslot->base.tuple);
     857 ECB             : }
     858                 : 
     859                 : static inline void
     860 GIC    84347418 : tts_buffer_heap_store_tuple(TupleTableSlot *slot, HeapTuple tuple,
     861 ECB             :                             Buffer buffer, bool transfer_pin)
     862                 : {
     863 GIC    84347418 :     BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;
     864 ECB             : 
     865 GIC    84347418 :     if (TTS_SHOULDFREE(slot))
     866 ECB             :     {
     867                 :         /* materialized slot shouldn't have a buffer to release */
     868 GIC      196748 :         Assert(!BufferIsValid(bslot->buffer));
     869 ECB             : 
     870 GIC      196748 :         heap_freetuple(bslot->base.tuple);
     871 CBC      196748 :         slot->tts_flags &= ~TTS_FLAG_SHOULDFREE;
     872 ECB             :     }
     873                 : 
     874 GIC    84347418 :     slot->tts_flags &= ~TTS_FLAG_EMPTY;
     875 CBC    84347418 :     slot->tts_nvalid = 0;
     876        84347418 :     bslot->base.tuple = tuple;
     877        84347418 :     bslot->base.off = 0;
     878        84347418 :     slot->tts_tid = tuple->t_self;
     879 ECB             : 
     880                 :     /*
     881                 :      * If tuple is on a disk page, keep the page pinned as long as we hold a
     882                 :      * pointer into it.  We assume the caller already has such a pin.  If
     883                 :      * transfer_pin is true, we'll transfer that pin to this slot, if not
     884                 :      * we'll pin it again ourselves.
     885                 :      *
     886                 :      * This is coded to optimize the case where the slot previously held a
     887                 :      * tuple on the same disk page: in that case releasing and re-acquiring
     888                 :      * the pin is a waste of cycles.  This is a common situation during
     889                 :      * seqscans, so it's worth troubling over.
     890                 :      */
     891 GIC    84347418 :     if (bslot->buffer != buffer)
     892 ECB             :     {
     893 GIC    10138239 :         if (BufferIsValid(bslot->buffer))
     894 CBC     2988509 :             ReleaseBuffer(bslot->buffer);
     895 ECB             : 
     896 GIC    10138239 :         bslot->buffer = buffer;
     897 ECB             : 
     898 GIC    10138239 :         if (!transfer_pin && BufferIsValid(buffer))
     899 CBC    10036077 :             IncrBufferRefCount(buffer);
     900 ECB             :     }
     901 GIC    74209179 :     else if (transfer_pin && BufferIsValid(buffer))
     902 ECB             :     {
     903                 :         /*
     904                 :          * In transfer_pin mode the caller won't know about the same-page
     905                 :          * optimization, so we gotta release its pin.
     906                 :          */
     907 GIC      176142 :         ReleaseBuffer(buffer);
     908 ECB             :     }
     909 GIC    84347418 : }
     910 ECB             : 
     911                 : /*
     912                 :  * slot_deform_heap_tuple
     913                 :  *      Given a TupleTableSlot, extract data from the slot's physical tuple
     914                 :  *      into its Datum/isnull arrays.  Data is extracted up through the
     915                 :  *      natts'th column (caller must ensure this is a legal column number).
     916                 :  *
     917                 :  *      This is essentially an incremental version of heap_deform_tuple:
     918                 :  *      on each call we extract attributes up to the one needed, without
     919                 :  *      re-computing information about previously extracted attributes.
     920                 :  *      slot->tts_nvalid is the number of attributes already extracted.
     921                 :  *
     922                 :  * This is marked as always inline, so the different offp for different types
     923                 :  * of slots gets optimized away.
     924                 :  */
     925                 : static pg_attribute_always_inline void
     926 GIC   105928959 : slot_deform_heap_tuple(TupleTableSlot *slot, HeapTuple tuple, uint32 *offp,
     927 ECB             :                        int natts)
     928                 : {
     929 GIC   105928959 :     TupleDesc   tupleDesc = slot->tts_tupleDescriptor;
     930 CBC   105928959 :     Datum      *values = slot->tts_values;
     931       105928959 :     bool       *isnull = slot->tts_isnull;
     932       105928959 :     HeapTupleHeader tup = tuple->t_data;
     933       105928959 :     bool        hasnulls = HeapTupleHasNulls(tuple);
     934 ECB             :     int         attnum;
     935                 :     char       *tp;             /* ptr to tuple data */
     936                 :     uint32      off;            /* offset in tuple data */
     937 GIC   105928959 :     bits8      *bp = tup->t_bits;    /* ptr to null bitmap in tuple */
     938 ECB             :     bool        slow;           /* can we use/set attcacheoff? */
     939                 : 
     940                 :     /* We can only fetch as many attributes as the tuple has. */
     941 GIC   105928959 :     natts = Min(HeapTupleHeaderGetNatts(tuple->t_data), natts);
     942 ECB             : 
     943                 :     /*
     944                 :      * Check whether the first call for this tuple, and initialize or restore
     945                 :      * loop state.
     946                 :      */
     947 GIC   105928959 :     attnum = slot->tts_nvalid;
     948 CBC   105928959 :     if (attnum == 0)
     949 ECB             :     {
     950                 :         /* Start from the first attribute */
     951 GIC    81521166 :         off = 0;
     952 CBC    81521166 :         slow = false;
     953 ECB             :     }
     954                 :     else
     955                 :     {
     956                 :         /* Restore state from previous execution */
     957 GIC    24407793 :         off = *offp;
     958 CBC    24407793 :         slow = TTS_SLOW(slot);
     959 ECB             :     }
     960                 : 
     961 GIC   105928959 :     tp = (char *) tup + tup->t_hoff;
     962 ECB             : 
     963 GIC   463264645 :     for (; attnum < natts; attnum++)
     964 ECB             :     {
     965 GIC   357335686 :         Form_pg_attribute thisatt = TupleDescAttr(tupleDesc, attnum);
     966 ECB             : 
     967 GIC   357335686 :         if (hasnulls && att_isnull(attnum, bp))
     968 ECB             :         {
     969 GIC    23036629 :             values[attnum] = (Datum) 0;
     970 CBC    23036629 :             isnull[attnum] = true;
     971        23036629 :             slow = true;        /* can't use attcacheoff anymore */
     972        23036629 :             continue;
     973 ECB             :         }
     974                 : 
     975 GIC   334299057 :         isnull[attnum] = false;
     976 ECB             : 
     977 GIC   334299057 :         if (!slow && thisatt->attcacheoff >= 0)
     978 CBC   316344358 :             off = thisatt->attcacheoff;
     979        17954699 :         else if (thisatt->attlen == -1)
     980 ECB             :         {
     981                 :             /*
     982                 :              * We can only cache the offset for a varlena attribute if the
     983                 :              * offset is already suitably aligned, so that there would be no
     984                 :              * pad bytes in any case: then the offset will be valid for either
     985                 :              * an aligned or unaligned value.
     986                 :              */
     987 GIC     7463437 :             if (!slow &&
     988 CBC      413955 :                 off == att_align_nominal(off, thisatt->attalign))
     989           33122 :                 thisatt->attcacheoff = off;
     990 ECB             :             else
     991                 :             {
     992 GIC     7016360 :                 off = att_align_pointer(off, thisatt->attalign, -1,
     993 ECB             :                                         tp + off);
     994 GIC     7016360 :                 slow = true;
     995 ECB             :             }
     996                 :         }
     997                 :         else
     998                 :         {
     999                 :             /* not varlena, so safe to use att_align_nominal */
    1000 GIC    10905217 :             off = att_align_nominal(off, thisatt->attalign);
    1001 ECB             : 
    1002 GIC    10905217 :             if (!slow)
    1003 CBC      263483 :                 thisatt->attcacheoff = off;
    1004 ECB             :         }
    1005                 : 
    1006 GIC   334299057 :         values[attnum] = fetchatt(thisatt, tp + off);
    1007 ECB             : 
    1008 GIC   334299057 :         off = att_addlength_pointer(off, thisatt->attlen, tp + off);
    1009 ECB             : 
    1010 GIC   334299057 :         if (thisatt->attlen <= 0)
    1011 CBC    24873783 :             slow = true;        /* can't use attcacheoff anymore */
    1012 ECB             :     }
    1013                 : 
    1014                 :     /*
    1015                 :      * Save state for next execution
    1016                 :      */
    1017 GIC   105928959 :     slot->tts_nvalid = attnum;
    1018 CBC   105928959 :     *offp = off;
    1019       105928959 :     if (slow)
    1020        21414853 :         slot->tts_flags |= TTS_FLAG_SLOW;
    1021 ECB             :     else
    1022 GIC    84514106 :         slot->tts_flags &= ~TTS_FLAG_SLOW;
    1023 CBC   105928959 : }
    1024 ECB             : 
    1025                 : 
    1026                 : const TupleTableSlotOps TTSOpsVirtual = {
    1027                 :     .base_slot_size = sizeof(VirtualTupleTableSlot),
    1028                 :     .init = tts_virtual_init,
    1029                 :     .release = tts_virtual_release,
    1030                 :     .clear = tts_virtual_clear,
    1031                 :     .getsomeattrs = tts_virtual_getsomeattrs,
    1032                 :     .getsysattr = tts_virtual_getsysattr,
    1033                 :     .materialize = tts_virtual_materialize,
    1034                 :     .copyslot = tts_virtual_copyslot,
    1035                 : 
    1036                 :     /*
    1037                 :      * A virtual tuple table slot can not "own" a heap tuple or a minimal
    1038                 :      * tuple.
