LCOV - differential code coverage report
Current view: top level - src/backend/access/brin - brin_minmax_multi.c (source / functions) Coverage Total Hit UNC UIC UBC GBC GIC GNC CBC EUB ECB DUB DCB
Current: Differential Code Coverage HEAD vs 15 Lines: 76.6 % 894 685 8 43 158 1 57 5 622 47 58 3 5
Current Date: 2023-04-08 15:15:32 Functions: 86.8 % 53 46 5 2 6 2 38 5 6
Baseline: 15
Baseline Date: 2023-04-08 15:09:40
Legend: Lines: hit not hit

           TLA  Line data    Source code
       1                 : /*
       2                 :  * brin_minmax_multi.c
       3                 :  *      Implementation of Multi Min/Max opclass for BRIN
       4                 :  *
       5                 :  * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
       6                 :  * Portions Copyright (c) 1994, Regents of the University of California
       7                 :  *
       8                 :  *
       9                 :  * Implements a variant of minmax opclass, where the summary is composed of
      10                 :  * multiple smaller intervals. This allows us to handle outliers, which
      11                 :  * usually make the simple minmax opclass inefficient.
      12                 :  *
      13                 :  * Consider for example page range with simple minmax interval [1000,2000],
      14                 :  * and assume a new row gets inserted into the range with value 1000000.
      15                 :  * Due to that the interval gets [1000,1000000]. I.e. the minmax interval
      16                 :  * got 1000x wider and won't be useful to eliminate scan keys between 2001
      17                 :  * and 1000000.
      18                 :  *
      19                 :  * With minmax-multi opclass, we may have [1000,2000] interval initially,
      20                 :  * but after adding the new row we start tracking it as two interval:
      21                 :  *
      22                 :  *   [1000,2000] and [1000000,1000000]
      23                 :  *
      24                 :  * This allows us to still eliminate the page range when the scan keys hit
      25                 :  * the gap between 2000 and 1000000, making it useful in cases when the
      26                 :  * simple minmax opclass gets inefficient.
      27                 :  *
      28                 :  * The number of intervals tracked per page range is somewhat flexible.
      29                 :  * What is restricted is the number of values per page range, and the limit
      30                 :  * is currently 32 (see values_per_range reloption). Collapsed intervals
      31                 :  * (with equal minimum and maximum value) are stored as a single value,
      32                 :  * while regular intervals require two values.
      33                 :  *
      34                 :  * When the number of values gets too high (by adding new values to the
      35                 :  * summary), we merge some of the intervals to free space for more values.
      36                 :  * This is done in a greedy way - we simply pick the two closest intervals,
      37                 :  * merge them, and repeat this until the number of values to store gets
      38                 :  * sufficiently low (below 50% of maximum values), but that is mostly
      39                 :  * arbitrary threshold and may be changed easily).
      40                 :  *
      41                 :  * To pick the closest intervals we use the "distance" support procedure,
      42                 :  * which measures space between two ranges (i.e. the length of an interval).
      43                 :  * The computed value may be an approximation - in the worst case we will
      44                 :  * merge two ranges that are slightly less optimal at that step, but the
      45                 :  * index should still produce correct results.
      46                 :  *
      47                 :  * The compactions (reducing the number of values) is fairly expensive, as
      48                 :  * it requires calling the distance functions, sorting etc. So when building
      49                 :  * the summary, we use a significantly larger buffer, and only enforce the
      50                 :  * exact limit at the very end. This improves performance, and it also helps
      51                 :  * with building better ranges (due to the greedy approach).
      52                 :  *
      53                 :  *
      54                 :  * IDENTIFICATION
      55                 :  *    src/backend/access/brin/brin_minmax_multi.c
      56                 :  */
      57                 : #include "postgres.h"
      58                 : 
      59                 : /* needed for PGSQL_AF_INET */
      60                 : #include <sys/socket.h>
      61                 : 
      62                 : #include "access/genam.h"
      63                 : #include "access/brin.h"
      64                 : #include "access/brin_internal.h"
      65                 : #include "access/brin_tuple.h"
      66                 : #include "access/reloptions.h"
      67                 : #include "access/stratnum.h"
      68                 : #include "access/htup_details.h"
      69                 : #include "catalog/pg_type.h"
      70                 : #include "catalog/pg_am.h"
      71                 : #include "catalog/pg_amop.h"
      72                 : #include "utils/array.h"
      73                 : #include "utils/builtins.h"
      74                 : #include "utils/date.h"
      75                 : #include "utils/datum.h"
      76                 : #include "utils/float.h"
      77                 : #include "utils/inet.h"
      78                 : #include "utils/lsyscache.h"
      79                 : #include "utils/memutils.h"
      80                 : #include "utils/numeric.h"
      81                 : #include "utils/pg_lsn.h"
      82                 : #include "utils/rel.h"
      83                 : #include "utils/syscache.h"
      84                 : #include "utils/timestamp.h"
      85                 : #include "utils/uuid.h"
      86                 : 
      87                 : /*
      88                 :  * Additional SQL level support functions
      89                 :  *
      90                 :  * Procedure numbers must not use values reserved for BRIN itself; see
      91                 :  * brin_internal.h.
      92                 :  */
      93                 : #define     MINMAX_MAX_PROCNUMS     1   /* maximum support procs we need */
      94                 : #define     PROCNUM_DISTANCE        11  /* required, distance between values */
      95                 : 
      96                 : /*
      97                 :  * Subtract this from procnum to obtain index in MinmaxMultiOpaque arrays
      98                 :  * (Must be equal to minimum of private procnums).
      99                 :  */
     100                 : #define     PROCNUM_BASE            11
     101                 : 
     102                 : /*
     103                 :  * Sizing the insert buffer - we use 10x the number of values specified
     104                 :  * in the reloption, but we cap it to 8192 not to get too large. When
     105                 :  * the buffer gets full, we reduce the number of values by half.
     106                 :  */
     107                 : #define     MINMAX_BUFFER_FACTOR            10
     108                 : #define     MINMAX_BUFFER_MIN               256
     109                 : #define     MINMAX_BUFFER_MAX               8192
     110                 : #define     MINMAX_BUFFER_LOAD_FACTOR       0.5
     111                 : 
     112                 : typedef struct MinmaxMultiOpaque
     113                 : {
     114                 :     FmgrInfo    extra_procinfos[MINMAX_MAX_PROCNUMS];
     115                 :     bool        extra_proc_missing[MINMAX_MAX_PROCNUMS];
     116                 :     Oid         cached_subtype;
     117                 :     FmgrInfo    strategy_procinfos[BTMaxStrategyNumber];
     118                 : } MinmaxMultiOpaque;
     119                 : 
     120                 : /*
     121                 :  * Storage type for BRIN's minmax reloptions
     122                 :  */
     123                 : typedef struct MinMaxMultiOptions
     124                 : {
     125                 :     int32       vl_len_;        /* varlena header (do not touch directly!) */
     126                 :     int         valuesPerRange; /* number of values per range */
     127                 : } MinMaxMultiOptions;
     128                 : 
     129                 : #define MINMAX_MULTI_DEFAULT_VALUES_PER_PAGE        32
     130                 : 
     131                 : #define MinMaxMultiGetValuesPerRange(opts) \
     132                 :         ((opts) && (((MinMaxMultiOptions *) (opts))->valuesPerRange != 0) ? \
     133                 :          ((MinMaxMultiOptions *) (opts))->valuesPerRange : \
     134                 :          MINMAX_MULTI_DEFAULT_VALUES_PER_PAGE)
     135                 : 
     136                 : #define SAMESIGN(a,b) (((a) < 0) == ((b) < 0))
     137                 : 
     138                 : /*
     139                 :  * The summary of minmax-multi indexes has two representations - Ranges for
     140                 :  * convenient processing, and SerializedRanges for storage in bytea value.
     141                 :  *
     142                 :  * The Ranges struct stores the boundary values in a single array, but we
     143                 :  * treat regular and single-point ranges differently to save space. For
     144                 :  * regular ranges (with different boundary values) we have to store both
     145                 :  * the lower and upper bound of the range, while for "single-point ranges"
     146                 :  * we only need to store a single value.
     147                 :  *
     148                 :  * The 'values' array stores boundary values for regular ranges first (there
     149                 :  * are 2*nranges values to store), and then the nvalues boundary values for
     150                 :  * single-point ranges. That is, we have (2*nranges + nvalues) boundary
     151                 :  * values in the array.
     152                 :  *
     153                 :  * +-------------------------+----------------------------------+
     154                 :  * | ranges (2 * nranges of) | single point values (nvalues of) |
     155                 :  * +-------------------------+----------------------------------+
     156                 :  *
     157                 :  * This allows us to quickly add new values, and store outliers without
     158                 :  * having to widen any of the existing range values.
     159                 :  *
     160                 :  * 'nsorted' denotes how many of 'nvalues' in the values[] array are sorted.
     161                 :  * When nsorted == nvalues, all single point values are sorted.
     162                 :  *
     163                 :  * We never store more than maxvalues values (as set by values_per_range
     164                 :  * reloption). If needed we merge some of the ranges.
     165                 :  *
     166                 :  * To minimize palloc overhead, we always allocate the full array with
     167                 :  * space for maxvalues elements. This should be fine as long as the
     168                 :  * maxvalues is reasonably small (64 seems fine), which is the case
     169                 :  * thanks to values_per_range reloption being limited to 256.
     170                 :  */
     171                 : typedef struct Ranges
     172                 : {
     173                 :     /* Cache information that we need quite often. */
     174                 :     Oid         typid;
     175                 :     Oid         colloid;
     176                 :     AttrNumber  attno;
     177                 :     FmgrInfo   *cmp;
     178                 : 
     179                 :     /* (2*nranges + nvalues) <= maxvalues */
     180                 :     int         nranges;        /* number of ranges in the values[] array */
     181                 :     int         nsorted;        /* number of nvalues which are sorted */
     182                 :     int         nvalues;        /* number of point values in values[] array */
     183                 :     int         maxvalues;      /* number of elements in the values[] array */
     184                 : 
     185                 :     /*
     186                 :      * We simply add the values into a large buffer, without any expensive
     187                 :      * steps (sorting, deduplication, ...). The buffer is a multiple of the
     188                 :      * target number of values, so the compaction happens less often,
     189                 :      * amortizing the costs. We keep the actual target and compact to the
     190                 :      * requested number of values at the very end, before serializing to
     191                 :      * on-disk representation.
     192                 :      */
     193                 :     /* requested number of values */
     194                 :     int         target_maxvalues;
     195                 : 
     196                 :     /* values stored for this range - either raw values, or ranges */
     197                 :     Datum       values[FLEXIBLE_ARRAY_MEMBER];
     198                 : } Ranges;
     199                 : 
     200                 : /*
     201                 :  * On-disk the summary is stored as a bytea value, with a simple header
     202                 :  * with basic metadata, followed by the boundary values. It has a varlena
     203                 :  * header, so can be treated as varlena directly.
     204                 :  *
     205                 :  * See brin_range_serialize/brin_range_deserialize for serialization details.
     206                 :  */
     207                 : typedef struct SerializedRanges
     208                 : {
     209                 :     /* varlena header (do not touch directly!) */
     210                 :     int32       vl_len_;
     211                 : 
     212                 :     /* type of values stored in the data array */
     213                 :     Oid         typid;
     214                 : 
     215                 :     /* (2*nranges + nvalues) <= maxvalues */
     216                 :     int         nranges;        /* number of ranges in the array (stored) */
     217                 :     int         nvalues;        /* number of values in the data array (all) */
     218                 :     int         maxvalues;      /* maximum number of values (reloption) */
     219                 : 
     220                 :     /* contains the actual data */
     221                 :     char        data[FLEXIBLE_ARRAY_MEMBER];
     222                 : } SerializedRanges;
     223                 : 
     224                 : static SerializedRanges *brin_range_serialize(Ranges *range);
     225                 : 
     226                 : static Ranges *brin_range_deserialize(int maxvalues,
     227                 :                                       SerializedRanges *serialized);
     228                 : 
     229                 : 
     230                 : /*
     231                 :  * Used to represent ranges expanded to make merging and combining easier.
     232                 :  *
     233                 :  * Each expanded range is essentially an interval, represented by min/max
     234                 :  * values, along with a flag whether it's a collapsed range (in which case
     235                 :  * the min and max values are equal). We have the flag to handle by-ref
     236                 :  * data types - we can't simply compare the datums, and this saves some
     237                 :  * calls to the type-specific comparator function.
     238                 :  */
     239                 : typedef struct ExpandedRange
     240                 : {
     241                 :     Datum       minval;         /* lower boundary */
     242                 :     Datum       maxval;         /* upper boundary */
     243                 :     bool        collapsed;      /* true if minval==maxval */
     244                 : } ExpandedRange;
     245                 : 
     246                 : /*
     247                 :  * Represents a distance between two ranges (identified by index into
     248                 :  * an array of extended ranges).
     249                 :  */
     250                 : typedef struct DistanceValue
     251                 : {
     252                 :     int         index;
     253                 :     double      value;
     254                 : } DistanceValue;
     255                 : 
     256                 : 
     257                 : /* Cache for support and strategy procedures. */
     258                 : 
     259                 : static FmgrInfo *minmax_multi_get_procinfo(BrinDesc *bdesc, uint16 attno,
     260                 :                                            uint16 procnum);
     261                 : 
     262                 : static FmgrInfo *minmax_multi_get_strategy_procinfo(BrinDesc *bdesc,
     263                 :                                                     uint16 attno, Oid subtype,
     264                 :                                                     uint16 strategynum);
     265                 : 
     266                 : typedef struct compare_context
     267                 : {
     268                 :     FmgrInfo   *cmpFn;
     269                 :     Oid         colloid;
     270                 : } compare_context;
     271                 : 
     272                 : static int  compare_values(const void *a, const void *b, void *arg);
     273                 : 
     274                 : 
     275                 : #ifdef USE_ASSERT_CHECKING
     276                 : /*
     277                 :  * Check that the order of the array values is correct, using the cmp
     278                 :  * function (which should be BTLessStrategyNumber).