    1039                 :      */
    1040                 :     .get_heap_tuple = NULL,
    1041                 :     .get_minimal_tuple = NULL,
    1042                 :     .copy_heap_tuple = tts_virtual_copy_heap_tuple,
    1043                 :     .copy_minimal_tuple = tts_virtual_copy_minimal_tuple
    1044                 : };
    1045                 : 
    1046                 : const TupleTableSlotOps TTSOpsHeapTuple = {
    1047                 :     .base_slot_size = sizeof(HeapTupleTableSlot),
    1048                 :     .init = tts_heap_init,
    1049                 :     .release = tts_heap_release,
    1050                 :     .clear = tts_heap_clear,
    1051                 :     .getsomeattrs = tts_heap_getsomeattrs,
    1052                 :     .getsysattr = tts_heap_getsysattr,
    1053                 :     .materialize = tts_heap_materialize,
    1054                 :     .copyslot = tts_heap_copyslot,
    1055                 :     .get_heap_tuple = tts_heap_get_heap_tuple,
    1056                 : 
    1057                 :     /* A heap tuple table slot can not "own" a minimal tuple. */
    1058                 :     .get_minimal_tuple = NULL,
    1059                 :     .copy_heap_tuple = tts_heap_copy_heap_tuple,
    1060                 :     .copy_minimal_tuple = tts_heap_copy_minimal_tuple
    1061                 : };
    1062                 : 
    1063                 : const TupleTableSlotOps TTSOpsMinimalTuple = {
    1064                 :     .base_slot_size = sizeof(MinimalTupleTableSlot),
    1065                 :     .init = tts_minimal_init,
    1066                 :     .release = tts_minimal_release,
    1067                 :     .clear = tts_minimal_clear,
    1068                 :     .getsomeattrs = tts_minimal_getsomeattrs,
    1069                 :     .getsysattr = tts_minimal_getsysattr,
    1070                 :     .materialize = tts_minimal_materialize,
    1071                 :     .copyslot = tts_minimal_copyslot,
    1072                 : 
    1073                 :     /* A minimal tuple table slot can not "own" a heap tuple. */
    1074                 :     .get_heap_tuple = NULL,
    1075                 :     .get_minimal_tuple = tts_minimal_get_minimal_tuple,
    1076                 :     .copy_heap_tuple = tts_minimal_copy_heap_tuple,
    1077                 :     .copy_minimal_tuple = tts_minimal_copy_minimal_tuple
    1078                 : };
    1079                 : 
    1080                 : const TupleTableSlotOps TTSOpsBufferHeapTuple = {
    1081                 :     .base_slot_size = sizeof(BufferHeapTupleTableSlot),
    1082                 :     .init = tts_buffer_heap_init,
    1083                 :     .release = tts_buffer_heap_release,
    1084                 :     .clear = tts_buffer_heap_clear,
    1085                 :     .getsomeattrs = tts_buffer_heap_getsomeattrs,
    1086                 :     .getsysattr = tts_buffer_heap_getsysattr,
    1087                 :     .materialize = tts_buffer_heap_materialize,
    1088                 :     .copyslot = tts_buffer_heap_copyslot,
    1089                 :     .get_heap_tuple = tts_buffer_heap_get_heap_tuple,
    1090                 : 
    1091                 :     /* A buffer heap tuple table slot can not "own" a minimal tuple. */
    1092                 :     .get_minimal_tuple = NULL,
    1093                 :     .copy_heap_tuple = tts_buffer_heap_copy_heap_tuple,
    1094                 :     .copy_minimal_tuple = tts_buffer_heap_copy_minimal_tuple
    1095                 : };
    1096                 : 
    1097                 : 
    1098                 : /* ----------------------------------------------------------------
    1099                 :  *                tuple table create/delete functions
    1100                 :  * ----------------------------------------------------------------
    1101                 :  */
    1102                 : 
    1103                 : /* --------------------------------
    1104                 :  *      MakeTupleTableSlot
    1105                 :  *
    1106                 :  *      Basic routine to make an empty TupleTableSlot of given
    1107                 :  *      TupleTableSlotType. If tupleDesc is specified the slot's descriptor is
    1108                 :  *      fixed for its lifetime, gaining some efficiency. If that's
    1109                 :  *      undesirable, pass NULL.
    1110                 :  * --------------------------------
    1111                 :  */
    1112                 : TupleTableSlot *
    1113 GIC    21902338 : MakeTupleTableSlot(TupleDesc tupleDesc,
    1114 ECB             :                    const TupleTableSlotOps *tts_ops)
    1115                 : {
    1116                 :     Size        basesz,
    1117                 :                 allocsz;
    1118                 :     TupleTableSlot *slot;
    1119                 : 
    1120 GIC    21902338 :     basesz = tts_ops->base_slot_size;
    1121 ECB             : 
    1122                 :     /*
    1123                 :      * When a fixed descriptor is specified, we can reduce overhead by
    1124                 :      * allocating the entire slot in one go.
    1125                 :      */
    1126 GIC    21902338 :     if (tupleDesc)
    1127 CBC    21883201 :         allocsz = MAXALIGN(basesz) +
    1128        21883201 :             MAXALIGN(tupleDesc->natts * sizeof(Datum)) +
    1129        21883201 :             MAXALIGN(tupleDesc->natts * sizeof(bool));
    1130 ECB             :     else
    1131 GIC       19137 :         allocsz = basesz;
    1132 ECB             : 
    1133 GIC    21902338 :     slot = palloc0(allocsz);
    1134 ECB             :     /* const for optimization purposes, OK to modify at allocation time */
    1135 GIC    21902338 :     *((const TupleTableSlotOps **) &slot->tts_ops) = tts_ops;
    1136 CBC    21902338 :     slot->type = T_TupleTableSlot;
    1137        21902338 :     slot->tts_flags |= TTS_FLAG_EMPTY;
    1138        21902338 :     if (tupleDesc != NULL)
    1139        21883201 :         slot->tts_flags |= TTS_FLAG_FIXED;
    1140        21902338 :     slot->tts_tupleDescriptor = tupleDesc;
    1141        21902338 :     slot->tts_mcxt = CurrentMemoryContext;
    1142        21902338 :     slot->tts_nvalid = 0;
    1143 ECB             : 
    1144 GIC    21902338 :     if (tupleDesc != NULL)
    1145 ECB             :     {
    1146 GIC    21883201 :         slot->tts_values = (Datum *)
    1147 ECB             :             (((char *) slot)
    1148 GIC    21883201 :              + MAXALIGN(basesz));
    1149 CBC    21883201 :         slot->tts_isnull = (bool *)
    1150 ECB             :             (((char *) slot)
    1151 GIC    21883201 :              + MAXALIGN(basesz)
    1152 CBC    21883201 :              + MAXALIGN(tupleDesc->natts * sizeof(Datum)));
    1153 ECB             : 
    1154 GIC    21883201 :         PinTupleDesc(tupleDesc);
    1155 ECB             :     }
    1156                 : 
    1157                 :     /*
    1158                 :      * And allow slot type specific initialization.
    1159                 :      */
    1160 GIC    21902338 :     slot->tts_ops->init(slot);
    1161 ECB             : 
    1162 GIC    21902338 :     return slot;
    1163 ECB             : }
    1164                 : 
    1165                 : /* --------------------------------
    1166                 :  *      ExecAllocTableSlot
    1167                 :  *
    1168                 :  *      Create a tuple table slot within a tuple table (which is just a List).
    1169                 :  * --------------------------------
    1170                 :  */
    1171                 : TupleTableSlot *
    1172 GIC      862306 : ExecAllocTableSlot(List **tupleTable, TupleDesc desc,
    1173 ECB             :                    const TupleTableSlotOps *tts_ops)
    1174                 : {
    1175 GIC      862306 :     TupleTableSlot *slot = MakeTupleTableSlot(desc, tts_ops);
    1176 ECB             : 
    1177 GIC      862306 :     *tupleTable = lappend(*tupleTable, slot);
    1178 ECB             : 
    1179 GIC      862306 :     return slot;
    1180 ECB             : }
    1181                 : 
    1182                 : /* --------------------------------
    1183                 :  *      ExecResetTupleTable
    1184                 :  *
    1185                 :  *      This releases any resources (buffer pins, tupdesc refcounts)
    1186                 :  *      held by the tuple table, and optionally releases the memory
    1187                 :  *      occupied by the tuple table data structure.
    1188                 :  *      It is expected that this routine be called by ExecEndPlan().
    1189                 :  * --------------------------------
    1190                 :  */
    1191                 : void
    1192 GIC      405257 : ExecResetTupleTable(List *tupleTable,   /* tuple table */
    1193 ECB             :                     bool shouldFree)    /* true if we should free memory */
    1194                 : {
    1195                 :     ListCell   *lc;
    1196                 : 
    1197 GIC     1391558 :     foreach(lc, tupleTable)
    1198 ECB             :     {
    1199 GIC      986301 :         TupleTableSlot *slot = lfirst_node(TupleTableSlot, lc);
    1200 ECB             : 
    1201                 :         /* Always release resources and reset the slot to empty */
    1202 GIC      986301 :         ExecClearTuple(slot);
    1203 CBC      986301 :         slot->tts_ops->release(slot);
    1204          986301 :         if (slot->tts_tupleDescriptor)
    1205 ECB             :         {
    1206 GIC      986274 :             ReleaseTupleDesc(slot->tts_tupleDescriptor);
    1207 CBC      986274 :             slot->tts_tupleDescriptor = NULL;
    1208 ECB             :         }
    1209                 : 
    1210                 :         /* If shouldFree, release memory occupied by the slot itself */
    1211 GIC      986301 :         if (shouldFree)
    1212 ECB             :         {
    1213 GIC        2581 :             if (!TTS_FIXED(slot))
    1214 ECB             :             {
    1215 UIC           0 :                 if (slot->tts_values)
    1216 UBC           0 :                     pfree(slot->tts_values);
    1217               0 :                 if (slot->tts_isnull)
    1218               0 :                     pfree(slot->tts_isnull);
    1219 EUB             :             }
    1220 GIC        2581 :             pfree(slot);
    1221 ECB             :         }
    1222                 :     }
    1223                 : 
    1224                 :     /* If shouldFree, release the list structure */
    1225 GIC      405257 :     if (shouldFree)
    1226 CBC        2550 :         list_free(tupleTable);
    1227          405257 : }
    1228 ECB             : 
    1229                 : /* --------------------------------
    1230                 :  *      MakeSingleTupleTableSlot
    1231                 :  *
    1232                 :  *      This is a convenience routine for operations that need a standalone
    1233                 :  *      TupleTableSlot not gotten from the main executor tuple table.  It makes
    1234                 :  *      a single slot of given TupleTableSlotType and initializes it to use the
    1235                 :  *      given tuple descriptor.
    1236                 :  * --------------------------------
    1237                 :  */
    1238                 : TupleTableSlot *
    1239 GIC    21039960 : MakeSingleTupleTableSlot(TupleDesc tupdesc,
    1240 ECB             :                          const TupleTableSlotOps *tts_ops)
    1241                 : {
    1242 GIC    21039960 :     TupleTableSlot *slot = MakeTupleTableSlot(tupdesc, tts_ops);
    1243 ECB             : 
    1244 GIC    21039960 :     return slot;
    1245 ECB             : }
    1246                 : 
    1247                 : /* --------------------------------
    1248                 :  *      ExecDropSingleTupleTableSlot
    1249                 :  *
    1250                 :  *      Release a TupleTableSlot made with MakeSingleTupleTableSlot.
    1251                 :  *      DON'T use this on a slot that's part of a tuple table list!
    1252                 :  * --------------------------------
    1253                 :  */
    1254                 : void
    1255 GIC    20881990 : ExecDropSingleTupleTableSlot(TupleTableSlot *slot)
    1256 ECB             : {
    1257                 :     /* This should match ExecResetTupleTable's processing of one slot */
    1258 GIC    20881990 :     Assert(IsA(slot, TupleTableSlot));
    1259 CBC    20881990 :     ExecClearTuple(slot);
    1260        20881990 :     slot->tts_ops->release(slot);
    1261        20881990 :     if (slot->tts_tupleDescriptor)
    1262        20881990 :         ReleaseTupleDesc(slot->tts_tupleDescriptor);
    1263        20881990 :     if (!TTS_FIXED(slot))
    1264 ECB             :     {
    1265 UIC           0 :         if (slot->tts_values)
    1266 UBC           0 :             pfree(slot->tts_values);
    1267               0 :         if (slot->tts_isnull)
    1268               0 :             pfree(slot->tts_isnull);
    1269 EUB             :     }
    1270 GIC    20881990 :     pfree(slot);
    1271 CBC    20881990 : }
    1272 ECB             : 
    1273                 : 
    1274                 : /* ----------------------------------------------------------------
    1275                 :  *                tuple table slot accessor functions
    1276                 :  * ----------------------------------------------------------------
    1277                 :  */
    1278                 : 
    1279                 : /* --------------------------------
    1280                 :  *      ExecSetSlotDescriptor
    1281                 :  *
    1282                 :  *      This function is used to set the tuple descriptor associated
    1283                 :  *      with the slot's tuple.  The passed descriptor must have lifespan
    1284                 :  *      at least equal to the slot's.  If it is a reference-counted descriptor
    1285                 :  *      then the reference count is incremented for as long as the slot holds
    1286                 :  *      a reference.
    1287                 :  * --------------------------------
    1288                 :  */
    1289                 : void
    1290 GIC       19110 : ExecSetSlotDescriptor(TupleTableSlot *slot, /* slot to change */
    1291 ECB             :                       TupleDesc tupdesc)    /* new tuple descriptor */
    1292                 : {
    1293 GIC       19110 :     Assert(!TTS_FIXED(slot));
    1294 ECB             : 
    1295                 :     /* For safety, make sure slot is empty before changing it */
    1296 GIC       19110 :     ExecClearTuple(slot);
    1297 ECB             : 
    1298                 :     /*
    1299                 :      * Release any old descriptor.  Also release old Datum/isnull arrays if
    1300                 :      * present (we don't bother to check if they could be re-used).
    1301                 :      */
    1302 GIC       19110 :     if (slot->tts_tupleDescriptor)
    1303 LBC           0 :         ReleaseTupleDesc(slot->tts_tupleDescriptor);
    1304 EUB             : 
    1305 GIC       19110 :     if (slot->tts_values)
    1306 LBC           0 :         pfree(slot->tts_values);
    1307 GBC       19110 :     if (slot->tts_isnull)
    1308 LBC           0 :         pfree(slot->tts_isnull);
    1309 EUB             : 
    1310                 :     /*
    1311                 :      * Install the new descriptor; if it's refcounted, bump its refcount.
    1312                 :      */
    1313 GIC       19110 :     slot->tts_tupleDescriptor = tupdesc;
    1314 CBC       19110 :     PinTupleDesc(tupdesc);
    1315 ECB             : 
    1316                 :     /*
    1317                 :      * Allocate Datum/isnull arrays of the appropriate size.  These must have
    1318                 :      * the same lifetime as the slot, so allocate in the slot's own context.
    1319                 :      */
    1320 GIC       19110 :     slot->tts_values = (Datum *)
    1321 CBC       19110 :         MemoryContextAlloc(slot->tts_mcxt, tupdesc->natts * sizeof(Datum));
    1322           19110 :     slot->tts_isnull = (bool *)
    1323           19110 :         MemoryContextAlloc(slot->tts_mcxt, tupdesc->natts * sizeof(bool));
    1324           19110 : }
    1325 ECB             : 
    1326                 : /* --------------------------------
    1327                 :  *      ExecStoreHeapTuple
    1328                 :  *
    1329                 :  *      This function is used to store an on-the-fly physical tuple into a specified
    1330                 :  *      slot in the tuple table.
    1331                 :  *
    1332                 :  *      tuple:  tuple to store
    1333                 :  *      slot:   TTSOpsHeapTuple type slot to store it in
    1334                 :  *      shouldFree: true if ExecClearTuple should pfree() the tuple
    1335                 :  *                  when done with it
    1336                 :  *
    1337                 :  * shouldFree is normally set 'true' for tuples constructed on-the-fly.  But it
    1338                 :  * can be 'false' when the referenced tuple is held in a tuple table slot
    1339                 :  * belonging to a lower-level executor Proc node.  In this case the lower-level
    1340                 :  * slot retains ownership and responsibility for eventually releasing the
    1341                 :  * tuple.  When this method is used, we must be certain that the upper-level
    1342                 :  * Proc node will lose interest in the tuple sooner than the lower-level one
    1343                 :  * does!  If you're not certain, copy the lower-level tuple with heap_copytuple
    1344                 :  * and let the upper-level table slot assume ownership of the copy!
    1345                 :  *
    1346                 :  * Return value is just the passed-in slot pointer.
    1347                 :  *
    1348                 :  * If the target slot is not guaranteed to be TTSOpsHeapTuple type slot, use
    1349                 :  * the, more expensive, ExecForceStoreHeapTuple().
    1350                 :  * --------------------------------
    1351                 :  */
    1352                 : TupleTableSlot *
    1353 GIC     4222627 : ExecStoreHeapTuple(HeapTuple tuple,
    1354 ECB             :                    TupleTableSlot *slot,
    1355                 :                    bool shouldFree)
    1356                 : {
    1357                 :     /*
    1358                 :      * sanity checks
    1359                 :      */
    1360 GIC     4222627 :     Assert(tuple != NULL);
    1361 CBC     4222627 :     Assert(slot != NULL);
    1362         4222627 :     Assert(slot->tts_tupleDescriptor != NULL);
    1363 ECB             : 
    1364 GIC     4222627 :     if (unlikely(!TTS_IS_HEAPTUPLE(slot)))
    1365 LBC           0 :         elog(ERROR, "trying to store a heap tuple into wrong type of slot");
    1366 GBC     4222627 :     tts_heap_store_tuple(slot, tuple, shouldFree);
    1367 ECB             : 
    1368 GIC     4222627 :     slot->tts_tableOid = tuple->t_tableOid;
    1369 ECB             : 
    1370 GIC     4222627 :     return slot;
    1371 ECB             : }
    1372                 : 
    1373                 : /* --------------------------------
    1374                 :  *      ExecStoreBufferHeapTuple
    1375                 :  *
    1376                 :  *      This function is used to store an on-disk physical tuple from a buffer
    1377                 :  *      into a specified slot in the tuple table.
    1378                 :  *
    1379                 :  *      tuple:  tuple to store
    1380                 :  *      slot:   TTSOpsBufferHeapTuple type slot to store it in
    1381                 :  *      buffer: disk buffer if tuple is in a disk page, else InvalidBuffer
    1382                 :  *
    1383                 :  * The tuple table code acquires a pin on the buffer which is held until the
    1384                 :  * slot is cleared, so that the tuple won't go away on us.
    1385                 :  *
    1386                 :  * Return value is just the passed-in slot pointer.
    1387                 :  *
    1388                 :  * If the target slot is not guaranteed to be TTSOpsBufferHeapTuple type slot,
    1389                 :  * use the, more expensive, ExecForceStoreHeapTuple().
    1390                 :  * --------------------------------
    1391                 :  */
    1392                 : TupleTableSlot *
    1393 GIC    84064739 : ExecStoreBufferHeapTuple(HeapTuple tuple,
    1394 ECB             :                          TupleTableSlot *slot,
    1395                 :                          Buffer buffer)
    1396                 : {
    1397                 :     /*
    1398                 :      * sanity checks
    1399                 :      */
    1400 GIC    84064739 :     Assert(tuple != NULL);
    1401 CBC    84064739 :     Assert(slot != NULL);
    1402        84064739 :     Assert(slot->tts_tupleDescriptor != NULL);
    1403        84064739 :     Assert(BufferIsValid(buffer));
    1404 ECB             : 
    1405 GIC    84064739 :     if (unlikely(!TTS_IS_BUFFERTUPLE(slot)))
    1406 LBC           0 :         elog(ERROR, "trying to store an on-disk heap tuple into wrong type of slot");
    1407 GBC    84064739 :     tts_buffer_heap_store_tuple(slot, tuple, buffer, false);
    1408 ECB             : 
    1409 GIC    84064739 :     slot->tts_tableOid = tuple->t_tableOid;
    1410 ECB             : 
    1411 GIC    84064739 :     return slot;
    1412 ECB             : }
    1413                 : 
    1414                 : /*
    1415                 :  * Like ExecStoreBufferHeapTuple, but transfer an existing pin from the caller
    1416                 :  * to the slot, i.e. the caller doesn't need to, and may not, release the pin.