     279                 :  */
     280                 : static void
     281 GIC      189966 : AssertArrayOrder(FmgrInfo *cmp, Oid colloid, Datum *values, int nvalues)
     282 ECB             : {
     283                 :     int         i;
     284                 :     Datum       lt;
     285                 : 
     286 GIC     4848756 :     for (i = 0; i < (nvalues - 1); i++)
     287 ECB             :     {
     288 GIC     4658790 :         lt = FunctionCall2Coll(cmp, colloid, values[i], values[i + 1]);
     289 CBC     4658790 :         Assert(DatumGetBool(lt));
     290 ECB             :     }
     291 GIC      189966 : }
     292 ECB             : #endif
     293                 : 
     294                 : /*
     295                 :  * Comprehensive check of the Ranges structure.
     296                 :  */
     297                 : static void
     298 GIC       94983 : AssertCheckRanges(Ranges *ranges, FmgrInfo *cmpFn, Oid colloid)
     299 ECB             : {
     300                 : #ifdef USE_ASSERT_CHECKING
     301                 :     int         i;
     302                 : 
     303                 :     /* some basic sanity checks */
     304 GIC       94983 :     Assert(ranges->nranges >= 0);
     305 CBC       94983 :     Assert(ranges->nsorted >= 0);
     306           94983 :     Assert(ranges->nvalues >= ranges->nsorted);
     307           94983 :     Assert(ranges->maxvalues >= 2 * ranges->nranges + ranges->nvalues);
     308           94983 :     Assert(ranges->typid != InvalidOid);
     309 ECB             : 
     310                 :     /*
     311                 :      * First the ranges - there are 2*nranges boundary values, and the values
     312                 :      * have to be strictly ordered (equal values would mean the range is
     313                 :      * collapsed, and should be stored as a point). This also guarantees that
     314                 :      * the ranges do not overlap.
     315                 :      */
     316 GIC       94983 :     AssertArrayOrder(cmpFn, colloid, ranges->values, 2 * ranges->nranges);
     317 ECB             : 
     318                 :     /* then the single-point ranges (with nvalues boundary values ) */
     319 GIC       94983 :     AssertArrayOrder(cmpFn, colloid, &ranges->values[2 * ranges->nranges],
     320 ECB             :                      ranges->nsorted);
     321                 : 
     322                 :     /*
     323                 :      * Check that none of the values are not covered by ranges (both sorted
     324                 :      * and unsorted)
     325                 :      */
     326 GIC       94983 :     if (ranges->nranges > 0)
     327 ECB             :     {
     328 GIC    11620965 :         for (i = 0; i < ranges->nvalues; i++)
     329 ECB             :         {
     330                 :             Datum       compar;
     331                 :             int         start,
     332                 :                         end;
     333 GIC    11562582 :             Datum       minvalue = ranges->values[0];
     334 CBC    11562582 :             Datum       maxvalue = ranges->values[2 * ranges->nranges - 1];
     335        11562582 :             Datum       value = ranges->values[2 * ranges->nranges + i];
     336 ECB             : 
     337 GIC    11562582 :             compar = FunctionCall2Coll(cmpFn, colloid, value, minvalue);
     338 ECB             : 
     339                 :             /*
     340                 :              * If the value is smaller than the lower bound in the first range
     341                 :              * then it cannot possibly be in any of the ranges.
     342                 :              */
     343 GIC    11562582 :             if (DatumGetBool(compar))
     344 CBC     4607328 :                 continue;
     345 ECB             : 
     346 GIC     6955254 :             compar = FunctionCall2Coll(cmpFn, colloid, maxvalue, value);
     347 ECB             : 
     348                 :             /*
     349                 :              * Likewise, if the value is larger than the upper bound of the
     350                 :              * final range, then it cannot possibly be inside any of the
     351                 :              * ranges.
     352                 :              */
     353 GIC     6955254 :             if (DatumGetBool(compar))
     354 CBC     6955155 :                 continue;
     355 ECB             : 
     356                 :             /* bsearch the ranges to see if 'value' fits within any of them */
     357 GIC          99 :             start = 0;          /* first range */
     358 CBC          99 :             end = ranges->nranges - 1;   /* last range */
     359 ECB             :             while (true)
     360 GIC         357 :             {
     361 CBC         456 :                 int         midpoint = (start + end) / 2;
     362 ECB             : 
     363                 :                 /* this means we ran out of ranges in the last step */
     364 GIC         456 :                 if (start > end)
     365 CBC          99 :                     break;
     366 ECB             : 
     367                 :                 /* copy the min/max values from the ranges */
     368 GIC         357 :                 minvalue = ranges->values[2 * midpoint];
     369 CBC         357 :                 maxvalue = ranges->values[2 * midpoint + 1];
     370 ECB             : 
     371                 :                 /*
     372                 :                  * Is the value smaller than the minval? If yes, we'll recurse
     373                 :                  * to the left side of range array.
     374                 :                  */
     375 GIC         357 :                 compar = FunctionCall2Coll(cmpFn, colloid, value, minvalue);
     376 ECB             : 
     377                 :                 /* smaller than the smallest value in this range */
     378 GIC         357 :                 if (DatumGetBool(compar))
     379 ECB             :                 {
     380 GIC         135 :                     end = (midpoint - 1);
     381 CBC         135 :                     continue;
     382 ECB             :                 }
     383                 : 
     384                 :                 /*
     385                 :                  * Is the value greater than the minval? If yes, we'll recurse
     386                 :                  * to the right side of range array.
     387                 :                  */
     388 GIC         222 :                 compar = FunctionCall2Coll(cmpFn, colloid, maxvalue, value);
     389 ECB             : 
     390                 :                 /* larger than the largest value in this range */
     391 GIC         222 :                 if (DatumGetBool(compar))
     392 ECB             :                 {
     393 GIC         222 :                     start = (midpoint + 1);
     394 CBC         222 :                     continue;
     395 ECB             :                 }
     396                 : 
     397                 :                 /* hey, we found a matching range */
     398 UIC           0 :                 Assert(false);
     399 EUB             :             }
     400                 :         }
     401                 :     }
     402                 : 
     403                 :     /* and values in the unsorted part must not be in the sorted part */
     404 GIC       94983 :     if (ranges->nsorted > 0)
     405 ECB             :     {
     406                 :         compare_context cxt;
     407                 : 
     408 GIC       92739 :         cxt.colloid = ranges->colloid;
     409 CBC       92739 :         cxt.cmpFn = ranges->cmp;
     410 ECB             : 
     411 GIC     7954167 :         for (i = ranges->nsorted; i < ranges->nvalues; i++)
     412 ECB             :         {
     413 GIC     7861428 :             Datum       value = ranges->values[2 * ranges->nranges + i];
     414 ECB             : 
     415 GIC     7861428 :             Assert(bsearch_arg(&value, &ranges->values[2 * ranges->nranges],
     416 ECB             :                                ranges->nsorted, sizeof(Datum),
     417                 :                                compare_values, (void *) &cxt) == NULL);
     418                 :         }
     419                 :     }
     420                 : #endif
     421 GIC       94983 : }
     422 ECB             : 
     423                 : /*
     424                 :  * Check that the expanded ranges (built when reducing the number of ranges
     425                 :  * by combining some of them) are correctly sorted and do not overlap.
     426                 :  */
     427                 : static void
     428 UIC           0 : AssertCheckExpandedRanges(BrinDesc *bdesc, Oid colloid, AttrNumber attno,
     429 EUB             :                           Form_pg_attribute attr, ExpandedRange *ranges,
     430                 :                           int nranges)
     431                 : {
     432                 : #ifdef USE_ASSERT_CHECKING
     433                 :     int         i;
     434                 :     FmgrInfo   *eq;
     435                 :     FmgrInfo   *lt;
     436                 : 
     437 UIC           0 :     eq = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
     438 EUB             :                                             BTEqualStrategyNumber);
     439                 : 
     440 UIC           0 :     lt = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
     441 EUB             :                                             BTLessStrategyNumber);
     442                 : 
     443                 :     /*
     444                 :      * Each range independently should be valid, i.e. that for the boundary
     445                 :      * values (lower <= upper).
     446                 :      */
     447 UIC           0 :     for (i = 0; i < nranges; i++)
     448 EUB             :     {
     449                 :         Datum       r;
     450 UIC           0 :         Datum       minval = ranges[i].minval;
     451 UBC           0 :         Datum       maxval = ranges[i].maxval;
     452 EUB             : 
     453 UIC           0 :         if (ranges[i].collapsed)    /* collapsed: minval == maxval */
     454 UBC           0 :             r = FunctionCall2Coll(eq, colloid, minval, maxval);
     455 EUB             :         else                    /* non-collapsed: minval < maxval */
     456 UIC           0 :             r = FunctionCall2Coll(lt, colloid, minval, maxval);
     457 EUB             : 
     458 UIC           0 :         Assert(DatumGetBool(r));
     459 EUB             :     }
     460                 : 
     461                 :     /*
     462                 :      * And the ranges should be ordered and must not overlap, i.e. upper <
     463                 :      * lower for boundaries of consecutive ranges.
     464                 :      */
     465 UIC           0 :     for (i = 0; i < nranges - 1; i++)
     466 EUB             :     {
     467                 :         Datum       r;
     468 UIC           0 :         Datum       maxval = ranges[i].maxval;
     469 UBC           0 :         Datum       minval = ranges[i + 1].minval;
     470 EUB             : 
     471 UIC           0 :         r = FunctionCall2Coll(lt, colloid, maxval, minval);
     472 EUB             : 
     473 UIC           0 :         Assert(DatumGetBool(r));
     474 EUB             :     }
     475                 : #endif
     476 UIC           0 : }
     477 EUB             : 
     478                 : 
     479                 : /*
     480                 :  * minmax_multi_init
     481                 :  *      Initialize the deserialized range list, allocate all the memory.
     482                 :  *
     483                 :  * This is only in-memory representation of the ranges, so we allocate
     484                 :  * enough space for the maximum number of values (so as not to have to do
     485                 :  * repallocs as the ranges grow).
     486                 :  */
     487                 : static Ranges *
     488 GIC       23187 : minmax_multi_init(int maxvalues)
     489 ECB             : {
     490                 :     Size        len;
     491                 :     Ranges     *ranges;
     492                 : 
     493 GIC       23187 :     Assert(maxvalues > 0);
     494 ECB             : 
     495 GIC       23187 :     len = offsetof(Ranges, values); /* fixed header */
     496 CBC       23187 :     len += maxvalues * sizeof(Datum);   /* Datum values */
     497 ECB             : 
     498 GIC       23187 :     ranges = (Ranges *) palloc0(len);
     499 ECB             : 
     500 GIC       23187 :     ranges->maxvalues = maxvalues;
     501 ECB             : 
     502 GIC       23187 :     return ranges;
     503 ECB             : }
     504                 : 
     505                 : 
     506                 : /*
     507                 :  * range_deduplicate_values
     508                 :  *      Deduplicate the part with values in the simple points.
     509                 :  *
     510                 :  * This is meant to be a cheaper way of reducing the size of the ranges. It
     511                 :  * does not touch the ranges, and only sorts the other values - it does not
     512                 :  * call the distance functions, which may be quite expensive, etc.
     513                 :  *
     514                 :  * We do know the values are not duplicate with the ranges, because we check
     515                 :  * that before adding a new value. Same for the sorted part of values.
     516                 :  */
     517                 : static void
     518 GIC        8658 : range_deduplicate_values(Ranges *range)
     519 ECB             : {
     520                 :     int         i,
     521                 :                 n;
     522                 :     int         start;
     523                 :     compare_context cxt;
     524                 : 
     525                 :     /*
     526                 :      * If there are no unsorted values, we're done (this probably can't
     527                 :      * happen, as we're adding values to unsorted part).
     528                 :      */
     529 GIC        8658 :     if (range->nsorted == range->nvalues)
     530 CBC        8535 :         return;
     531 ECB             : 
     532                 :     /* sort the values */
     533 GIC         123 :     cxt.colloid = range->colloid;
     534 CBC         123 :     cxt.cmpFn = range->cmp;
     535 ECB             : 
     536                 :     /* the values start right after the ranges (which are always sorted) */
     537 GIC         123 :     start = 2 * range->nranges;
     538 ECB             : 
     539                 :     /*
     540                 :      * XXX This might do a merge sort, to leverage that the first part of the
     541                 :      * array is already sorted. If the sorted part is large, it might be quite
     542                 :      * a bit faster.
     543                 :      */
     544 GIC         123 :     qsort_arg(&range->values[start],
     545 CBC         123 :               range->nvalues, sizeof(Datum),
     546                 :               compare_values, &cxt);
     547                 : 
     548 GIC         123 :     n = 1;
     549 CBC       39120 :     for (i = 1; i < range->nvalues; i++)
     550 ECB             :     {
     551                 :         /* same as preceding value, so store it */
     552 GIC       38997 :         if (compare_values(&range->values[start + i - 1],
     553 CBC       38997 :                            &range->values[start + i],
     554 ECB             :                            (void *) &cxt) == 0)
     555 UIC           0 :             continue;
     556 EUB             : 
     557 GIC       38997 :         range->values[start + n] = range->values[start + i];
     558 ECB             : 
     559 GIC       38997 :         n++;
     560 ECB             :     }
     561                 : 
     562                 :     /* now all the values are sorted */
     563 GIC         123 :     range->nvalues = n;
     564 CBC         123 :     range->nsorted = n;
     565 ECB             : 
     566 GIC         123 :     AssertCheckRanges(range, range->cmp, range->colloid);
     567 ECB             : }
     568                 : 
     569                 : 
     570                 : /*
     571                 :  * brin_range_serialize
     572                 :  *    Serialize the in-memory representation into a compact varlena value.