    1417                 :  */
    1418                 : TupleTableSlot *
    1419 GIC      278304 : ExecStorePinnedBufferHeapTuple(HeapTuple tuple,
    1420 ECB             :                                TupleTableSlot *slot,
    1421                 :                                Buffer buffer)
    1422                 : {
    1423                 :     /*
    1424                 :      * sanity checks
    1425                 :      */
    1426 GIC      278304 :     Assert(tuple != NULL);
    1427 CBC      278304 :     Assert(slot != NULL);
    1428          278304 :     Assert(slot->tts_tupleDescriptor != NULL);
    1429          278304 :     Assert(BufferIsValid(buffer));
    1430 ECB             : 
    1431 GIC      278304 :     if (unlikely(!TTS_IS_BUFFERTUPLE(slot)))
    1432 LBC           0 :         elog(ERROR, "trying to store an on-disk heap tuple into wrong type of slot");
    1433 GBC      278304 :     tts_buffer_heap_store_tuple(slot, tuple, buffer, true);
    1434 ECB             : 
    1435 GIC      278304 :     slot->tts_tableOid = tuple->t_tableOid;
    1436 ECB             : 
    1437 GIC      278304 :     return slot;
    1438 ECB             : }
    1439                 : 
    1440                 : /*
    1441                 :  * Store a minimal tuple into TTSOpsMinimalTuple type slot.
    1442                 :  *
    1443                 :  * If the target slot is not guaranteed to be TTSOpsMinimalTuple type slot,
    1444                 :  * use the, more expensive, ExecForceStoreMinimalTuple().
    1445                 :  */
    1446                 : TupleTableSlot *
    1447 GIC    25428750 : ExecStoreMinimalTuple(MinimalTuple mtup,
    1448 ECB             :                       TupleTableSlot *slot,
    1449                 :                       bool shouldFree)
    1450                 : {
    1451                 :     /*
    1452                 :      * sanity checks
    1453                 :      */
    1454 GIC    25428750 :     Assert(mtup != NULL);
    1455 CBC    25428750 :     Assert(slot != NULL);
    1456        25428750 :     Assert(slot->tts_tupleDescriptor != NULL);
    1457 ECB             : 
    1458 GIC    25428750 :     if (unlikely(!TTS_IS_MINIMALTUPLE(slot)))
    1459 LBC           0 :         elog(ERROR, "trying to store a minimal tuple into wrong type of slot");
    1460 GBC    25428750 :     tts_minimal_store_tuple(slot, mtup, shouldFree);
    1461 ECB             : 
    1462 GIC    25428750 :     return slot;
    1463 ECB             : }
    1464                 : 
    1465                 : /*
    1466                 :  * Store a HeapTuple into any kind of slot, performing conversion if
    1467                 :  * necessary.
    1468                 :  */
    1469                 : void
    1470 GIC      889090 : ExecForceStoreHeapTuple(HeapTuple tuple,
    1471 ECB             :                         TupleTableSlot *slot,
    1472                 :                         bool shouldFree)
    1473                 : {
    1474 GIC      889090 :     if (TTS_IS_HEAPTUPLE(slot))
    1475 ECB             :     {
    1476 GIC         213 :         ExecStoreHeapTuple(tuple, slot, shouldFree);
    1477 ECB             :     }
    1478 GIC      888877 :     else if (TTS_IS_BUFFERTUPLE(slot))
    1479 ECB             :     {
    1480                 :         MemoryContext oldContext;
    1481 GIC       36008 :         BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;
    1482 ECB             : 
    1483 GIC       36008 :         ExecClearTuple(slot);
    1484 CBC       36008 :         slot->tts_flags &= ~TTS_FLAG_EMPTY;
    1485           36008 :         oldContext = MemoryContextSwitchTo(slot->tts_mcxt);
    1486           36008 :         bslot->base.tuple = heap_copytuple(tuple);
    1487           36008 :         slot->tts_flags |= TTS_FLAG_SHOULDFREE;
    1488           36008 :         MemoryContextSwitchTo(oldContext);
    1489 ECB             : 
    1490 GIC       36008 :         if (shouldFree)
    1491 CBC       35044 :             pfree(tuple);
    1492 ECB             :     }
    1493                 :     else
    1494                 :     {
    1495 GIC      852869 :         ExecClearTuple(slot);
    1496 CBC      852869 :         heap_deform_tuple(tuple, slot->tts_tupleDescriptor,
    1497 ECB             :                           slot->tts_values, slot->tts_isnull);
    1498 GIC      852869 :         ExecStoreVirtualTuple(slot);
    1499 ECB             : 
    1500 GIC      852869 :         if (shouldFree)
    1501 ECB             :         {
    1502 GIC      133799 :             ExecMaterializeSlot(slot);
    1503 CBC      133799 :             pfree(tuple);
    1504 ECB             :         }
    1505                 :     }
    1506 GIC      889090 : }
    1507 ECB             : 
    1508                 : /*
    1509                 :  * Store a MinimalTuple into any kind of slot, performing conversion if
    1510                 :  * necessary.
    1511                 :  */
    1512                 : void
    1513 GIC     3545746 : ExecForceStoreMinimalTuple(MinimalTuple mtup,
    1514 ECB             :                            TupleTableSlot *slot,
    1515                 :                            bool shouldFree)
    1516                 : {
    1517 GIC     3545746 :     if (TTS_IS_MINIMALTUPLE(slot))
    1518 ECB             :     {
    1519 GIC     2210638 :         tts_minimal_store_tuple(slot, mtup, shouldFree);
    1520 ECB             :     }
    1521                 :     else
    1522                 :     {
    1523                 :         HeapTupleData htup;
    1524                 : 
    1525 GIC     1335108 :         ExecClearTuple(slot);
    1526 ECB             : 
    1527 GIC     1335108 :         htup.t_len = mtup->t_len + MINIMAL_TUPLE_OFFSET;
    1528 CBC     1335108 :         htup.t_data = (HeapTupleHeader) ((char *) mtup - MINIMAL_TUPLE_OFFSET);
    1529         1335108 :         heap_deform_tuple(&htup, slot->tts_tupleDescriptor,
    1530 ECB             :                           slot->tts_values, slot->tts_isnull);
    1531 GIC     1335108 :         ExecStoreVirtualTuple(slot);
    1532 ECB             : 
    1533 GIC     1335108 :         if (shouldFree)
    1534 ECB             :         {
    1535 GIC      735096 :             ExecMaterializeSlot(slot);
    1536 CBC      735096 :             pfree(mtup);
    1537 ECB             :         }
    1538                 :     }
    1539 GIC     3545746 : }
    1540 ECB             : 
    1541                 : /* --------------------------------
    1542                 :  *      ExecStoreVirtualTuple
    1543                 :  *          Mark a slot as containing a virtual tuple.
    1544                 :  *
    1545                 :  * The protocol for loading a slot with virtual tuple data is:
    1546                 :  *      * Call ExecClearTuple to mark the slot empty.
    1547                 :  *      * Store data into the Datum/isnull arrays.
    1548                 :  *      * Call ExecStoreVirtualTuple to mark the slot valid.
    1549                 :  * This is a bit unclean but it avoids one round of data copying.
    1550                 :  * --------------------------------
    1551                 :  */
    1552                 : TupleTableSlot *
    1553 GIC    13213313 : ExecStoreVirtualTuple(TupleTableSlot *slot)
    1554 ECB             : {
    1555                 :     /*
    1556                 :      * sanity checks
    1557                 :      */
    1558 GIC    13213313 :     Assert(slot != NULL);
    1559 CBC    13213313 :     Assert(slot->tts_tupleDescriptor != NULL);
    1560        13213313 :     Assert(TTS_EMPTY(slot));
    1561 ECB             : 
    1562 GIC    13213313 :     slot->tts_flags &= ~TTS_FLAG_EMPTY;
    1563 CBC    13213313 :     slot->tts_nvalid = slot->tts_tupleDescriptor->natts;
    1564 ECB             : 
    1565 GIC    13213313 :     return slot;
    1566 ECB             : }
    1567                 : 
    1568                 : /* --------------------------------
    1569                 :  *      ExecStoreAllNullTuple
    1570                 :  *          Set up the slot to contain a null in every column.
    1571                 :  *
    1572                 :  * At first glance this might sound just like ExecClearTuple, but it's
    1573                 :  * entirely different: the slot ends up full, not empty.
    1574                 :  * --------------------------------
    1575                 :  */
    1576                 : TupleTableSlot *
    1577 GIC      311223 : ExecStoreAllNullTuple(TupleTableSlot *slot)
    1578 ECB             : {
    1579                 :     /*
    1580                 :      * sanity checks
    1581                 :      */
    1582 GIC      311223 :     Assert(slot != NULL);
    1583 CBC      311223 :     Assert(slot->tts_tupleDescriptor != NULL);
    1584 ECB             : 
    1585                 :     /* Clear any old contents */
    1586 GIC      311223 :     ExecClearTuple(slot);
    1587 ECB             : 
    1588                 :     /*
    1589                 :      * Fill all the columns of the virtual tuple with nulls
    1590                 :      */
    1591 GIC     5192225 :     MemSet(slot->tts_values, 0,
    1592 ECB             :            slot->tts_tupleDescriptor->natts * sizeof(Datum));
    1593 GIC      311223 :     memset(slot->tts_isnull, true,
    1594 CBC      311223 :            slot->tts_tupleDescriptor->natts * sizeof(bool));
    1595 ECB             : 
    1596 GIC      311223 :     return ExecStoreVirtualTuple(slot);
    1597 ECB             : }
    1598                 : 
    1599                 : /*
    1600                 :  * Store a HeapTuple in datum form, into a slot. That always requires
    1601                 :  * deforming it and storing it in virtual form.