     573                 :  *
     574                 :  * Simply copy the header and then also the individual values, as stored
     575                 :  * in the in-memory value array.
     576                 :  */
     577                 : static SerializedRanges *
     578 GIC        8535 : brin_range_serialize(Ranges *range)
     579 ECB             : {
     580                 :     Size        len;
     581                 :     int         nvalues;
     582                 :     SerializedRanges *serialized;
     583                 :     Oid         typid;
     584                 :     int         typlen;
     585                 :     bool        typbyval;
     586                 : 
     587                 :     char       *ptr;
     588                 : 
     589                 :     /* simple sanity checks */
     590 CBC        8535 :     Assert(range->nranges >= 0);
     591            8535 :     Assert(range->nsorted >= 0);
     592            8535 :     Assert(range->nvalues >= 0);
     593            8535 :     Assert(range->maxvalues > 0);
     594            8535 :     Assert(range->target_maxvalues > 0);
     595                 : 
     596                 :     /* at this point the range should be compacted to the target size */
     597            8535 :     Assert(2 * range->nranges + range->nvalues <= range->target_maxvalues);
     598                 : 
     599            8535 :     Assert(range->target_maxvalues <= range->maxvalues);
     600                 : 
     601                 :     /* range boundaries are always sorted */
     602            8535 :     Assert(range->nvalues >= range->nsorted);
     603                 : 
     604                 :     /* deduplicate values, if there's unsorted part */
     605            8535 :     range_deduplicate_values(range);
     606                 : 
     607                 :     /* see how many Datum values we actually have */
     608            8535 :     nvalues = 2 * range->nranges + range->nvalues;
     609                 : 
     610            8535 :     typid = range->typid;
     611            8535 :     typbyval = get_typbyval(typid);
     612            8535 :     typlen = get_typlen(typid);
     613                 : 
     614                 :     /* header is always needed */
     615            8535 :     len = offsetof(SerializedRanges, data);
     616                 : 
     617                 :     /*
     618                 :      * The space needed depends on data type - for fixed-length data types
     619                 :      * (by-value and some by-reference) it's pretty simple, just multiply
     620                 :      * (attlen * nvalues) and we're done. For variable-length by-reference
     621                 :      * types we need to actually walk all the values and sum the lengths.
     622                 :      */
     623            8535 :     if (typlen == -1)           /* varlena */
     624                 :     {
     625                 :         int         i;
     626                 : 
     627            5928 :         for (i = 0; i < nvalues; i++)
     628                 :         {
     629            4644 :             len += VARSIZE_ANY(range->values[i]);
     630                 :         }
     631                 :     }
     632            7251 :     else if (typlen == -2)      /* cstring */
     633                 :     {
     634                 :         int         i;
     635                 : 
     636 UBC           0 :         for (i = 0; i < nvalues; i++)
     637                 :         {
     638                 :             /* don't forget to include the null terminator ;-) */
     639               0 :             len += strlen(DatumGetCString(range->values[i])) + 1;
     640                 :         }
     641                 :     }
     642                 :     else                        /* fixed-length types (even by-reference) */
     643                 :     {
     644 CBC        7251 :         Assert(typlen > 0);
     645            7251 :         len += nvalues * typlen;
     646                 :     }
     647                 : 
     648                 :     /*
     649                 :      * Allocate the serialized object, copy the basic information. The
     650                 :      * serialized object is a varlena, so update the header.
     651                 :      */
     652            8535 :     serialized = (SerializedRanges *) palloc0(len);
     653            8535 :     SET_VARSIZE(serialized, len);
     654                 : 
     655            8535 :     serialized->typid = typid;
     656            8535 :     serialized->nranges = range->nranges;
     657            8535 :     serialized->nvalues = range->nvalues;
     658            8535 :     serialized->maxvalues = range->target_maxvalues;
     659                 : 
     660                 :     /*
     661                 :      * And now copy also the boundary values (like the length calculation this
     662                 :      * depends on the particular data type).
     663                 :      */
     664            8535 :     ptr = serialized->data;      /* start of the serialized data */
     665                 : 
     666 GNC       37056 :     for (int i = 0; i < nvalues; i++)
     667                 :     {
     668 CBC       28521 :         if (typbyval)           /* simple by-value data types */
     669                 :         {
     670                 :             Datum       tmp;
     671                 : 
     672                 :             /*
     673                 :              * For byval types, we need to copy just the significant bytes -
     674                 :              * we can't use memcpy directly, as that assumes little-endian
     675                 :              * behavior.  store_att_byval does almost what we need, but it
     676                 :              * requires a properly aligned buffer - the output buffer does not
     677                 :              * guarantee that. So we simply use a local Datum variable (which
     678                 :              * guarantees proper alignment), and then copy the value from it.
     679                 :              */
     680           15693 :             store_att_byval(&tmp, range->values[i], typlen);
     681                 : 
     682           15693 :             memcpy(ptr, &tmp, typlen);
     683           15693 :             ptr += typlen;
     684                 :         }
     685           12828 :         else if (typlen > 0) /* fixed-length by-ref types */
     686                 :         {
     687            8184 :             memcpy(ptr, DatumGetPointer(range->values[i]), typlen);
     688            8184 :             ptr += typlen;
     689                 :         }
     690            4644 :         else if (typlen == -1)  /* varlena */
     691                 :         {
     692            4644 :             int         tmp = VARSIZE_ANY(DatumGetPointer(range->values[i]));
     693                 : 
     694            4644 :             memcpy(ptr, DatumGetPointer(range->values[i]), tmp);
     695            4644 :             ptr += tmp;
     696                 :         }
     697 UBC           0 :         else if (typlen == -2)  /* cstring */
     698                 :         {
     699               0 :             int         tmp = strlen(DatumGetCString(range->values[i])) + 1;
     700                 : 
     701               0 :             memcpy(ptr, DatumGetCString(range->values[i]), tmp);
     702               0 :             ptr += tmp;
     703                 :         }
     704                 : 
     705                 :         /* make sure we haven't overflown the buffer end */
     706 CBC       28521 :         Assert(ptr <= ((char *) serialized + len));
     707                 :     }
     708                 : 
     709                 :     /* exact size */
     710            8535 :     Assert(ptr == ((char *) serialized + len));
     711                 : 
     712            8535 :     return serialized;
     713                 : }
     714                 : 
     715                 : /*
     716                 :  * brin_range_deserialize
     717                 :  *    Serialize the in-memory representation into a compact varlena value.
     718                 :  *
     719                 :  * Simply copy the header and then also the individual values, as stored
     720                 :  * in the in-memory value array.
     721                 :  */
     722                 : static Ranges *
     723           20961 : brin_range_deserialize(int maxvalues, SerializedRanges *serialized)
     724                 : {
     725                 :     int         i,
     726                 :                 nvalues;
     727                 :     char       *ptr,
     728                 :                *dataptr;
     729                 :     bool        typbyval;
     730                 :     int         typlen;
     731                 :     Size        datalen;
     732                 : 
     733                 :     Ranges     *range;
     734                 : 
     735           20961 :     Assert(serialized->nranges >= 0);
     736           20961 :     Assert(serialized->nvalues >= 0);
     737           20961 :     Assert(serialized->maxvalues > 0);
     738                 : 
     739           20961 :     nvalues = 2 * serialized->nranges + serialized->nvalues;
     740                 : 
     741           20961 :     Assert(nvalues <= serialized->maxvalues);
     742           20961 :     Assert(serialized->maxvalues <= maxvalues);
     743                 : 
     744           20961 :     range = minmax_multi_init(maxvalues);
     745                 : 
     746                 :     /* copy the header info */
     747           20961 :     range->nranges = serialized->nranges;
     748           20961 :     range->nvalues = serialized->nvalues;
     749           20961 :     range->nsorted = serialized->nvalues;
     750           20961 :     range->maxvalues = maxvalues;
     751           20961 :     range->target_maxvalues = serialized->maxvalues;
     752                 : 
     753           20961 :     range->typid = serialized->typid;
     754                 : 
     755           20961 :     typbyval = get_typbyval(serialized->typid);
     756           20961 :     typlen = get_typlen(serialized->typid);
     757                 : 
     758                 :     /*
     759                 :      * And now deconstruct the values into Datum array. We have to copy the
     760                 :      * data because the serialized representation ignores alignment, and we
     761                 :      * don't want to rely on it being kept around anyway.
     762                 :      */
     763           20961 :     ptr = serialized->data;
     764                 : 
     765                 :     /*
     766                 :      * We don't want to allocate many pieces, so we just allocate everything
     767                 :      * in one chunk. How much space will we need?
     768                 :      *
     769                 :      * XXX We don't need to copy simple by-value data types.
     770                 :      */
     771           20961 :     datalen = 0;
     772           20961 :     dataptr = NULL;
     773           47481 :     for (i = 0; (i < nvalues) && (!typbyval); i++)
     774                 :     {
     775           26520 :         if (typlen > 0)          /* fixed-length by-ref types */
     776           14706 :             datalen += MAXALIGN(typlen);
     777           11814 :         else if (typlen == -1)  /* varlena */
     778                 :         {
     779 GNC       11814 :             datalen += MAXALIGN(VARSIZE_ANY(ptr));
     780           11814 :             ptr += VARSIZE_ANY(ptr);
     781                 :         }
     782 UBC           0 :         else if (typlen == -2)  /* cstring */
     783                 :         {
     784 UNC           0 :             Size        slen = strlen(ptr) + 1;
     785                 : 
     786 UBC           0 :             datalen += MAXALIGN(slen);
     787               0 :             ptr += slen;
     788                 :         }
     789                 :     }
     790                 : 
     791 CBC       20961 :     if (datalen > 0)
     792            8184 :         dataptr = palloc(datalen);
     793                 : 
     794                 :     /*
     795                 :      * Restore the source pointer (might have been modified when calculating
     796                 :      * the space we need to allocate).
     797                 :      */
     798           20961 :     ptr = serialized->data;
     799                 : 
     800           86412 :     for (i = 0; i < nvalues; i++)
     801                 :     {
     802           65451 :         if (typbyval)           /* simple by-value data types */
     803                 :         {
     804           38931 :             Datum       v = 0;
     805                 : 
     806           38931 :             memcpy(&v, ptr, typlen);
     807                 : 
     808           38931 :             range->values[i] = fetch_att(&v, true, typlen);
     809           38931 :             ptr += typlen;
     810                 :         }
     811           26520 :         else if (typlen > 0) /* fixed-length by-ref types */
     812                 :         {
     813           14706 :             range->values[i] = PointerGetDatum(dataptr);
     814                 : 
     815           14706 :             memcpy(dataptr, ptr, typlen);
     816           14706 :             dataptr += MAXALIGN(typlen);
     817                 : 
     818           14706 :             ptr += typlen;
     819                 :         }
     820           11814 :         else if (typlen == -1)  /* varlena */
     821                 :         {
     822           11814 :             range->values[i] = PointerGetDatum(dataptr);
     823                 : 
     824           11814 :             memcpy(dataptr, ptr, VARSIZE_ANY(ptr));
     825           11814 :             dataptr += MAXALIGN(VARSIZE_ANY(ptr));
     826           11814 :             ptr += VARSIZE_ANY(ptr);
     827                 :         }
     828 UBC           0 :         else if (typlen == -2)  /* cstring */
     829                 :         {
     830               0 :             Size        slen = strlen(ptr) + 1;
     831                 : 
     832               0 :             range->values[i] = PointerGetDatum(dataptr);
     833                 : 
     834               0 :             memcpy(dataptr, ptr, slen);
     835               0 :             dataptr += MAXALIGN(slen);
     836               0 :             ptr += slen;
     837                 :         }
     838                 : 
     839                 :         /* make sure we haven't overflown the buffer end */
     840 CBC       65451 :         Assert(ptr <= ((char *) serialized + VARSIZE_ANY(serialized)));
     841                 :     }
     842                 : 
     843                 :     /* should have consumed the whole input value exactly */
     844           20961 :     Assert(ptr == ((char *) serialized + VARSIZE_ANY(serialized)));
     845                 : 
     846                 :     /* return the deserialized value */
     847           20961 :     return range;
     848                 : }
     849                 : 
     850                 : /*
     851                 :  * compare_expanded_ranges
     852                 :  *    Compare the expanded ranges - first by minimum, then by maximum.
     853                 :  *
     854                 :  * We do guarantee that ranges in a single Ranges object do not overlap, so it
     855                 :  * may seem strange that we don't order just by minimum. But when merging two
     856                 :  * Ranges (which happens in the union function), the ranges may in fact
     857                 :  * overlap. So we do compare both.
     858                 :  */
     859                 : static int
     860          310020 : compare_expanded_ranges(const void *a, const void *b, void *arg)
     861                 : {
     862          310020 :     ExpandedRange *ra = (ExpandedRange *) a;
     863          310020 :     ExpandedRange *rb = (ExpandedRange *) b;
     864                 :     Datum       r;
     865                 : 
     866          310020 :     compare_context *cxt = (compare_context *) arg;
     867                 : 
     868                 :     /* first compare minvals */
     869          310020 :     r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, ra->minval, rb->minval);
     870                 : 
     871          310020 :     if (DatumGetBool(r))
     872          227331 :         return -1;
     873                 : 
     874           82689 :     r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, rb->minval, ra->minval);
     875                 : 
     876           82689 :     if (DatumGetBool(r))
     877           81315 :         return 1;
     878                 : 
     879                 :     /* then compare maxvals */
     880            1374 :     r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, ra->maxval, rb->maxval);
     881                 : 
     882            1374 :     if (DatumGetBool(r))
     883 UBC           0 :         return -1;
     884                 : 
     885 CBC        1374 :     r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, rb->maxval, ra->maxval);
     886                 : 
     887            1374 :     if (DatumGetBool(r))
     888 UBC           0 :         return 1;
     889                 : 
     890 CBC        1374 :     return 0;
     891                 : }
     892                 : 
     893                 : /*
     894                 :  * compare_values
     895                 :  *    Compare the values.
     896                 :  */
     897                 : static int
     898        43198377 : compare_values(const void *a, const void *b, void *arg)
     899                 : {
     900        43198377 :     Datum      *da = (Datum *) a;
     901        43198377 :     Datum      *db = (Datum *) b;
     902                 :     Datum       r;
     903                 : 
     904        43198377 :     compare_context *cxt = (compare_context *) arg;
     905                 : 
     906        43198377 :     r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, *da, *db);
     907                 : 
     908        43198377 :     if (DatumGetBool(r))
     909          674631 :         return -1;
     910                 : 
     911        42523746 :     r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, *db, *da);
     912                 : 
     913        42523746 :     if (DatumGetBool(r))
     914        42495945 :         return 1;
     915                 : 
     916           27801 :     return 0;
     917                 : }
     918                 : 
     919                 : /*
     920                 :  * Check if the new value matches one of the existing ranges.
     921                 :  */
     922                 : static bool
     923           92193 : has_matching_range(BrinDesc *bdesc, Oid colloid, Ranges *ranges,
     924                 :                    Datum newval, AttrNumber attno, Oid typid)
     925                 : {
     926                 :     Datum       compar;
     927                 : 
     928                 :     Datum       minvalue;
     929                 :     Datum       maxvalue;
     930                 : 
     931                 :     FmgrInfo   *cmpLessFn;
     932                 :     FmgrInfo   *cmpGreaterFn;
     933                 : 
     934                 :     /* binary search on ranges */
     935                 :     int         start,
     936                 :                 end;
     937                 : 
     938           92193 :     if (ranges->nranges == 0)
     939           34113 :         return false;
     940                 : 
     941           58080 :     minvalue = ranges->values[0];
     942           58080 :     maxvalue = ranges->values[2 * ranges->nranges - 1];
     943                 : 
     944                 :     /*
     945                 :      * Otherwise, need to compare the new value with boundaries of all the
     946                 :      * ranges. First check if it's less than the absolute minimum, which is
     947                 :      * the first value in the array.
     948                 :      */
     949           58080 :     cmpLessFn = minmax_multi_get_strategy_procinfo(bdesc, attno, typid,
     950                 :                                                    BTLessStrategyNumber);
     951           58080 :     compar = FunctionCall2Coll(cmpLessFn, colloid, newval, minvalue);
     952                 : 
     953                 :     /* smaller than the smallest value in the range list */
     954           58080 :     if (DatumGetBool(compar))
     955 UBC           0 :         return false;
     956                 : 
     957                 :     /*
     958                 :      * And now compare it to the existing maximum (last value in the data
     959                 :      * array). But only if we haven't already ruled out a possible match in
     960                 :      * the minvalue check.
     961                 :      */
     962 CBC       58080 :     cmpGreaterFn = minmax_multi_get_strategy_procinfo(bdesc, attno, typid,
     963                 :                                                       BTGreaterStrategyNumber);
     964           58080 :     compar = FunctionCall2Coll(cmpGreaterFn, colloid, newval, maxvalue);
     965                 : 
     966           58080 :     if (DatumGetBool(compar))
     967           58080 :         return false;
     968                 : 
     969                 :     /*
     970                 :      * So we know it's in the general min/max, the question is whether it
     971                 :      * falls in one of the ranges or gaps. We'll do a binary search on
     972                 :      * individual ranges - for each range we check equality (value falls into
     973                 :      * the range), and then check ranges either above or below the current
     974                 :      * range.
     975                 :      */
     976 UBC           0 :     start = 0;                  /* first range */
     977               0 :     end = (ranges->nranges - 1); /* last range */
     978                 :     while (true)
     979               0 :     {
     980               0 :         int         midpoint = (start + end) / 2;
     981                 : 
     982                 :         /* this means we ran out of ranges in the last step */
     983               0 :         if (start > end)
     984               0 :             return false;
     985                 : 
     986                 :         /* copy the min/max values from the ranges */
     987               0 :         minvalue = ranges->values[2 * midpoint];
     988               0 :         maxvalue = ranges->values[2 * midpoint + 1];
     989                 : 
     990                 :         /*
     991                 :          * Is the value smaller than the minval? If yes, we'll recurse to the
     992                 :          * left side of range array.
     993                 :          */
     994               0 :         compar = FunctionCall2Coll(cmpLessFn, colloid, newval, minvalue);
     995                 : 
     996                 :         /* smaller than the smallest value in this range */
     997               0 :         if (DatumGetBool(compar))
     998                 :         {
     999               0 :             end = (midpoint - 1);
    1000               0 :             continue;
    1001                 :         }
    1002                 : 
    1003                 :         /*
    1004                 :          * Is the value greater than the minval? If yes, we'll recurse to the
    1005                 :          * right side of range array.
    1006                 :          */
    1007               0 :         compar = FunctionCall2Coll(cmpGreaterFn, colloid, newval, maxvalue);
    1008                 : 
    1009                 :         /* larger than the largest value in this range */
    1010               0 :         if (DatumGetBool(compar))
    1011                 :         {
    1012               0 :             start = (midpoint + 1);
    1013               0 :             continue;
    1014                 :         }
    1015                 : 
    1016                 :         /* hey, we found a matching range */
    1017               0 :         return true;
    1018                 :     }
    1019                 : 
    1020                 :     return false;
    1021                 : }
    1022                 : 
    1023                 : 
    1024                 : /*
    1025                 :  * range_contains_value
    1026                 :  *      See if the new value is already contained in the range list.
    1027                 :  *
    1028                 :  * We first inspect the list of intervals. We use a small trick - we check
    1029                 :  * the value against min/max of the whole range (min of the first interval,
    1030                 :  * max of the last one) first, and only inspect the individual intervals if
    1031                 :  * this passes.
    1032                 :  *
    1033                 :  * If the value matches none of the intervals, we check the exact values.
    1034                 :  * We simply loop through them and invoke equality operator on them.
    1035                 :  *
    1036                 :  * The last parameter (full) determines whether we need to search all the
    1037                 :  * values, including the unsorted part. With full=false, the unsorted part
    1038                 :  * is not searched, which may produce false negatives and duplicate values
    1039                 :  * (in the unsorted part only), but when we're building the range that's
    1040                 :  * fine - we'll deduplicate before serialization, and it can only happen
    1041                 :  * if there already are unsorted values (so it was already modified).
    1042                 :  *
    1043                 :  * Serialized ranges don't have any unsorted values, so this can't cause
    1044                 :  * false negatives during querying.
    1045                 :  */
    1046                 : static bool
    1047 CBC       92193 : range_contains_value(BrinDesc *bdesc, Oid colloid,
    1048                 :                      AttrNumber attno, Form_pg_attribute attr,
    1049                 :                      Ranges *ranges, Datum newval, bool full)
    1050                 : {
    1051                 :     int         i;
    1052                 :     FmgrInfo   *cmpEqualFn;
    1053           92193 :     Oid         typid = attr->atttypid;
    1054                 : 
    1055                 :     /*
    1056                 :      * First inspect the ranges, if there are any. We first check the whole
    1057                 :      * range, and only when there's still a chance of getting a match we
    1058                 :      * inspect the individual ranges.
    1059                 :      */
    1060           92193 :     if (has_matching_range(bdesc, colloid, ranges, newval, attno, typid))
    1061 UBC           0 :         return true;
    1062                 : 
    1063 CBC       92193 :     cmpEqualFn = minmax_multi_get_strategy_procinfo(bdesc, attno, typid,
    1064                 :                                                     BTEqualStrategyNumber);
    1065                 : 
    1066                 :     /*
    1067                 :      * There is no matching range, so let's inspect the sorted values.
    1068                 :      *
    1069                 :      * We do a sequential search for small numbers of values, and binary
    1070                 :      * search once we have more than 16 values. This threshold is somewhat
    1071                 :      * arbitrary, as it depends on how expensive the comparison function is.
    1072                 :      *
    1073                 :      * XXX If we use the threshold here, maybe we should do the same thing in
    1074                 :      * has_matching_range? Or maybe we should do the bin search all the time?
    1075                 :      *
    1076                 :      * XXX We could use the same optimization as for ranges, to check if the
    1077                 :      * value is between min/max, to maybe rule out all sorted values without
    1078                 :      * having to inspect all of them.
    1079                 :      */
    1080           92193 :     if (ranges->nsorted >= 16)
    1081                 :     {
    1082                 :         compare_context cxt;
    1083                 : 
    1084           58080 :         cxt.colloid = ranges->colloid;
    1085           58080 :         cxt.cmpFn = ranges->cmp;
    1086                 : 
    1087           58080 :         if (bsearch_arg(&newval, &ranges->values[2 * ranges->nranges],
    1088           58080 :                         ranges->nsorted, sizeof(Datum),
    1089                 :                         compare_values, (void *) &cxt) != NULL)
    1090 UBC           0 :             return true;
    1091                 :     }
    1092                 :     else
    1093                 :     {
    1094 CBC       65706 :         for (i = 2 * ranges->nranges; i < 2 * ranges->nranges + ranges->nsorted; i++)
    1095                 :         {
    1096                 :             Datum       compar;
    1097                 : 
    1098           39834 :             compar = FunctionCall2Coll(cmpEqualFn, colloid, newval, ranges->values[i]);
    1099                 : 
    1100                 :             /* found an exact match */
    1101           39834 :             if (DatumGetBool(compar))
    1102            8241 :                 return true;
    1103                 :         }
    1104                 :     }
    1105                 : 
    1106                 :     /* If not asked to inspect the unsorted part, we're done. */
    1107           83952 :     if (!full)
    1108           43089 :         return false;
    1109                 : 
    1110                 :     /* Inspect the unsorted part. */
    1111         3909768 :     for (i = 2 * ranges->nranges + ranges->nsorted; i < 2 * ranges->nranges + ranges->nvalues; i++)
    1112                 :     {
    1113                 :         Datum       compar;
    1114                 : 
    1115         3909768 :         compar = FunctionCall2Coll(cmpEqualFn, colloid, newval, ranges->values[i]);
    1116                 : 
    1117                 :         /* found an exact match */
    1118         3909768 :         if (DatumGetBool(compar))
    1119           40863 :             return true;
    1120                 :     }
    1121                 : 
    1122                 :     /* the value is not covered by this BRIN tuple */
    1123 UBC           0 :     return false;
    1124                 : }
    1125                 : 
    1126                 : /*
    1127                 :  * Expand ranges from Ranges into ExpandedRange array. This expects the
    1128                 :  * eranges to be pre-allocated and with the correct size - there needs to be
    1129                 :  * (nranges + nvalues) elements.
    1130                 :  *
    1131                 :  * The order of expanded ranges is arbitrary. We do expand the ranges first,
    1132                 :  * and this part is sorted. But then we expand the values, and this part may
    1133                 :  * be unsorted.
    1134                 :  */
    1135                 : static void
    1136 CBC        2667 : fill_expanded_ranges(ExpandedRange *eranges, int neranges, Ranges *ranges)
    1137                 : {
    1138                 :     int         idx;
    1139                 :     int         i;
    1140                 : 
    1141                 :     /* Check that the output array has the right size. */
    1142            2667 :     Assert(neranges == (ranges->nranges + ranges->nvalues));
    1143                 : 
    1144            2667 :     idx = 0;
    1145            2790 :     for (i = 0; i < ranges->nranges; i++)
    1146                 :     {
    1147             123 :         eranges[idx].minval = ranges->values[2 * i];
    1148             123 :         eranges[idx].maxval = ranges->values[2 * i + 1];
    1149             123 :         eranges[idx].collapsed = false;
    1150             123 :         idx++;
    1151                 : 
    1152             123 :         Assert(idx <= neranges);
    1153                 :     }
    1154                 : 
    1155           56757 :     for (i = 0; i < ranges->nvalues; i++)
    1156                 :     {
    1157           54090 :         eranges[idx].minval = ranges->values[2 * ranges->nranges + i];
    1158           54090 :         eranges[idx].maxval = ranges->values[2 * ranges->nranges + i];
    1159           54090 :         eranges[idx].collapsed = true;
    1160           54090 :         idx++;
    1161                 : 
    1162           54090 :         Assert(idx <= neranges);
    1163                 :     }
    1164                 : 
    1165                 :     /* Did we produce the expected number of elements? */
    1166            2667 :     Assert(idx == neranges);
    1167                 : 
    1168            2667 :     return;
    1169                 : }
    1170                 : 
    1171                 : /*
    1172                 :  * Sort and deduplicate expanded ranges.
    1173                 :  *
    1174                 :  * The ranges may be deduplicated - we're simply appending values, without
    1175                 :  * checking for duplicates etc. So maybe the deduplication will reduce the
    1176                 :  * number of ranges enough, and we won't have to compute the distances etc.
    1177                 :  *
    1178                 :  * Returns the number of expanded ranges.
    1179                 :  */
    1180                 : static int
    1181            2667 : sort_expanded_ranges(FmgrInfo *cmp, Oid colloid,
    1182                 :                      ExpandedRange *eranges, int neranges)
    1183                 : {
    1184                 :     int         n;
    1185                 :     int         i;
    1186                 :     compare_context cxt;
    1187                 : 
    1188            2667 :     Assert(neranges > 0);
    1189                 : 
    1190                 :     /* sort the values */
    1191            2667 :     cxt.colloid = colloid;
    1192            2667 :     cxt.cmpFn = cmp;
    1193                 : 
    1194                 :     /*
    1195                 :      * XXX We do qsort on all the values, but we could also leverage the fact
    1196                 :      * that some of the input data is already sorted (all the ranges and maybe
    1197                 :      * some of the points) and do merge sort.