    1602                 :  *
    1603                 :  * Until the slot is materialized, the contents of the slot depend on the
    1604                 :  * datum.
    1605                 :  */
    1606                 : void
    1607 GIC           3 : ExecStoreHeapTupleDatum(Datum data, TupleTableSlot *slot)
    1608 ECB             : {
    1609 GIC           3 :     HeapTupleData tuple = {0};
    1610 ECB             :     HeapTupleHeader td;
    1611                 : 
    1612 GIC           3 :     td = DatumGetHeapTupleHeader(data);
    1613 ECB             : 
    1614 GIC           3 :     tuple.t_len = HeapTupleHeaderGetDatumLength(td);
    1615 CBC           3 :     tuple.t_self = td->t_ctid;
    1616               3 :     tuple.t_data = td;
    1617 ECB             : 
    1618 GIC           3 :     ExecClearTuple(slot);
    1619 ECB             : 
    1620 GIC           3 :     heap_deform_tuple(&tuple, slot->tts_tupleDescriptor,
    1621 ECB             :                       slot->tts_values, slot->tts_isnull);
    1622 GIC           3 :     ExecStoreVirtualTuple(slot);
    1623 CBC           3 : }
    1624 ECB             : 
    1625                 : /*
    1626                 :  * ExecFetchSlotHeapTuple - fetch HeapTuple representing the slot's content
    1627                 :  *
    1628                 :  * The returned HeapTuple represents the slot's content as closely as
    1629                 :  * possible.
    1630                 :  *
    1631                 :  * If materialize is true, the contents of the slots will be made independent
    1632                 :  * from the underlying storage (i.e. all buffer pins are released, memory is
    1633                 :  * allocated in the slot's context).
    1634                 :  *
    1635                 :  * If shouldFree is not-NULL it'll be set to true if the returned tuple has
    1636                 :  * been allocated in the calling memory context, and must be freed by the
    1637                 :  * caller (via explicit pfree() or a memory context reset).
    1638                 :  *
    1639                 :  * NB: If materialize is true, modifications of the returned tuple are
    1640                 :  * allowed. But it depends on the type of the slot whether such modifications
    1641                 :  * will also affect the slot's contents. While that is not the nicest
    1642                 :  * behaviour, all such modifications are in the process of being removed.
    1643                 :  */
    1644                 : HeapTuple
    1645 GIC    27537058 : ExecFetchSlotHeapTuple(TupleTableSlot *slot, bool materialize, bool *shouldFree)
    1646 ECB             : {
    1647                 :     /*
    1648                 :      * sanity checks
    1649                 :      */
    1650 GIC    27537058 :     Assert(slot != NULL);
    1651 CBC    27537058 :     Assert(!TTS_EMPTY(slot));
    1652 ECB             : 
    1653                 :     /* Materialize the tuple so that the slot "owns" it, if requested. */
    1654 GIC    27537058 :     if (materialize)
    1655 CBC    12470909 :         slot->tts_ops->materialize(slot);
    1656 ECB             : 
    1657 GIC    27537058 :     if (slot->tts_ops->get_heap_tuple == NULL)
    1658 ECB             :     {
    1659 GIC     1420107 :         if (shouldFree)
    1660 CBC     1420107 :             *shouldFree = true;
    1661         1420107 :         return slot->tts_ops->copy_heap_tuple(slot);
    1662 ECB             :     }
    1663                 :     else
    1664                 :     {
    1665 GIC    26116951 :         if (shouldFree)
    1666 CBC    22449785 :             *shouldFree = false;
    1667        26116951 :         return slot->tts_ops->get_heap_tuple(slot);
    1668 ECB             :     }
    1669                 : }
    1670                 : 
    1671                 : /* --------------------------------
    1672                 :  *      ExecFetchSlotMinimalTuple
    1673                 :  *          Fetch the slot's minimal physical tuple.
    1674                 :  *
    1675                 :  *      If the given tuple table slot can hold a minimal tuple, indicated by a
    1676                 :  *      non-NULL get_minimal_tuple callback, the function returns the minimal
    1677                 :  *      tuple returned by that callback. It assumes that the minimal tuple
    1678                 :  *      returned by the callback is "owned" by the slot i.e. the slot is
    1679                 :  *      responsible for freeing the memory consumed by the tuple. Hence it sets
    1680                 :  *      *shouldFree to false, indicating that the caller should not free the
    1681                 :  *      memory consumed by the minimal tuple. In this case the returned minimal
    1682                 :  *      tuple should be considered as read-only.
    1683                 :  *
    1684                 :  *      If that callback is not supported, it calls copy_minimal_tuple callback
    1685                 :  *      which is expected to return a copy of minimal tuple representing the
    1686                 :  *      contents of the slot. In this case *shouldFree is set to true,
    1687                 :  *      indicating the caller that it should free the memory consumed by the
    1688                 :  *      minimal tuple. In this case the returned minimal tuple may be written
    1689                 :  *      up.
    1690                 :  * --------------------------------
    1691                 :  */
    1692                 : MinimalTuple
    1693 GIC    11018182 : ExecFetchSlotMinimalTuple(TupleTableSlot *slot,
    1694 ECB             :                           bool *shouldFree)
    1695                 : {
    1696                 :     /*
    1697                 :      * sanity checks
    1698                 :      */
    1699 GIC    11018182 :     Assert(slot != NULL);
    1700 CBC    11018182 :     Assert(!TTS_EMPTY(slot));
    1701 ECB             : 
    1702 GIC    11018182 :     if (slot->tts_ops->get_minimal_tuple)
    1703 ECB             :     {
    1704 GIC     2447307 :         if (shouldFree)
    1705 CBC     2447307 :             *shouldFree = false;
    1706         2447307 :         return slot->tts_ops->get_minimal_tuple(slot);
    1707 ECB             :     }
    1708                 :     else
    1709                 :     {
    1710 GIC     8570875 :         if (shouldFree)
    1711 CBC     8570875 :             *shouldFree = true;
    1712         8570875 :         return slot->tts_ops->copy_minimal_tuple(slot);
    1713 ECB             :     }
    1714                 : }
    1715                 : 
    1716                 : /* --------------------------------
    1717                 :  *      ExecFetchSlotHeapTupleDatum
    1718                 :  *          Fetch the slot's tuple as a composite-type Datum.
    1719                 :  *
    1720                 :  *      The result is always freshly palloc'd in the caller's memory context.
    1721                 :  * --------------------------------
    1722                 :  */
    1723                 : Datum
    1724 GIC       30417 : ExecFetchSlotHeapTupleDatum(TupleTableSlot *slot)
    1725 ECB             : {
    1726                 :     HeapTuple   tup;
    1727                 :     TupleDesc   tupdesc;
    1728                 :     bool        shouldFree;
    1729                 :     Datum       ret;
    1730                 : 
    1731                 :     /* Fetch slot's contents in regular-physical-tuple form */
    1732 GIC       30417 :     tup = ExecFetchSlotHeapTuple(slot, false, &shouldFree);
    1733 CBC       30417 :     tupdesc = slot->tts_tupleDescriptor;
    1734 ECB             : 
    1735                 :     /* Convert to Datum form */
    1736 GIC       30417 :     ret = heap_copy_tuple_as_datum(tup, tupdesc);
    1737 ECB             : 
    1738 GIC       30417 :     if (shouldFree)
    1739 CBC       30417 :         pfree(tup);
    1740 ECB             : 
    1741 GIC       30417 :     return ret;
    1742 ECB             : }
    1743                 : 
    1744                 : /* ----------------------------------------------------------------
    1745                 :  *              convenience initialization routines
    1746                 :  * ----------------------------------------------------------------
    1747                 :  */
    1748                 : 
    1749                 : /* ----------------
    1750                 :  *      ExecInitResultTypeTL
    1751                 :  *
    1752                 :  *      Initialize result type, using the plan node's targetlist.
    1753                 :  * ----------------
    1754                 :  */
    1755                 : void
    1756 GIC      557413 : ExecInitResultTypeTL(PlanState *planstate)
    1757 ECB             : {
    1758 GIC      557413 :     TupleDesc   tupDesc = ExecTypeFromTL(planstate->plan->targetlist);
    1759 ECB             : 
    1760 GIC      557413 :     planstate->ps_ResultTupleDesc = tupDesc;
    1761 CBC      557413 : }
    1762 ECB             : 
    1763                 : /* --------------------------------
    1764                 :  *      ExecInit{Result,Scan,Extra}TupleSlot[TL]
    1765                 :  *
    1766                 :  *      These are convenience routines to initialize the specified slot
    1767                 :  *      in nodes inheriting the appropriate state.  ExecInitExtraTupleSlot
    1768                 :  *      is used for initializing special-purpose slots.
    1769                 :  * --------------------------------
    1770                 :  */
    1771                 : 
    1772                 : /* ----------------
    1773                 :  *      ExecInitResultTupleSlotTL
    1774                 :  *
    1775                 :  *      Initialize result tuple slot, using the tuple descriptor previously
    1776                 :  *      computed with ExecInitResultTypeTL().