    1198                 :      */
    1199            2667 :     qsort_arg(eranges, neranges, sizeof(ExpandedRange),
    1200                 :               compare_expanded_ranges, &cxt);
    1201                 : 
    1202                 :     /*
    1203                 :      * Deduplicate the ranges - simply compare each range to the preceding
    1204                 :      * one, and skip the duplicate ones.
    1205                 :      */
    1206            2667 :     n = 1;
    1207           54213 :     for (i = 1; i < neranges; i++)
    1208                 :     {
    1209                 :         /* if the current range is equal to the preceding one, do nothing */
    1210           51546 :         if (!compare_expanded_ranges(&eranges[i - 1], &eranges[i], (void *) &cxt))
    1211             609 :             continue;
    1212                 : 
    1213                 :         /* otherwise, copy it to n-th place (if not already there) */
    1214           50937 :         if (i != n)
    1215            1464 :             memcpy(&eranges[n], &eranges[i], sizeof(ExpandedRange));
    1216                 : 
    1217           50937 :         n++;
    1218                 :     }
    1219                 : 
    1220            2667 :     Assert((n > 0) && (n <= neranges));
    1221                 : 
    1222            2667 :     return n;
    1223                 : }
    1224                 : 
    1225                 : /*
    1226                 :  * When combining multiple Range values (in union function), some of the
    1227                 :  * ranges may overlap. We simply merge the overlapping ranges to fix that.
    1228                 :  *
    1229                 :  * XXX This assumes the expanded ranges were previously sorted (by minval
    1230                 :  * and then maxval). We leverage this when detecting overlap.
    1231                 :  */
    1232                 : static int
    1233 UBC           0 : merge_overlapping_ranges(FmgrInfo *cmp, Oid colloid,
    1234                 :                          ExpandedRange *eranges, int neranges)
    1235                 : {
    1236                 :     int         idx;
    1237                 : 
    1238                 :     /* Merge ranges (idx) and (idx+1) if they overlap. */
    1239               0 :     idx = 0;
    1240               0 :     while (idx < (neranges - 1))
    1241                 :     {
    1242                 :         Datum       r;
    1243                 : 
    1244                 :         /*
    1245                 :          * comparing [?,maxval] vs. [minval,?] - the ranges overlap if (minval
    1246                 :          * < maxval)
    1247                 :          */
    1248               0 :         r = FunctionCall2Coll(cmp, colloid,
    1249               0 :                               eranges[idx].maxval,
    1250               0 :                               eranges[idx + 1].minval);
    1251                 : 
    1252                 :         /*
    1253                 :          * Nope, maxval < minval, so no overlap. And we know the ranges are
    1254                 :          * ordered, so there are no more overlaps, because all the remaining
    1255                 :          * ranges have greater or equal minval.
    1256                 :          */
    1257               0 :         if (DatumGetBool(r))
    1258                 :         {
    1259                 :             /* proceed to the next range */
    1260               0 :             idx += 1;
    1261               0 :             continue;
    1262                 :         }
    1263                 : 
    1264                 :         /*
    1265                 :          * So ranges 'idx' and 'idx+1' do overlap, but we don't know if
    1266                 :          * 'idx+1' is contained in 'idx', or if they overlap only partially.
    1267                 :          * So compare the upper bounds and keep the larger one.
    1268                 :          */
    1269               0 :         r = FunctionCall2Coll(cmp, colloid,
    1270               0 :                               eranges[idx].maxval,
    1271               0 :                               eranges[idx + 1].maxval);
    1272                 : 
    1273               0 :         if (DatumGetBool(r))
    1274               0 :             eranges[idx].maxval = eranges[idx + 1].maxval;
    1275                 : 
    1276                 :         /*
    1277                 :          * The range certainly is no longer collapsed (irrespectively of the
    1278                 :          * previous state).
    1279                 :          */
    1280               0 :         eranges[idx].collapsed = false;
    1281                 : 
    1282                 :         /*
    1283                 :          * Now get rid of the (idx+1) range entirely by shifting the remaining
    1284                 :          * ranges by 1. There are neranges elements, and we need to move
    1285                 :          * elements from (idx+2). That means the number of elements to move is
    1286                 :          * [ncranges - (idx+2)].
    1287                 :          */
    1288               0 :         memmove(&eranges[idx + 1], &eranges[idx + 2],
    1289               0 :                 (neranges - (idx + 2)) * sizeof(ExpandedRange));
    1290                 : 
    1291                 :         /*
    1292                 :          * Decrease the number of ranges, and repeat (with the same range, as
    1293                 :          * it might overlap with additional ranges thanks to the merge).
    1294                 :          */
    1295               0 :         neranges--;
    1296                 :     }
    1297                 : 
    1298               0 :     return neranges;
    1299                 : }
    1300                 : 
    1301                 : /*
    1302                 :  * Simple comparator for distance values, comparing the double value.
    1303                 :  * This is intentionally sorting the distances in descending order, i.e.
    1304                 :  * the longer gaps will be at the front.
    1305                 :  */
    1306                 : static int
    1307 CBC       72960 : compare_distances(const void *a, const void *b)
    1308                 : {
    1309           72960 :     DistanceValue *da = (DistanceValue *) a;
    1310           72960 :     DistanceValue *db = (DistanceValue *) b;
    1311                 : 
    1312           72960 :     if (da->value < db->value)
    1313           18168 :         return 1;
    1314           54792 :     else if (da->value > db->value)
    1315           12696 :         return -1;
    1316                 : 
    1317           42096 :     return 0;
    1318                 : }
    1319                 : 
    1320                 : /*
    1321                 :  * Given an array of expanded ranges, compute size of the gaps between each
    1322                 :  * range.  For neranges there are (neranges-1) gaps.
    1323                 :  *
    1324                 :  * We simply call the "distance" function to compute the (max-min) for pairs
    1325                 :  * of consecutive ranges. The function may be fairly expensive, so we do that
    1326                 :  * just once (and then use it to pick as many ranges to merge as possible).
    1327                 :  *
    1328                 :  * See reduce_expanded_ranges for details.
    1329                 :  */
    1330                 : static DistanceValue *
    1331            2667 : build_distances(FmgrInfo *distanceFn, Oid colloid,
    1332                 :                 ExpandedRange *eranges, int neranges)
    1333                 : {
    1334                 :     int         i;
    1335                 :     int         ndistances;
    1336                 :     DistanceValue *distances;
    1337                 : 
    1338            2667 :     Assert(neranges > 0);
    1339                 : 
    1340                 :     /* If there's only a single range, there's no distance to calculate. */
    1341            2667 :     if (neranges == 1)
    1342 UBC           0 :         return NULL;
    1343                 : 
    1344 CBC        2667 :     ndistances = (neranges - 1);
    1345            2667 :     distances = (DistanceValue *) palloc0(sizeof(DistanceValue) * ndistances);
    1346                 : 
    1347                 :     /*
    1348                 :      * Walk through the ranges once and compute the distance between the
    1349                 :      * ranges so that we can sort them once.
    1350                 :      */
    1351           53604 :     for (i = 0; i < ndistances; i++)
    1352                 :     {
    1353                 :         Datum       a1,
    1354                 :                     a2,
    1355                 :                     r;
    1356                 : 
    1357           50937 :         a1 = eranges[i].maxval;
    1358           50937 :         a2 = eranges[i + 1].minval;
    1359                 : 
    1360                 :         /* compute length of the gap (between max/min) */
    1361           50937 :         r = FunctionCall2Coll(distanceFn, colloid, a1, a2);
    1362                 : 
    1363                 :         /* remember the index of the gap the distance is for */
    1364           50937 :         distances[i].index = i;
    1365           50937 :         distances[i].value = DatumGetFloat8(r);
    1366                 :     }
    1367                 : 
    1368                 :     /*
    1369                 :      * Sort the distances in descending order, so that the longest gaps are at
    1370                 :      * the front.
    1371                 :      */
    1372            2667 :     pg_qsort(distances, ndistances, sizeof(DistanceValue), compare_distances);
    1373                 : 
    1374            2667 :     return distances;
    1375                 : }
    1376                 : 
    1377                 : /*
    1378                 :  * Builds expanded ranges for the existing ranges (and single-point ranges),
    1379                 :  * and also the new value (which did not fit into the array).  This expanded
    1380                 :  * representation makes the processing a bit easier, as it allows handling
    1381                 :  * ranges and points the same way.
    1382                 :  *
    1383                 :  * We sort and deduplicate the expanded ranges - this is necessary, because
    1384                 :  * the points may be unsorted. And moreover the two parts (ranges and
    1385                 :  * points) are sorted on their own.
    1386                 :  */
    1387                 : static ExpandedRange *
    1388            2667 : build_expanded_ranges(FmgrInfo *cmp, Oid colloid, Ranges *ranges,
    1389                 :                       int *nranges)
    1390                 : {
    1391                 :     int         neranges;
    1392                 :     ExpandedRange *eranges;
    1393                 : 
    1394                 :     /* both ranges and points are expanded into a separate element */
    1395            2667 :     neranges = ranges->nranges + ranges->nvalues;
    1396                 : 
    1397            2667 :     eranges = (ExpandedRange *) palloc0(neranges * sizeof(ExpandedRange));
    1398                 : 
    1399                 :     /* fill the expanded ranges */
    1400            2667 :     fill_expanded_ranges(eranges, neranges, ranges);
    1401                 : 
    1402                 :     /* sort and deduplicate the expanded ranges */
    1403            2667 :     neranges = sort_expanded_ranges(cmp, colloid, eranges, neranges);
    1404                 : 
    1405                 :     /* remember how many ranges we built */
    1406            2667 :     *nranges = neranges;
    1407                 : 
    1408            2667 :     return eranges;
    1409                 : }
    1410                 : 
    1411                 : #ifdef USE_ASSERT_CHECKING
    1412                 : /*
    1413                 :  * Counts boundary values needed to store the ranges. Each single-point
    1414                 :  * range is stored using a single value, each regular range needs two.
    1415                 :  */
    1416                 : static int
    1417            5334 : count_values(ExpandedRange *cranges, int ncranges)
    1418                 : {
    1419                 :     int         i;
    1420                 :     int         count;
    1421                 : 
    1422            5334 :     count = 0;
    1423           43500 :     for (i = 0; i < ncranges; i++)
    1424                 :     {
    1425           38166 :         if (cranges[i].collapsed)
    1426           36348 :             count += 1;
    1427                 :         else
    1428            1818 :             count += 2;
    1429                 :     }
    1430                 : 
    1431            5334 :     return count;
    1432                 : }
    1433                 : #endif
    1434                 : 
    1435                 : /*
    1436                 :  * reduce_expanded_ranges
    1437                 :  *      reduce the ranges until the number of values is low enough
    1438                 :  *
    1439                 :  * Combines ranges until the number of boundary values drops below the
    1440                 :  * threshold specified by max_values. This happens by merging enough
    1441                 :  * ranges by the distance between them.
    1442                 :  *
    1443                 :  * Returns the number of result ranges.
    1444                 :  *
    1445                 :  * We simply use the global min/max and then add boundaries for enough
    1446                 :  * largest gaps. Each gap adds 2 values, so we simply use (target/2-1)
    1447                 :  * distances. Then we simply sort all the values - each two values are
    1448                 :  * a boundary of a range (possibly collapsed).
    1449                 :  *
    1450                 :  * XXX Some of the ranges may be collapsed (i.e. the min/max values are
    1451                 :  * equal), but we ignore that for now. We could repeat the process,
    1452                 :  * adding a couple more gaps recursively.
    1453                 :  *
    1454                 :  * XXX The ranges to merge are selected solely using the distance. But
    1455                 :  * that may not be the best strategy, for example when multiple gaps
    1456                 :  * are of equal (or very similar) length.
    1457                 :  *
    1458                 :  * Consider for example points 1, 2, 3, .., 64, which have gaps of the
    1459                 :  * same length 1 of course. In that case, we tend to pick the first
    1460                 :  * gap of that length, which leads to this:
    1461                 :  *
    1462                 :  *    step 1:  [1, 2], 3, 4, 5, .., 64
    1463                 :  *    step 2:  [1, 3], 4, 5,    .., 64
    1464                 :  *    step 3:  [1, 4], 5,       .., 64
    1465                 :  *    ...
    1466                 :  *
    1467                 :  * So in the end we'll have one "large" range and multiple small points.
    1468                 :  * That may be fine, but it seems a bit strange and non-optimal. Maybe
    1469                 :  * we should consider other things when picking ranges to merge - e.g.
    1470                 :  * length of the ranges? Or perhaps randomize the choice of ranges, with
    1471                 :  * probability inversely proportional to the distance (the gap lengths
    1472                 :  * may be very close, but not exactly the same).
    1473                 :  *
    1474                 :  * XXX Or maybe we could just handle this by using random value as a
    1475                 :  * tie-break, or by adding random noise to the actual distance.
    1476                 :  */
    1477                 : static int
    1478            2667 : reduce_expanded_ranges(ExpandedRange *eranges, int neranges,
    1479                 :                        DistanceValue *distances, int max_values,
    1480                 :                        FmgrInfo *cmp, Oid colloid)
    1481                 : {
    1482                 :     int         i;
    1483                 :     int         nvalues;
    1484                 :     Datum      *values;
    1485                 : 
    1486                 :     compare_context cxt;
    1487                 : 
    1488                 :     /* total number of gaps between ranges */
    1489            2667 :     int         ndistances = (neranges - 1);
    1490                 : 
    1491                 :     /* number of gaps to keep */
    1492            2667 :     int         keep = (max_values / 2 - 1);
    1493                 : 
    1494                 :     /*
    1495                 :      * Maybe we have a sufficiently low number of ranges already?