    1777                 :  * ----------------
    1778                 :  */
    1779                 : void
    1780 GIC      377971 : ExecInitResultSlot(PlanState *planstate, const TupleTableSlotOps *tts_ops)
    1781 ECB             : {
    1782                 :     TupleTableSlot *slot;
    1783                 : 
    1784 GIC      377971 :     slot = ExecAllocTableSlot(&planstate->state->es_tupleTable,
    1785 ECB             :                               planstate->ps_ResultTupleDesc, tts_ops);
    1786 GIC      377971 :     planstate->ps_ResultTupleSlot = slot;
    1787 ECB             : 
    1788 GIC      377971 :     planstate->resultopsfixed = planstate->ps_ResultTupleDesc != NULL;
    1789 CBC      377971 :     planstate->resultops = tts_ops;
    1790          377971 :     planstate->resultopsset = true;
    1791          377971 : }
    1792 ECB             : 
    1793                 : /* ----------------
    1794                 :  *      ExecInitResultTupleSlotTL
    1795                 :  *
    1796                 :  *      Initialize result tuple slot, using the plan node's targetlist.
    1797                 :  * ----------------
    1798                 :  */
    1799                 : void
    1800 GIC      277097 : ExecInitResultTupleSlotTL(PlanState *planstate,
    1801 ECB             :                           const TupleTableSlotOps *tts_ops)
    1802                 : {
    1803 GIC      277097 :     ExecInitResultTypeTL(planstate);
    1804 CBC      277097 :     ExecInitResultSlot(planstate, tts_ops);
    1805          277097 : }
    1806 ECB             : 
    1807                 : /* ----------------
    1808                 :  *      ExecInitScanTupleSlot
    1809                 :  * ----------------
    1810                 :  */
    1811                 : void
    1812 GIC      260872 : ExecInitScanTupleSlot(EState *estate, ScanState *scanstate,
    1813 ECB             :                       TupleDesc tupledesc, const TupleTableSlotOps *tts_ops)
    1814                 : {
    1815 GIC      260872 :     scanstate->ss_ScanTupleSlot = ExecAllocTableSlot(&estate->es_tupleTable,
    1816 ECB             :                                                      tupledesc, tts_ops);
    1817 GIC      260872 :     scanstate->ps.scandesc = tupledesc;
    1818 CBC      260872 :     scanstate->ps.scanopsfixed = tupledesc != NULL;
    1819          260872 :     scanstate->ps.scanops = tts_ops;
    1820          260872 :     scanstate->ps.scanopsset = true;
    1821          260872 : }
    1822 ECB             : 
    1823                 : /* ----------------
    1824                 :  *      ExecInitExtraTupleSlot
    1825                 :  *
    1826                 :  * Return a newly created slot. If tupledesc is non-NULL the slot will have
    1827                 :  * that as its fixed tupledesc. Otherwise the caller needs to use
    1828                 :  * ExecSetSlotDescriptor() to set the descriptor before use.
    1829                 :  * ----------------
    1830                 :  */
    1831                 : TupleTableSlot *
    1832 GIC      212749 : ExecInitExtraTupleSlot(EState *estate,
    1833 ECB             :                        TupleDesc tupledesc,
    1834                 :                        const TupleTableSlotOps *tts_ops)
    1835                 : {
    1836 GIC      212749 :     return ExecAllocTableSlot(&estate->es_tupleTable, tupledesc, tts_ops);
    1837 ECB             : }
    1838                 : 
    1839                 : /* ----------------
    1840                 :  *      ExecInitNullTupleSlot
    1841                 :  *
    1842                 :  * Build a slot containing an all-nulls tuple of the given type.
    1843                 :  * This is used as a substitute for an input tuple when performing an
    1844                 :  * outer join.
    1845                 :  * ----------------
    1846                 :  */
    1847                 : TupleTableSlot *
    1848 GIC       16768 : ExecInitNullTupleSlot(EState *estate, TupleDesc tupType,
    1849 ECB             :                       const TupleTableSlotOps *tts_ops)
    1850                 : {
    1851 GIC       16768 :     TupleTableSlot *slot = ExecInitExtraTupleSlot(estate, tupType, tts_ops);
    1852 ECB             : 
    1853 GIC       16768 :     return ExecStoreAllNullTuple(slot);
    1854 ECB             : }
    1855                 : 
    1856                 : /* ---------------------------------------------------------------
    1857                 :  *      Routines for setting/accessing attributes in a slot.
    1858                 :  * ---------------------------------------------------------------
    1859                 :  */
    1860                 : 
    1861                 : /*
    1862                 :  * Fill in missing values for a TupleTableSlot.
    1863                 :  *
    1864                 :  * This is only exposed because it's needed for JIT compiled tuple
    1865                 :  * deforming. That exception aside, there should be no callers outside of this
    1866                 :  * file.
    1867                 :  */
    1868                 : void
    1869 GIC        2829 : slot_getmissingattrs(TupleTableSlot *slot, int startAttNum, int lastAttNum)
    1870 ECB             : {
    1871 GIC        2829 :     AttrMissing *attrmiss = NULL;
    1872 ECB             : 
    1873 GIC        2829 :     if (slot->tts_tupleDescriptor->constr)
    1874 CBC        2253 :         attrmiss = slot->tts_tupleDescriptor->constr->missing;
    1875 ECB             : 
    1876 GIC        2829 :     if (!attrmiss)
    1877 ECB             :     {
    1878                 :         /* no missing values array at all, so just fill everything in as NULL */
    1879 GIC         615 :         memset(slot->tts_values + startAttNum, 0,
    1880 CBC         615 :                (lastAttNum - startAttNum) * sizeof(Datum));
    1881             615 :         memset(slot->tts_isnull + startAttNum, 1,
    1882             615 :                (lastAttNum - startAttNum) * sizeof(bool));
    1883 ECB             :     }
    1884                 :     else
    1885                 :     {
    1886                 :         int         missattnum;
    1887                 : 
    1888                 :         /* if there is a missing values array we must process them one by one */
    1889 GIC        2214 :         for (missattnum = startAttNum;
    1890 CBC        5124 :              missattnum < lastAttNum;
    1891            2910 :              missattnum++)
    1892 ECB             :         {
    1893 GIC        2910 :             slot->tts_values[missattnum] = attrmiss[missattnum].am_value;
    1894 CBC        2910 :             slot->tts_isnull[missattnum] = !attrmiss[missattnum].am_present;
    1895 ECB             :         }
    1896                 :     }
    1897 GIC        2829 : }
    1898 ECB             : 
    1899                 : /*
    1900                 :  * slot_getsomeattrs_int - workhorse for slot_getsomeattrs()
    1901                 :  */
    1902                 : void
    1903 GIC   105171780 : slot_getsomeattrs_int(TupleTableSlot *slot, int attnum)
    1904 ECB             : {
    1905                 :     /* Check for caller errors */
    1906 GIC   105171780 :     Assert(slot->tts_nvalid < attnum);    /* checked in slot_getsomeattrs */
    1907 CBC   105171780 :     Assert(attnum > 0);
    1908 ECB             : 
    1909 GIC   105171780 :     if (unlikely(attnum > slot->tts_tupleDescriptor->natts))
    1910 LBC           0 :         elog(ERROR, "invalid attribute number %d", attnum);
    1911 EUB             : 
    1912                 :     /* Fetch as many attributes as possible from the underlying tuple. */
    1913 GIC   105171780 :     slot->tts_ops->getsomeattrs(slot, attnum);
    1914 ECB             : 
    1915                 :     /*
    1916                 :      * If the underlying tuple doesn't have enough attributes, tuple
    1917                 :      * descriptor must have the missing attributes.
    1918                 :      */
    1919 GIC   105171780 :     if (unlikely(slot->tts_nvalid < attnum))
    1920 ECB             :     {
    1921 GIC        2829 :         slot_getmissingattrs(slot, slot->tts_nvalid, attnum);
    1922 CBC        2829 :         slot->tts_nvalid = attnum;
    1923 ECB             :     }
    1924 GIC   105171780 : }
    1925 ECB             : 
    1926                 : /* ----------------------------------------------------------------
    1927                 :  *      ExecTypeFromTL
    1928                 :  *
    1929                 :  *      Generate a tuple descriptor for the result tuple of a targetlist.
    1930                 :  *      (A parse/plan tlist must be passed, not an ExprState tlist.)
    1931                 :  *      Note that resjunk columns, if any, are included in the result.
    1932                 :  *
    1933                 :  *      Currently there are about 4 different places where we create
    1934                 :  *      TupleDescriptors.  They should all be merged, or perhaps
    1935                 :  *      be rewritten to call BuildDesc().
    1936                 :  * ----------------------------------------------------------------
    1937                 :  */
    1938                 : TupleDesc
    1939 GIC      569995 : ExecTypeFromTL(List *targetList)
    1940 ECB             : {
    1941 GIC      569995 :     return ExecTypeFromTLInternal(targetList, false);
    1942 ECB             : }
    1943                 : 
    1944                 : /* ----------------------------------------------------------------
    1945                 :  *      ExecCleanTypeFromTL
    1946                 :  *
    1947                 :  *      Same as above, but resjunk columns are omitted from the result.
    1948                 :  * ----------------------------------------------------------------
    1949                 :  */
    1950                 : TupleDesc
    1951 GIC       42793 : ExecCleanTypeFromTL(List *targetList)
    1952 ECB             : {
    1953 GIC       42793 :     return ExecTypeFromTLInternal(targetList, true);
    1954 ECB             : }
    1955                 : 
    1956                 : static TupleDesc
    1957 GIC      612788 : ExecTypeFromTLInternal(List *targetList, bool skipjunk)
    1958 ECB             : {
    1959                 :     TupleDesc   typeInfo;
    1960                 :     ListCell   *l;
    1961                 :     int         len;
    1962 GIC      612788 :     int         cur_resno = 1;
    1963 ECB             : 
    1964 GIC      612788 :     if (skipjunk)
    1965 CBC       42793 :         len = ExecCleanTargetListLength(targetList);
    1966 ECB             :     else
    1967 GIC      569995 :         len = ExecTargetListLength(targetList);
    1968 CBC      612788 :     typeInfo = CreateTemplateTupleDesc(len);
    1969 ECB             : 
    1970 GIC     2908123 :     foreach(l, targetList)
    1971 ECB             :     {
    1972 GIC     2295335 :         TargetEntry *tle = lfirst(l);
    1973 ECB             : 
    1974 GIC     2295335 :         if (skipjunk && tle->resjunk)
    1975 CBC       12750 :             continue;
    1976         6847755 :         TupleDescInitEntry(typeInfo,
    1977 ECB             :                            cur_resno,
    1978 GIC     2282585 :                            tle->resname,
    1979 CBC     2282585 :                            exprType((Node *) tle->expr),
    1980         2282585 :                            exprTypmod((Node *) tle->expr),
    1981 ECB             :                            0);
    1982 GIC     2282585 :         TupleDescInitEntryCollation(typeInfo,
    1983 ECB             :                                     cur_resno,
    1984 GIC     2282585 :                                     exprCollation((Node *) tle->expr));
    1985 CBC     2282585 :         cur_resno++;
    1986 ECB             :     }
    1987                 : 
    1988 GIC      612788 :     return typeInfo;
    1989 ECB             : }
    1990                 : 
    1991                 : /*
    1992                 :  * ExecTypeFromExprList - build a tuple descriptor from a list of Exprs
    1993                 :  *
    1994                 :  * This is roughly like ExecTypeFromTL, but we work from bare expressions
    1995                 :  * not TargetEntrys.  No names are attached to the tupledesc's columns.
    1996                 :  */
    1997                 : TupleDesc
    1998 GIC        5774 : ExecTypeFromExprList(List *exprList)
    1999 ECB             : {
    2000                 :     TupleDesc   typeInfo;
    2001                 :     ListCell   *lc;
    2002 GIC        5774 :     int         cur_resno = 1;
    2003 ECB             : 
    2004 GIC        5774 :     typeInfo = CreateTemplateTupleDesc(list_length(exprList));
    2005 ECB             : 
    2006 GIC       15943 :     foreach(lc, exprList)
    2007 ECB             :     {
    2008 GIC       10169 :         Node       *e = lfirst(lc);
    2009 ECB             : 
    2010 GIC       10169 :         TupleDescInitEntry(typeInfo,
    2011 ECB             :                            cur_resno,
    2012                 :                            NULL,
    2013                 :                            exprType(e),
    2014                 :                            exprTypmod(e),
    2015                 :                            0);
    2016 GIC       10169 :         TupleDescInitEntryCollation(typeInfo,
    2017 ECB             :                                     cur_resno,
    2018                 :                                     exprCollation(e));
    2019 GIC       10169 :         cur_resno++;
    2020 ECB             :     }
    2021                 : 
    2022 GIC        5774 :     return typeInfo;
    2023 ECB             : }
    2024                 : 
    2025                 : /*
    2026                 :  * ExecTypeSetColNames - set column names in a RECORD TupleDesc
    2027                 :  *
    2028                 :  * Column names must be provided as an alias list (list of String nodes).
    2029                 :  */
    2030                 : void
    2031 GIC        1746 : ExecTypeSetColNames(TupleDesc typeInfo, List *namesList)
    2032 ECB             : {
    2033 GIC        1746 :     int         colno = 0;
    2034 ECB             :     ListCell   *lc;
    2035                 : 
    2036                 :     /* It's only OK to change col names in a not-yet-blessed RECORD type */
    2037 GIC        1746 :     Assert(typeInfo->tdtypeid == RECORDOID);
    2038 CBC        1746 :     Assert(typeInfo->tdtypmod < 0);
    2039 ECB             : 
    2040 GIC        6118 :     foreach(lc, namesList)
    2041 ECB             :     {
    2042 GIC        4372 :         char       *cname = strVal(lfirst(lc));
    2043 ECB             :         Form_pg_attribute attr;
    2044                 : 
    2045                 :         /* Guard against too-long names list (probably can't happen) */
    2046 GIC        4372 :         if (colno >= typeInfo->natts)
    2047 LBC           0 :             break;
    2048 GBC        4372 :         attr = TupleDescAttr(typeInfo, colno);
    2049 CBC        4372 :         colno++;
    2050 ECB             : 
    2051                 :         /*
    2052                 :          * Do nothing for empty aliases or dropped columns (these cases
    2053                 :          * probably can't arise in RECORD types, either)
    2054                 :          */
    2055 GIC        4372 :         if (cname[0] == '\0' || attr->attisdropped)
    2056 CBC          13 :             continue;
    2057 ECB             : 
    2058                 :         /* OK, assign the column name */
    2059 GIC        4359 :         namestrcpy(&(attr->attname), cname);
    2060 ECB             :     }
    2061 GIC        1746 : }
    2062 ECB             : 
    2063                 : /*
    2064                 :  * BlessTupleDesc - make a completed tuple descriptor useful for SRFs
    2065                 :  *
    2066                 :  * Rowtype Datums returned by a function must contain valid type information.
    2067                 :  * This happens "for free" if the tupdesc came from a relcache entry, but
    2068                 :  * not if we have manufactured a tupdesc for a transient RECORD datatype.
    2069                 :  * In that case we have to notify typcache.c of the existence of the type.
    2070                 :  */
    2071                 : TupleDesc
    2072 GIC       31058 : BlessTupleDesc(TupleDesc tupdesc)
    2073 ECB             : {
    2074 GIC       31058 :     if (tupdesc->tdtypeid == RECORDOID &&
    2075 CBC       29589 :         tupdesc->tdtypmod < 0)
    2076           12829 :         assign_record_type_typmod(tupdesc);
    2077 ECB             : 
    2078 GIC       31058 :     return tupdesc;             /* just for notational convenience */
    2079 ECB             : }
    2080                 : 
    2081                 : /*
    2082                 :  * TupleDescGetAttInMetadata - Build an AttInMetadata structure based on the
    2083                 :  * supplied TupleDesc. AttInMetadata can be used in conjunction with C strings
    2084                 :  * to produce a properly formed tuple.
    2085                 :  */
    2086                 : AttInMetadata *
    2087 GIC        2847 : TupleDescGetAttInMetadata(TupleDesc tupdesc)
    2088 ECB             : {
    2089 GIC        2847 :     int         natts = tupdesc->natts;
    2090 ECB             :     int         i;
    2091                 :     Oid         atttypeid;
    2092                 :     Oid         attinfuncid;
    2093                 :     FmgrInfo   *attinfuncinfo;
    2094                 :     Oid        *attioparams;
    2095                 :     int32      *atttypmods;
    2096                 :     AttInMetadata *attinmeta;
    2097                 : 
    2098 GIC        2847 :     attinmeta = (AttInMetadata *) palloc(sizeof(AttInMetadata));
    2099 ECB             : 
    2100                 :     /* "Bless" the tupledesc so that we can make rowtype datums with it */
    2101 GIC        2847 :     attinmeta->tupdesc = BlessTupleDesc(tupdesc);
    2102 ECB             : 
    2103                 :     /*
    2104                 :      * Gather info needed later to call the "in" function for each attribute
    2105                 :      */
    2106 GIC        2847 :     attinfuncinfo = (FmgrInfo *) palloc0(natts * sizeof(FmgrInfo));
    2107 CBC        2847 :     attioparams = (Oid *) palloc0(natts * sizeof(Oid));
    2108            2847 :     atttypmods = (int32 *) palloc0(natts * sizeof(int32));
    2109 ECB             : 
    2110 GIC       26587 :     for (i = 0; i < natts; i++)
    2111 ECB             :     {
    2112 GIC       23740 :         Form_pg_attribute att = TupleDescAttr(tupdesc, i);
    2113 ECB             : 
    2114                 :         /* Ignore dropped attributes */
    2115 GIC       23740 :         if (!att->attisdropped)
    2116 ECB             :         {
    2117 GIC       23627 :             atttypeid = att->atttypid;
    2118 CBC       23627 :             getTypeInputInfo(atttypeid, &attinfuncid, &attioparams[i]);
    2119           23627 :             fmgr_info(attinfuncid, &attinfuncinfo[i]);
    2120           23627 :             atttypmods[i] = att->atttypmod;
    2121 ECB             :         }
    2122                 :     }
    2123 GIC        2847 :     attinmeta->attinfuncs = attinfuncinfo;
    2124 CBC        2847 :     attinmeta->attioparams = attioparams;
    2125            2847 :     attinmeta->atttypmods = atttypmods;
    2126 ECB             : 
    2127 GIC        2847 :     return attinmeta;
    2128 ECB             : }
    2129                 : 
    2130                 : /*
    2131                 :  * BuildTupleFromCStrings - build a HeapTuple given user data in C string form.
    2132                 :  * values is an array of C strings, one for each attribute of the return tuple.
    2133                 :  * A NULL string pointer indicates we want to create a NULL field.
    2134                 :  */
    2135                 : HeapTuple
    2136 GIC      407734 : BuildTupleFromCStrings(AttInMetadata *attinmeta, char **values)
    2137 ECB             : {
    2138 GIC      407734 :     TupleDesc   tupdesc = attinmeta->tupdesc;
    2139 CBC      407734 :     int         natts = tupdesc->natts;
    2140 ECB             :     Datum      *dvalues;
    2141                 :     bool       *nulls;
    2142                 :     int         i;
    2143                 :     HeapTuple   tuple;
    2144                 : 
    2145 GIC      407734 :     dvalues = (Datum *) palloc(natts * sizeof(Datum));
    2146 CBC      407734 :     nulls = (bool *) palloc(natts * sizeof(bool));
    2147 ECB             : 
    2148                 :     /*
    2149                 :      * Call the "in" function for each non-dropped attribute, even for nulls,
    2150                 :      * to support domains.