    1496                 :      *
    1497                 :      * XXX This should happen before we actually do the expensive stuff like
    1498                 :      * sorting, so maybe this should be just an assert.
    1499                 :      */
    1500            2667 :     if (keep >= ndistances)
    1501            2481 :         return neranges;
    1502                 : 
    1503                 :     /* sort the values */
    1504             186 :     cxt.colloid = colloid;
    1505             186 :     cxt.cmpFn = cmp;
    1506                 : 
    1507                 :     /* allocate space for the boundary values */
    1508             186 :     nvalues = 0;
    1509             186 :     values = (Datum *) palloc(sizeof(Datum) * max_values);
    1510                 : 
    1511                 :     /* add the global min/max values, from the first/last range */
    1512             186 :     values[nvalues++] = eranges[0].minval;
    1513             186 :     values[nvalues++] = eranges[neranges - 1].maxval;
    1514                 : 
    1515                 :     /* add boundary values for enough gaps */
    1516           10848 :     for (i = 0; i < keep; i++)
    1517                 :     {
    1518                 :         /* index of the gap between (index) and (index+1) ranges */
    1519           10662 :         int         index = distances[i].index;
    1520                 : 
    1521           10662 :         Assert((index >= 0) && ((index + 1) < neranges));
    1522                 : 
    1523                 :         /* add max from the preceding range, minval from the next one */
    1524           10662 :         values[nvalues++] = eranges[index].maxval;
    1525           10662 :         values[nvalues++] = eranges[index + 1].minval;
    1526                 : 
    1527           10662 :         Assert(nvalues <= max_values);
    1528                 :     }
    1529                 : 
    1530                 :     /* We should have an even number of range values. */
    1531             186 :     Assert(nvalues % 2 == 0);
    1532                 : 
    1533                 :     /*
    1534                 :      * Sort the values using the comparator function, and form ranges from the
    1535                 :      * sorted result.
    1536                 :      */
    1537             186 :     qsort_arg(values, nvalues, sizeof(Datum),
    1538                 :               compare_values, &cxt);
    1539                 : 
    1540                 :     /* We have nvalues boundary values, which means nvalues/2 ranges. */
    1541           11034 :     for (i = 0; i < (nvalues / 2); i++)
    1542                 :     {
    1543           10848 :         eranges[i].minval = values[2 * i];
    1544           10848 :         eranges[i].maxval = values[2 * i + 1];
    1545                 : 
    1546                 :         /* if the boundary values are the same, it's a collapsed range */
    1547           21696 :         eranges[i].collapsed = (compare_values(&values[2 * i],
    1548           10848 :                                                &values[2 * i + 1],
    1549           10848 :                                                &cxt) == 0);
    1550                 :     }
    1551                 : 
    1552             186 :     return (nvalues / 2);
    1553                 : }
    1554                 : 
    1555                 : /*
    1556                 :  * Store the boundary values from ExpandedRanges back into 'ranges' (using
    1557                 :  * only the minimal number of values needed).
    1558                 :  */
    1559                 : static void
    1560            2667 : store_expanded_ranges(Ranges *ranges, ExpandedRange *eranges, int neranges)
    1561                 : {
    1562                 :     int         i;
    1563            2667 :     int         idx = 0;
    1564                 : 
    1565                 :     /* first copy in the regular ranges */
    1566            2667 :     ranges->nranges = 0;
    1567           21750 :     for (i = 0; i < neranges; i++)
    1568                 :     {
    1569           19083 :         if (!eranges[i].collapsed)
    1570                 :         {
    1571             909 :             ranges->values[idx++] = eranges[i].minval;
    1572             909 :             ranges->values[idx++] = eranges[i].maxval;
    1573             909 :             ranges->nranges++;
    1574                 :         }
    1575                 :     }
    1576                 : 
    1577                 :     /* now copy in the collapsed ones */
    1578            2667 :     ranges->nvalues = 0;
    1579           21750 :     for (i = 0; i < neranges; i++)
    1580                 :     {
    1581           19083 :         if (eranges[i].collapsed)
    1582                 :         {
    1583           18174 :             ranges->values[idx++] = eranges[i].minval;
    1584           18174 :             ranges->nvalues++;
    1585                 :         }
    1586                 :     }
    1587                 : 
    1588                 :     /* all the values are sorted */
    1589            2667 :     ranges->nsorted = ranges->nvalues;
    1590                 : 
    1591            2667 :     Assert(count_values(eranges, neranges) == 2 * ranges->nranges + ranges->nvalues);
    1592            2667 :     Assert(2 * ranges->nranges + ranges->nvalues <= ranges->maxvalues);
    1593            2667 : }
    1594                 : 
    1595                 : 
    1596                 : /*
    1597                 :  * Consider freeing space in the ranges. Checks if there's space for at least
    1598                 :  * one new value, and performs compaction if needed.
    1599                 :  *
    1600                 :  * Returns true if the value was actually modified.
    1601                 :  */
    1602                 : static bool
    1603           49104 : ensure_free_space_in_buffer(BrinDesc *bdesc, Oid colloid,
    1604                 :                             AttrNumber attno, Form_pg_attribute attr,
    1605                 :                             Ranges *range)
    1606                 : {
    1607                 :     MemoryContext ctx;
    1608                 :     MemoryContext oldctx;
    1609                 : 
    1610                 :     FmgrInfo   *cmpFn,
    1611                 :                *distanceFn;
    1612                 : 
    1613                 :     /* expanded ranges */
    1614                 :     ExpandedRange *eranges;
    1615                 :     int         neranges;
    1616                 :     DistanceValue *distances;
    1617                 : 
    1618                 :     /*
    1619                 :      * If there is free space in the buffer, we're done without having to
    1620                 :      * modify anything.
    1621                 :      */
    1622           49104 :     if (2 * range->nranges + range->nvalues < range->maxvalues)
    1623           48981 :         return false;
    1624                 : 
    1625                 :     /* we'll certainly need the comparator, so just look it up now */
    1626             123 :     cmpFn = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
    1627                 :                                                BTLessStrategyNumber);
    1628                 : 
    1629                 :     /* deduplicate values, if there's an unsorted part */
    1630             123 :     range_deduplicate_values(range);
    1631                 : 
    1632                 :     /*
    1633                 :      * Did we reduce enough free space by just the deduplication?
    1634                 :      *
    1635                 :      * We don't simply check against range->maxvalues again. The deduplication
    1636                 :      * might have freed very little space (e.g. just one value), forcing us to
    1637                 :      * do deduplication very often. In that case, it's better to do the
    1638                 :      * compaction and reduce more space.
    1639                 :      */
    1640             123 :     if (2 * range->nranges + range->nvalues <= range->maxvalues * MINMAX_BUFFER_LOAD_FACTOR)
    1641 UBC           0 :         return true;
    1642                 : 
    1643                 :     /*
    1644                 :      * We need to combine some of the existing ranges, to reduce the number of
    1645                 :      * values we have to store.
    1646                 :      *
    1647                 :      * The distanceFn calls (which may internally call e.g. numeric_le) may
    1648                 :      * allocate quite a bit of memory, and we must not leak it (we might have
    1649                 :      * to do this repeatedly, even for a single BRIN page range). Otherwise
    1650                 :      * we'd have problems e.g. when building new indexes. So we use a memory
    1651                 :      * context and make sure we free the memory at the end (so if we call the
    1652                 :      * distance function many times, it might be an issue, but meh).
    1653                 :      */
    1654 CBC         123 :     ctx = AllocSetContextCreate(CurrentMemoryContext,
    1655                 :                                 "minmax-multi context",
    1656                 :                                 ALLOCSET_DEFAULT_SIZES);
    1657                 : 
    1658             123 :     oldctx = MemoryContextSwitchTo(ctx);
    1659                 : 
    1660                 :     /* build the expanded ranges */
    1661             123 :     eranges = build_expanded_ranges(cmpFn, colloid, range, &neranges);
    1662                 : 
    1663                 :     /* and we'll also need the 'distance' procedure */
    1664             123 :     distanceFn = minmax_multi_get_procinfo(bdesc, attno, PROCNUM_DISTANCE);
    1665                 : 
    1666                 :     /* build array of gap distances and sort them in ascending order */
    1667             123 :     distances = build_distances(distanceFn, colloid, eranges, neranges);
    1668                 : 
    1669                 :     /*
    1670                 :      * Combine ranges until we release at least 50% of the space. This
    1671                 :      * threshold is somewhat arbitrary, perhaps needs tuning. We must not use
    1672                 :      * too low or high value.
    1673                 :      */
    1674             246 :     neranges = reduce_expanded_ranges(eranges, neranges, distances,
    1675             123 :                                       range->maxvalues * MINMAX_BUFFER_LOAD_FACTOR,
    1676                 :                                       cmpFn, colloid);
    1677                 : 
    1678                 :     /* Make sure we've sufficiently reduced the number of ranges. */
    1679             123 :     Assert(count_values(eranges, neranges) <= range->maxvalues * MINMAX_BUFFER_LOAD_FACTOR);
    1680                 : 
    1681                 :     /* decompose the expanded ranges into regular ranges and single values */
    1682             123 :     store_expanded_ranges(range, eranges, neranges);
    1683                 : 
    1684             123 :     MemoryContextSwitchTo(oldctx);
    1685             123 :     MemoryContextDelete(ctx);
    1686                 : 
    1687                 :     /* Did we break the ranges somehow? */
    1688             123 :     AssertCheckRanges(range, cmpFn, colloid);
    1689                 : 
    1690             123 :     return true;
    1691                 : }
    1692                 : 
    1693                 : /*
    1694                 :  * range_add_value
    1695                 :  *      Add the new value to the minmax-multi range.
    1696                 :  */
    1697                 : static bool
    1698           49104 : range_add_value(BrinDesc *bdesc, Oid colloid,
    1699                 :                 AttrNumber attno, Form_pg_attribute attr,
    1700                 :                 Ranges *ranges, Datum newval)
    1701                 : {
    1702                 :     FmgrInfo   *cmpFn;
    1703           49104 :     bool        modified = false;
    1704                 : 
    1705                 :     /* we'll certainly need the comparator, so just look it up now */
    1706           49104 :     cmpFn = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
    1707                 :                                                BTLessStrategyNumber);
    1708                 : 
    1709                 :     /* comprehensive checks of the input ranges */
    1710           49104 :     AssertCheckRanges(ranges, cmpFn, colloid);
    1711                 : 
    1712                 :     /*
    1713                 :      * Make sure there's enough free space in the buffer. We only trigger this
    1714                 :      * when the buffer is full, which means it had to be modified as we size
    1715                 :      * it to be larger than what is stored on disk.
    1716                 :      *
    1717                 :      * This needs to happen before we check if the value is contained in the
    1718                 :      * range, because the value might be in the unsorted part, and we don't
    1719                 :      * check that in range_contains_value. The deduplication would then move
    1720                 :      * it to the sorted part, and we'd add the value too, which violates the
    1721                 :      * rule that we never have duplicates with the ranges or sorted values.
    1722                 :      *
    1723                 :      * We might also deduplicate and recheck if the value is contained, but
    1724                 :      * that seems like overkill. We'd need to deduplicate anyway, so why not
    1725                 :      * do it now.
    1726                 :      */
    1727           49104 :     modified = ensure_free_space_in_buffer(bdesc, colloid,
    1728                 :                                            attno, attr, ranges);
    1729                 : 
    1730                 :     /*
    1731                 :      * Bail out if the value already is covered by the range.
    1732                 :      *
    1733                 :      * We could also add values until we hit values_per_range, and then do the
    1734                 :      * deduplication in a batch, hoping for better efficiency. But that would
    1735                 :      * mean we actually modify the range every time, which means having to
    1736                 :      * serialize the value, which does palloc, walks the values, copies them,
    1737                 :      * etc. Not exactly cheap.
    1738                 :      *
    1739                 :      * So instead we do the check, which should be fairly cheap - assuming the
    1740                 :      * comparator function is not very expensive.
    1741                 :      *
    1742                 :      * This also implies the values array can't contain duplicate values.
    1743                 :      */
    1744           49104 :     if (range_contains_value(bdesc, colloid, attno, attr, ranges, newval, false))
    1745            6015 :         return modified;
    1746                 : 
    1747                 :     /* Make a copy of the value, if needed. */
    1748           43089 :     newval = datumCopy(newval, attr->attbyval, attr->attlen);
    1749                 : 
    1750                 :     /*
    1751                 :      * If there's space in the values array, copy it in and we're done.
    1752                 :      *
    1753                 :      * We do want to keep the values sorted (to speed up searches), so we do a
    1754                 :      * simple insertion sort. We could do something more elaborate, e.g. by
    1755                 :      * sorting the values only now and then, but for small counts (e.g. when
    1756                 :      * maxvalues is 64) this should be fine.
    1757                 :      */
    1758           43089 :     ranges->values[2 * ranges->nranges + ranges->nvalues] = newval;
    1759           43089 :     ranges->nvalues++;
    1760                 : 
    1761                 :     /* If we added the first value, we can consider it as sorted. */
    1762           43089 :     if (ranges->nvalues == 1)
    1763            2226 :         ranges->nsorted = 1;
    1764                 : 
    1765                 :     /*
    1766                 :      * Check we haven't broken the ordering of boundary values (checks both
    1767                 :      * parts, but that doesn't hurt).
    1768                 :      */
    1769           43089 :     AssertCheckRanges(ranges, cmpFn, colloid);
    1770                 : 
    1771                 :     /* Check the range contains the value we just added. */
    1772           43089 :     Assert(range_contains_value(bdesc, colloid, attno, attr, ranges, newval, true));
    1773                 : 
    1774                 :     /* yep, we've modified the range */
    1775           43089 :     return true;
    1776                 : }
    1777                 : 
    1778                 : /*
    1779                 :  * Generate range representation of data collected during "batch mode".
    1780                 :  * This is similar to reduce_expanded_ranges, except that we can't assume
    1781                 :  * the values are sorted and there may be duplicate values.
    1782                 :  */
    1783                 : static void
    1784            8535 : compactify_ranges(BrinDesc *bdesc, Ranges *ranges, int max_values)
    1785                 : {
    1786                 :     FmgrInfo   *cmpFn,
    1787                 :                *distanceFn;
    1788                 : 
    1789                 :     /* expanded ranges */
    1790                 :     ExpandedRange *eranges;
    1791                 :     int         neranges;
    1792                 :     DistanceValue *distances;
    1793                 : 
    1794                 :     MemoryContext ctx;
    1795                 :     MemoryContext oldctx;
    1796                 : 
    1797                 :     /*
    1798                 :      * Do we need to actually compactify anything?
    1799                 :      *
    1800                 :      * There are two reasons why compaction may be needed - firstly, there may
    1801                 :      * be too many values, or some of the values may be unsorted.
    1802                 :      */
    1803            8535 :     if ((ranges->nranges * 2 + ranges->nvalues <= max_values) &&
    1804            8472 :         (ranges->nsorted == ranges->nvalues))
    1805            5991 :         return;
    1806                 : 
    1807                 :     /* we'll certainly need the comparator, so just look it up now */
    1808            2544 :     cmpFn = minmax_multi_get_strategy_procinfo(bdesc, ranges->attno, ranges->typid,
    1809                 :                                                BTLessStrategyNumber);
    1810                 : 
    1811                 :     /* and we'll also need the 'distance' procedure */
    1812            2544 :     distanceFn = minmax_multi_get_procinfo(bdesc, ranges->attno, PROCNUM_DISTANCE);
    1813                 : 
    1814                 :     /*
    1815                 :      * The distanceFn calls (which may internally call e.g. numeric_le) may
    1816                 :      * allocate quite a bit of memory, and we must not leak it. Otherwise,
    1817                 :      * we'd have problems e.g. when building indexes. So we create a local
    1818                 :      * memory context and make sure we free the memory before leaving this
    1819                 :      * function (not after every call).
    1820                 :      */
    1821            2544 :     ctx = AllocSetContextCreate(CurrentMemoryContext,
    1822                 :                                 "minmax-multi context",
    1823                 :                                 ALLOCSET_DEFAULT_SIZES);
    1824                 : 
    1825            2544 :     oldctx = MemoryContextSwitchTo(ctx);
    1826                 : 
    1827                 :     /* build the expanded ranges */
    1828            2544 :     eranges = build_expanded_ranges(cmpFn, ranges->colloid, ranges, &neranges);
    1829                 : 
    1830                 :     /* build array of gap distances and sort them in ascending order */
    1831            2544 :     distances = build_distances(distanceFn, ranges->colloid,
    1832                 :                                 eranges, neranges);
    1833                 : 
    1834                 :     /*
    1835                 :      * Combine ranges until we get below max_values. We don't use any scale
    1836                 :      * factor, because this is used during serialization, and we don't expect
    1837                 :      * more tuples to be inserted anytime soon.
    1838                 :      */
    1839            2544 :     neranges = reduce_expanded_ranges(eranges, neranges, distances,
    1840                 :                                       max_values, cmpFn, ranges->colloid);
    1841                 : 
    1842            2544 :     Assert(count_values(eranges, neranges) <= max_values);
    1843                 : 
    1844                 :     /* transform back into regular ranges and single values */
    1845            2544 :     store_expanded_ranges(ranges, eranges, neranges);
    1846                 : 
    1847                 :     /* check all the range invariants */
    1848            2544 :     AssertCheckRanges(ranges, cmpFn, ranges->colloid);
    1849                 : 
    1850            2544 :     MemoryContextSwitchTo(oldctx);
    1851            2544 :     MemoryContextDelete(ctx);
    1852                 : }
    1853                 : 
    1854                 : Datum
    1855            9392 : brin_minmax_multi_opcinfo(PG_FUNCTION_ARGS)
    1856                 : {
    1857                 :     BrinOpcInfo *result;
    1858                 : 
    1859                 :     /*
    1860                 :      * opaque->strategy_procinfos is initialized lazily; here it is set to
    1861                 :      * all-uninitialized by palloc0 which sets fn_oid to InvalidOid.
    1862                 :      */
    1863                 : 
    1864            9392 :     result = palloc0(MAXALIGN(SizeofBrinOpcInfo(1)) +
    1865                 :                      sizeof(MinmaxMultiOpaque));
    1866            9392 :     result->oi_nstored = 1;
    1867            9392 :     result->oi_regular_nulls = true;
    1868            9392 :     result->oi_opaque = (MinmaxMultiOpaque *)
    1869            9392 :         MAXALIGN((char *) result + SizeofBrinOpcInfo(1));
    1870            9392 :     result->oi_typcache[0] = lookup_type_cache(PG_BRIN_MINMAX_MULTI_SUMMARYOID, 0);
    1871                 : 
    1872            9392 :     PG_RETURN_POINTER(result);
    1873                 : }
    1874                 : 
    1875                 : /*
    1876                 :  * Compute the distance between two float4 values (plain subtraction).
    1877                 :  */
    1878                 : Datum
    1879             348 : brin_minmax_multi_distance_float4(PG_FUNCTION_ARGS)
    1880                 : {
    1881             348 :     float       a1 = PG_GETARG_FLOAT4(0);
    1882             348 :     float       a2 = PG_GETARG_FLOAT4(1);
    1883                 : 
    1884                 :     /* if both values are NaN, then we consider them the same */
    1885             348 :     if (isnan(a1) && isnan(a2))
    1886 UBC           0 :         PG_RETURN_FLOAT8(0.0);
    1887                 : 
    1888                 :     /* if one value is NaN, use infinite distance */
    1889 CBC         348 :     if (isnan(a1) || isnan(a2))
    1890               3 :         PG_RETURN_FLOAT8(get_float8_infinity());
    1891                 : 
    1892                 :     /*
    1893                 :      * We know the values are range boundaries, but the range may be collapsed
    1894                 :      * (i.e. single points), with equal values.
    1895                 :      */
    1896             345 :     Assert(a1 <= a2);
    1897                 : 
    1898             345 :     PG_RETURN_FLOAT8((double) a2 - (double) a1);
    1899                 : }
    1900                 : 
    1901                 : /*
    1902                 :  * Compute the distance between two float8 values (plain subtraction).
    1903                 :  */
    1904                 : Datum
    1905             522 : brin_minmax_multi_distance_float8(PG_FUNCTION_ARGS)
    1906                 : {
    1907             522 :     double      a1 = PG_GETARG_FLOAT8(0);
    1908             522 :     double      a2 = PG_GETARG_FLOAT8(1);
    1909                 : 
    1910                 :     /* if both values are NaN, then we consider them the same */
    1911             522 :     if (isnan(a1) && isnan(a2))
    1912 UBC           0 :         PG_RETURN_FLOAT8(0.0);
    1913                 : 
    1914                 :     /* if one value is NaN, use infinite distance */
    1915 CBC         522 :     if (isnan(a1) || isnan(a2))
    1916               3 :         PG_RETURN_FLOAT8(get_float8_infinity());
    1917                 : 
    1918                 :     /*
    1919                 :      * We know the values are range boundaries, but the range may be collapsed
    1920                 :      * (i.e. single points), with equal values.
    1921                 :      */
    1922             519 :     Assert(a1 <= a2);
    1923                 : 
    1924             519 :     PG_RETURN_FLOAT8(a2 - a1);
    1925                 : }
    1926                 : 
    1927                 : /*
    1928                 :  * Compute the distance between two int2 values (plain subtraction).
    1929                 :  */
    1930                 : Datum
    1931             507 : brin_minmax_multi_distance_int2(PG_FUNCTION_ARGS)
    1932                 : {
    1933             507 :     int16       a1 = PG_GETARG_INT16(0);
    1934             507 :     int16       a2 = PG_GETARG_INT16(1);
    1935                 : 
    1936                 :     /*
    1937                 :      * We know the values are range boundaries, but the range may be collapsed
    1938                 :      * (i.e. single points), with equal values.
    1939                 :      */
    1940             507 :     Assert(a1 <= a2);
    1941                 : 
    1942             507 :     PG_RETURN_FLOAT8((double) a2 - (double) a1);
    1943                 : }
    1944                 : 
    1945                 : /*
    1946                 :  * Compute the distance between two int4 values (plain subtraction).
    1947                 :  */
    1948                 : Datum
    1949           40737 : brin_minmax_multi_distance_int4(PG_FUNCTION_ARGS)
    1950                 : {
    1951           40737 :     int32       a1 = PG_GETARG_INT32(0);
    1952           40737 :     int32       a2 = PG_GETARG_INT32(1);
    1953                 : 
    1954                 :     /*
    1955                 :      * We know the values are range boundaries, but the range may be collapsed
    1956                 :      * (i.e. single points), with equal values.
    1957                 :      */
    1958           40737 :     Assert(a1 <= a2);
    1959                 : 
    1960           40737 :     PG_RETURN_FLOAT8((double) a2 - (double) a1);
    1961                 : }
    1962                 : 
    1963                 : /*
    1964                 :  * Compute the distance between two int8 values (plain subtraction).
    1965                 :  */
    1966                 : Datum
    1967            1782 : brin_minmax_multi_distance_int8(PG_FUNCTION_ARGS)
    1968                 : {
    1969            1782 :     int64       a1 = PG_GETARG_INT64(0);
    1970            1782 :     int64       a2 = PG_GETARG_INT64(1);
    1971                 : 
    1972                 :     /*
    1973                 :      * We know the values are range boundaries, but the range may be collapsed
    1974                 :      * (i.e. single points), with equal values.
    1975                 :      */
    1976            1782 :     Assert(a1 <= a2);
    1977                 : 
    1978            1782 :     PG_RETURN_FLOAT8((double) a2 - (double) a1);
    1979                 : }
    1980                 : 
    1981                 : /*
    1982                 :  * Compute the distance between two tid values (by mapping them to float8 and
    1983                 :  * then subtracting them).
    1984                 :  */
    1985                 : Datum
    1986             513 : brin_minmax_multi_distance_tid(PG_FUNCTION_ARGS)
    1987                 : {
    1988                 :     double      da1,
    1989                 :                 da2;
    1990                 : 
    1991             513 :     ItemPointer pa1 = (ItemPointer) PG_GETARG_DATUM(0);
    1992             513 :     ItemPointer pa2 = (ItemPointer) PG_GETARG_DATUM(1);
    1993                 : 
    1994                 :     /*
    1995                 :      * We know the values are range boundaries, but the range may be collapsed
    1996                 :      * (i.e. single points), with equal values.
    1997                 :      */
    1998             513 :     Assert(ItemPointerCompare(pa1, pa2) <= 0);
    1999                 : 
    2000                 :     /*
    2001                 :      * We use the no-check variants here, because user-supplied values may
    2002                 :      * have (ip_posid == 0). See ItemPointerCompare.
    2003                 :      */
    2004             513 :     da1 = ItemPointerGetBlockNumberNoCheck(pa1) * MaxHeapTuplesPerPage +
    2005             513 :         ItemPointerGetOffsetNumberNoCheck(pa1);
    2006                 : 
    2007             513 :     da2 = ItemPointerGetBlockNumberNoCheck(pa2) * MaxHeapTuplesPerPage +
    2008             513 :         ItemPointerGetOffsetNumberNoCheck(pa2);
    2009                 : 
    2010             513 :     PG_RETURN_FLOAT8(da2 - da1);
    2011                 : }
    2012                 : 
    2013                 : /*
    2014                 :  * Compute the distance between two numeric values (plain subtraction).
    2015                 :  */
    2016                 : Datum
    2017             513 : brin_minmax_multi_distance_numeric(PG_FUNCTION_ARGS)
    2018                 : {
    2019                 :     Datum       d;
    2020             513 :     Datum       a1 = PG_GETARG_DATUM(0);
    2021             513 :     Datum       a2 = PG_GETARG_DATUM(1);
    2022                 : 
    2023                 :     /*
    2024                 :      * We know the values are range boundaries, but the range may be collapsed
    2025                 :      * (i.e. single points), with equal values.
    2026                 :      */
    2027             513 :     Assert(DatumGetBool(DirectFunctionCall2(numeric_le, a1, a2)));
    2028                 : 
    2029             513 :     d = DirectFunctionCall2(numeric_sub, a2, a1);   /* a2 - a1 */
    2030                 : 
    2031             513 :     PG_RETURN_FLOAT8(DirectFunctionCall1(numeric_float8, d));
    2032                 : }
    2033                 : 
    2034                 : /*
    2035                 :  * Compute the approximate distance between two UUID values.
    2036                 :  *
    2037                 :  * XXX We do not need a perfectly accurate value, so we approximate the
    2038                 :  * deltas (which would have to be 128-bit integers) with a 64-bit float.
    2039                 :  * The small inaccuracies do not matter in practice, in the worst case
    2040                 :  * we'll decide to merge ranges that are not the closest ones.
    2041                 :  */
    2042                 : Datum
    2043             513 : brin_minmax_multi_distance_uuid(PG_FUNCTION_ARGS)
    2044                 : {
    2045                 :     int         i;
    2046             513 :     float8      delta = 0;
    2047                 : 
    2048             513 :     Datum       a1 = PG_GETARG_DATUM(0);
    2049             513 :     Datum       a2 = PG_GETARG_DATUM(1);
    2050                 : 
    2051             513 :     pg_uuid_t  *u1 = DatumGetUUIDP(a1);
    2052             513 :     pg_uuid_t  *u2 = DatumGetUUIDP(a2);
    2053                 : 
    2054                 :     /*
    2055                 :      * We know the values are range boundaries, but the range may be collapsed
    2056                 :      * (i.e. single points), with equal values.