    2151                 :      */
    2152 GIC     7209235 :     for (i = 0; i < natts; i++)
    2153 ECB             :     {
    2154 GIC     6801502 :         if (!TupleDescAttr(tupdesc, i)->attisdropped)
    2155 ECB             :         {
    2156                 :             /* Non-dropped attributes */
    2157 GIC    13603003 :             dvalues[i] = InputFunctionCall(&attinmeta->attinfuncs[i],
    2158 CBC     6801502 :                                            values[i],
    2159         6801502 :                                            attinmeta->attioparams[i],
    2160         6801502 :                                            attinmeta->atttypmods[i]);
    2161         6801501 :             if (values[i] != NULL)
    2162         4601822 :                 nulls[i] = false;
    2163 ECB             :             else
    2164 GIC     2199679 :                 nulls[i] = true;
    2165 ECB             :         }
    2166                 :         else
    2167                 :         {
    2168                 :             /* Handle dropped attributes by setting to NULL */
    2169 UIC           0 :             dvalues[i] = (Datum) 0;
    2170 UBC           0 :             nulls[i] = true;
    2171 EUB             :         }
    2172                 :     }
    2173                 : 
    2174                 :     /*
    2175                 :      * Form a tuple
    2176                 :      */
    2177 GIC      407733 :     tuple = heap_form_tuple(tupdesc, dvalues, nulls);
    2178 ECB             : 
    2179                 :     /*
    2180                 :      * Release locally palloc'd space.  XXX would probably be good to pfree
    2181                 :      * values of pass-by-reference datums, as well.
    2182                 :      */
    2183 GIC      407733 :     pfree(dvalues);
    2184 CBC      407733 :     pfree(nulls);
    2185 ECB             : 
    2186 GIC      407733 :     return tuple;
    2187 ECB             : }
    2188                 : 
    2189                 : /*
    2190                 :  * HeapTupleHeaderGetDatum - convert a HeapTupleHeader pointer to a Datum.
    2191                 :  *
    2192                 :  * This must *not* get applied to an on-disk tuple; the tuple should be
    2193                 :  * freshly made by heap_form_tuple or some wrapper routine for it (such as
    2194                 :  * BuildTupleFromCStrings).  Be sure also that the tupledesc used to build
    2195                 :  * the tuple has a properly "blessed" rowtype.
    2196                 :  *
    2197                 :  * Formerly this was a macro equivalent to PointerGetDatum, relying on the
    2198                 :  * fact that heap_form_tuple fills in the appropriate tuple header fields
    2199                 :  * for a composite Datum.  However, we now require that composite Datums not
    2200                 :  * contain any external TOAST pointers.  We do not want heap_form_tuple itself
    2201                 :  * to enforce that; more specifically, the rule applies only to actual Datums
    2202                 :  * and not to HeapTuple structures.  Therefore, HeapTupleHeaderGetDatum is
    2203                 :  * now a function that detects whether there are externally-toasted fields
    2204                 :  * and constructs a new tuple with inlined fields if so.  We still need
    2205                 :  * heap_form_tuple to insert the Datum header fields, because otherwise this
    2206                 :  * code would have no way to obtain a tupledesc for the tuple.
    2207                 :  *
    2208                 :  * Note that if we do build a new tuple, it's palloc'd in the current
    2209                 :  * memory context.  Beware of code that changes context between the initial
    2210                 :  * heap_form_tuple/etc call and calling HeapTuple(Header)GetDatum.
    2211                 :  *
    2212                 :  * For performance-critical callers, it could be worthwhile to take extra
    2213                 :  * steps to ensure that there aren't TOAST pointers in the output of
    2214                 :  * heap_form_tuple to begin with.  It's likely however that the costs of the
    2215                 :  * typcache lookup and tuple disassembly/reassembly are swamped by TOAST
    2216                 :  * dereference costs, so that the benefits of such extra effort would be
    2217                 :  * minimal.
    2218                 :  *
    2219                 :  * XXX it would likely be better to create wrapper functions that produce
    2220                 :  * a composite Datum from the field values in one step.  However, there's
    2221                 :  * enough code using the existing APIs that we couldn't get rid of this
    2222                 :  * hack anytime soon.
    2223                 :  */
    2224                 : Datum
    2225 GIC      493533 : HeapTupleHeaderGetDatum(HeapTupleHeader tuple)
    2226 ECB             : {
    2227                 :     Datum       result;
    2228                 :     TupleDesc   tupDesc;
    2229                 : 
    2230                 :     /* No work if there are no external TOAST pointers in the tuple */
    2231 GIC      493533 :     if (!HeapTupleHeaderHasExternal(tuple))
    2232 CBC      493527 :         return PointerGetDatum(tuple);
    2233 ECB             : 
    2234                 :     /* Use the type data saved by heap_form_tuple to look up the rowtype */
    2235 GIC           6 :     tupDesc = lookup_rowtype_tupdesc(HeapTupleHeaderGetTypeId(tuple),
    2236 ECB             :                                      HeapTupleHeaderGetTypMod(tuple));
    2237                 : 
    2238                 :     /* And do the flattening */
    2239 GIC           6 :     result = toast_flatten_tuple_to_datum(tuple,
    2240 CBC           6 :                                           HeapTupleHeaderGetDatumLength(tuple),
    2241 ECB             :                                           tupDesc);
    2242                 : 
    2243 GIC           6 :     ReleaseTupleDesc(tupDesc);
    2244 ECB             : 
    2245 GIC           6 :     return result;
    2246 ECB             : }
    2247                 : 
    2248                 : 
    2249                 : /*
    2250                 :  * Functions for sending tuples to the frontend (or other specified destination)
    2251                 :  * as though it is a SELECT result. These are used by utility commands that
    2252                 :  * need to project directly to the destination and don't need or want full
    2253                 :  * table function capability. Currently used by EXPLAIN and SHOW ALL.
    2254                 :  */
    2255                 : TupOutputState *
    2256 GIC       12020 : begin_tup_output_tupdesc(DestReceiver *dest,
    2257 ECB             :                          TupleDesc tupdesc,
    2258                 :                          const TupleTableSlotOps *tts_ops)
    2259                 : {
    2260                 :     TupOutputState *tstate;
    2261                 : 
    2262 GIC       12020 :     tstate = (TupOutputState *) palloc(sizeof(TupOutputState));
    2263 ECB             : 
    2264 GIC       12020 :     tstate->slot = MakeSingleTupleTableSlot(tupdesc, tts_ops);
    2265 CBC       12020 :     tstate->dest = dest;
    2266 ECB             : 
    2267 GIC       12020 :     tstate->dest->rStartup(tstate->dest, (int) CMD_SELECT, tupdesc);
    2268 ECB             : 
    2269 GIC       12020 :     return tstate;
    2270 ECB             : }
    2271                 : 
    2272                 : /*
    2273                 :  * write a single tuple
    2274                 :  */
    2275                 : void
    2276 GIC       63961 : do_tup_output(TupOutputState *tstate, Datum *values, bool *isnull)
    2277 ECB             : {
    2278 GIC       63961 :     TupleTableSlot *slot = tstate->slot;
    2279 CBC       63961 :     int         natts = slot->tts_tupleDescriptor->natts;
    2280 ECB             : 
    2281                 :     /* make sure the slot is clear */
    2282 GIC       63961 :     ExecClearTuple(slot);
    2283 ECB             : 
    2284                 :     /* insert data */
    2285 GIC       63961 :     memcpy(slot->tts_values, values, natts * sizeof(Datum));
    2286 CBC       63961 :     memcpy(slot->tts_isnull, isnull, natts * sizeof(bool));
    2287 ECB             : 
    2288                 :     /* mark slot as containing a virtual tuple */
    2289 GIC       63961 :     ExecStoreVirtualTuple(slot);
    2290 ECB             : 
    2291                 :     /* send the tuple to the receiver */
    2292 GIC       63961 :     (void) tstate->dest->receiveSlot(slot, tstate->dest);
    2293 ECB             : 
    2294                 :     /* clean up */
    2295 GIC       63961 :     ExecClearTuple(slot);
    2296 CBC       63961 : }
    2297 ECB             : 
    2298                 : /*
    2299                 :  * write a chunk of text, breaking at newline characters
    2300                 :  *
    2301                 :  * Should only be used with a single-TEXT-attribute tupdesc.
    2302                 :  */
    2303                 : void
    2304 GIC        9736 : do_text_output_multiline(TupOutputState *tstate, const char *txt)
    2305 ECB             : {
    2306                 :     Datum       values[1];
    2307 GIC        9736 :     bool        isnull[1] = {false};
    2308 ECB             : 
    2309 GIC       70752 :     while (*txt)
    2310 ECB             :     {
    2311                 :         const char *eol;
    2312                 :         int         len;
    2313                 : 
    2314 GIC       61016 :         eol = strchr(txt, '\n');
    2315 CBC       61016 :         if (eol)
    2316 ECB             :         {
    2317 GIC       61016 :             len = eol - txt;
    2318 CBC       61016 :             eol++;
    2319 ECB             :         }
    2320                 :         else
    2321                 :         {
    2322 UIC           0 :             len = strlen(txt);
    2323 UBC           0 :             eol = txt + len;
    2324 EUB             :         }
    2325                 : 
    2326 GIC       61016 :         values[0] = PointerGetDatum(cstring_to_text_with_len(txt, len));
    2327 CBC       61016 :         do_tup_output(tstate, values, isnull);
    2328           61016 :         pfree(DatumGetPointer(values[0]));
    2329           61016 :         txt = eol;
    2330 ECB             :     }
    2331 GIC        9736 : }
    2332 ECB             : 
    2333                 : void
    2334 GIC       12020 : end_tup_output(TupOutputState *tstate)
    2335 ECB             : {
    2336 GIC       12020 :     tstate->dest->rShutdown(tstate->dest);
    2337 ECB             :     /* note that destroying the dest is not ours to do */
    2338 GIC       12020 :     ExecDropSingleTupleTableSlot(tstate->slot);
    2339 CBC       12020 :     pfree(tstate);
    2340           12020 : }
        

Generated by: LCOV version v1.16-55-g56c0a2a