    2057                 :      */
    2058             513 :     Assert(DatumGetBool(DirectFunctionCall2(uuid_le, a1, a2)));
    2059                 : 
    2060                 :     /* compute approximate delta as a double precision value */
    2061            8721 :     for (i = UUID_LEN - 1; i >= 0; i--)
    2062                 :     {
    2063            8208 :         delta += (int) u2->data[i] - (int) u1->data[i];
    2064            8208 :         delta /= 256;
    2065                 :     }
    2066                 : 
    2067             513 :     Assert(delta >= 0);
    2068                 : 
    2069             513 :     PG_RETURN_FLOAT8(delta);
    2070                 : }
    2071                 : 
    2072                 : /*
    2073                 :  * Compute the approximate distance between two dates.
    2074                 :  */
    2075                 : Datum
    2076             513 : brin_minmax_multi_distance_date(PG_FUNCTION_ARGS)
    2077                 : {
    2078             513 :     DateADT     dateVal1 = PG_GETARG_DATEADT(0);
    2079             513 :     DateADT     dateVal2 = PG_GETARG_DATEADT(1);
    2080                 : 
    2081             513 :     if (DATE_NOT_FINITE(dateVal1) || DATE_NOT_FINITE(dateVal2))
    2082 UBC           0 :         PG_RETURN_FLOAT8(0);
    2083                 : 
    2084 CBC         513 :     PG_RETURN_FLOAT8(dateVal1 - dateVal2);
    2085                 : }
    2086                 : 
    2087                 : /*
    2088                 :  * Compute the approximate distance between two time (without tz) values.
    2089                 :  *
    2090                 :  * TimeADT is just an int64, so we simply subtract the values directly.
    2091                 :  */
    2092                 : Datum
    2093             507 : brin_minmax_multi_distance_time(PG_FUNCTION_ARGS)
    2094                 : {
    2095             507 :     float8      delta = 0;
    2096                 : 
    2097             507 :     TimeADT     ta = PG_GETARG_TIMEADT(0);
    2098             507 :     TimeADT     tb = PG_GETARG_TIMEADT(1);
    2099                 : 
    2100             507 :     delta = (tb - ta);
    2101                 : 
    2102             507 :     Assert(delta >= 0);
    2103                 : 
    2104             507 :     PG_RETURN_FLOAT8(delta);
    2105                 : }
    2106                 : 
    2107                 : /*
    2108                 :  * Compute the approximate distance between two timetz values.
    2109                 :  *
    2110                 :  * Simply subtracts the TimeADT (int64) values embedded in TimeTzADT.
    2111                 :  */
    2112                 : Datum
    2113             393 : brin_minmax_multi_distance_timetz(PG_FUNCTION_ARGS)
    2114                 : {
    2115             393 :     float8      delta = 0;
    2116                 : 
    2117             393 :     TimeTzADT  *ta = PG_GETARG_TIMETZADT_P(0);
    2118             393 :     TimeTzADT  *tb = PG_GETARG_TIMETZADT_P(1);
    2119                 : 
    2120             393 :     delta = (tb->time - ta->time) + (tb->zone - ta->zone) * USECS_PER_SEC;
    2121                 : 
    2122             393 :     Assert(delta >= 0);
    2123                 : 
    2124             393 :     PG_RETURN_FLOAT8(delta);
    2125                 : }
    2126                 : 
    2127                 : /*
    2128                 :  * Compute the distance between two timestamp values.
    2129                 :  */
    2130                 : Datum
    2131            1020 : brin_minmax_multi_distance_timestamp(PG_FUNCTION_ARGS)
    2132                 : {
    2133            1020 :     float8      delta = 0;
    2134                 : 
    2135            1020 :     Timestamp   dt1 = PG_GETARG_TIMESTAMP(0);
    2136            1020 :     Timestamp   dt2 = PG_GETARG_TIMESTAMP(1);
    2137                 : 
    2138            1020 :     if (TIMESTAMP_NOT_FINITE(dt1) || TIMESTAMP_NOT_FINITE(dt2))
    2139 UBC           0 :         PG_RETURN_FLOAT8(0);
    2140                 : 
    2141 CBC        1020 :     delta = dt2 - dt1;
    2142                 : 
    2143            1020 :     Assert(delta >= 0);
    2144                 : 
    2145            1020 :     PG_RETURN_FLOAT8(delta);
    2146                 : }
    2147                 : 
    2148                 : /*
    2149                 :  * Compute the distance between two interval values.
    2150                 :  */
    2151                 : Datum
    2152             513 : brin_minmax_multi_distance_interval(PG_FUNCTION_ARGS)
    2153                 : {
    2154             513 :     float8      delta = 0;
    2155                 : 
    2156             513 :     Interval   *ia = PG_GETARG_INTERVAL_P(0);
    2157             513 :     Interval   *ib = PG_GETARG_INTERVAL_P(1);
    2158                 :     Interval   *result;
    2159                 : 
    2160                 :     int64       dayfraction;
    2161                 :     int64       days;
    2162                 : 
    2163             513 :     result = (Interval *) palloc(sizeof(Interval));
    2164                 : 
    2165             513 :     result->month = ib->month - ia->month;
    2166                 :     /* overflow check copied from int4mi */
    2167             513 :     if (!SAMESIGN(ib->month, ia->month) &&
    2168 UBC           0 :         !SAMESIGN(result->month, ib->month))
    2169               0 :         ereport(ERROR,
    2170                 :                 (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
    2171                 :                  errmsg("interval out of range")));
    2172                 : 
    2173 CBC         513 :     result->day = ib->day - ia->day;
    2174             513 :     if (!SAMESIGN(ib->day, ia->day) &&
    2175 UBC           0 :         !SAMESIGN(result->day, ib->day))
    2176               0 :         ereport(ERROR,
    2177                 :                 (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
    2178                 :                  errmsg("interval out of range")));
    2179                 : 
    2180 CBC         513 :     result->time = ib->time - ia->time;
    2181             513 :     if (!SAMESIGN(ib->time, ia->time) &&
    2182 UBC           0 :         !SAMESIGN(result->time, ib->time))
    2183               0 :         ereport(ERROR,
    2184                 :                 (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
    2185                 :                  errmsg("interval out of range")));
    2186                 : 
    2187                 :     /*
    2188                 :      * Delta is (fractional) number of days between the intervals. Assume
    2189                 :      * months have 30 days for consistency with interval_cmp_internal. We
    2190                 :      * don't need to be exact, in the worst case we'll build a bit less
    2191                 :      * efficient ranges. But we should not contradict interval_cmp.
    2192                 :      */
    2193 CBC         513 :     dayfraction = result->time % USECS_PER_DAY;
    2194             513 :     days = result->time / USECS_PER_DAY;
    2195             513 :     days += result->month * INT64CONST(30);
    2196             513 :     days += result->day;
    2197                 : 
    2198                 :     /* convert to double precision */
    2199             513 :     delta = (double) days + dayfraction / (double) USECS_PER_DAY;
    2200                 : 
    2201             513 :     Assert(delta >= 0);
    2202                 : 
    2203             513 :     PG_RETURN_FLOAT8(delta);
    2204                 : }
    2205                 : 
    2206                 : /*
    2207                 :  * Compute the distance between two pg_lsn values.
    2208                 :  *
    2209                 :  * LSN is just an int64 encoding position in the stream, so just subtract
    2210                 :  * those int64 values directly.
    2211                 :  */
    2212                 : Datum
    2213             513 : brin_minmax_multi_distance_pg_lsn(PG_FUNCTION_ARGS)
    2214                 : {
    2215             513 :     float8      delta = 0;
    2216                 : 
    2217             513 :     XLogRecPtr  lsna = PG_GETARG_LSN(0);
    2218             513 :     XLogRecPtr  lsnb = PG_GETARG_LSN(1);
    2219                 : 
    2220             513 :     delta = (lsnb - lsna);
    2221                 : 
    2222             513 :     Assert(delta >= 0);
    2223                 : 
    2224             513 :     PG_RETURN_FLOAT8(delta);
    2225                 : }
    2226                 : 
    2227                 : /*
    2228                 :  * Compute the distance between two macaddr values.
    2229                 :  *
    2230                 :  * mac addresses are treated as 6 unsigned chars, so do the same thing we
    2231                 :  * already do for UUID values.
    2232                 :  */
    2233                 : Datum
    2234             393 : brin_minmax_multi_distance_macaddr(PG_FUNCTION_ARGS)
    2235                 : {
    2236                 :     float8      delta;
    2237                 : 
    2238             393 :     macaddr    *a = PG_GETARG_MACADDR_P(0);
    2239             393 :     macaddr    *b = PG_GETARG_MACADDR_P(1);
    2240                 : 
    2241             393 :     delta = ((float8) b->f - (float8) a->f);
    2242             393 :     delta /= 256;
    2243                 : 
    2244             393 :     delta += ((float8) b->e - (float8) a->e);
    2245             393 :     delta /= 256;
    2246                 : 
    2247             393 :     delta += ((float8) b->d - (float8) a->d);
    2248             393 :     delta /= 256;
    2249                 : 
    2250             393 :     delta += ((float8) b->c - (float8) a->c);
    2251             393 :     delta /= 256;
    2252                 : 
    2253             393 :     delta += ((float8) b->b - (float8) a->b);
    2254             393 :     delta /= 256;
    2255                 : 
    2256             393 :     delta += ((float8) b->a - (float8) a->a);
    2257             393 :     delta /= 256;
    2258                 : 
    2259             393 :     Assert(delta >= 0);
    2260                 : 
    2261             393 :     PG_RETURN_FLOAT8(delta);
    2262                 : }
    2263                 : 
    2264                 : /*
    2265                 :  * Compute the distance between two macaddr8 values.
    2266                 :  *
    2267                 :  * macaddr8 addresses are 8 unsigned chars, so do the same thing we
    2268                 :  * already do for UUID values.
    2269                 :  */
    2270                 : Datum
    2271             513 : brin_minmax_multi_distance_macaddr8(PG_FUNCTION_ARGS)
    2272                 : {
    2273                 :     float8      delta;
    2274                 : 
    2275             513 :     macaddr8   *a = PG_GETARG_MACADDR8_P(0);
    2276             513 :     macaddr8   *b = PG_GETARG_MACADDR8_P(1);
    2277                 : 
    2278             513 :     delta = ((float8) b->h - (float8) a->h);
    2279             513 :     delta /= 256;
    2280                 : 
    2281             513 :     delta += ((float8) b->g - (float8) a->g);
    2282             513 :     delta /= 256;
    2283                 : 
    2284             513 :     delta += ((float8) b->f - (float8) a->f);
    2285             513 :     delta /= 256;
    2286                 : 
    2287             513 :     delta += ((float8) b->e - (float8) a->e);
    2288             513 :     delta /= 256;
    2289                 : 
    2290             513 :     delta += ((float8) b->d - (float8) a->d);
    2291             513 :     delta /= 256;
    2292                 : 
    2293             513 :     delta += ((float8) b->c - (float8) a->c);
    2294             513 :     delta /= 256;
    2295                 : 
    2296             513 :     delta += ((float8) b->b - (float8) a->b);
    2297             513 :     delta /= 256;
    2298                 : 
    2299             513 :     delta += ((float8) b->a - (float8) a->a);
    2300             513 :     delta /= 256;
    2301                 : 
    2302             513 :     Assert(delta >= 0);
    2303                 : 
    2304             513 :     PG_RETURN_FLOAT8(delta);
    2305                 : }
    2306                 : 
    2307                 : /*
    2308                 :  * Compute the distance between two inet values.
    2309                 :  *
    2310                 :  * The distance is defined as the difference between 32-bit/128-bit values,
    2311                 :  * depending on the IP version. The distance is computed by subtracting
    2312                 :  * the bytes and normalizing it to [0,1] range for each IP family.
    2313                 :  * Addresses from different families are considered to be in maximum
    2314                 :  * distance, which is 1.0.
    2315                 :  *
    2316                 :  * XXX Does this need to consider the mask (bits)?  For now, it's ignored.
    2317                 :  */
    2318                 : Datum
    2319            1137 : brin_minmax_multi_distance_inet(PG_FUNCTION_ARGS)
    2320                 : {
    2321                 :     float8      delta;
    2322                 :     int         i;
    2323                 :     int         len;
    2324                 :     unsigned char *addra,
    2325                 :                *addrb;
    2326                 : 
    2327            1137 :     inet       *ipa = PG_GETARG_INET_PP(0);
    2328            1137 :     inet       *ipb = PG_GETARG_INET_PP(1);
    2329                 : 
    2330                 :     int         lena,
    2331                 :                 lenb;
    2332                 : 
    2333                 :     /*
    2334                 :      * If the addresses are from different families, consider them to be in
    2335                 :      * maximal possible distance (which is 1.0).
    2336                 :      */
    2337            1137 :     if (ip_family(ipa) != ip_family(ipb))
    2338              90 :         PG_RETURN_FLOAT8(1.0);
    2339                 : 
    2340            1047 :     addra = (unsigned char *) palloc(ip_addrsize(ipa));
    2341            1047 :     memcpy(addra, ip_addr(ipa), ip_addrsize(ipa));
    2342                 : 
    2343            1047 :     addrb = (unsigned char *) palloc(ip_addrsize(ipb));
    2344            1047 :     memcpy(addrb, ip_addr(ipb), ip_addrsize(ipb));
    2345                 : 
    2346                 :     /*
    2347                 :      * The length is calculated from the mask length, because we sort the
    2348                 :      * addresses by first address in the range, so A.B.C.D/24 < A.B.C.1 (the
    2349                 :      * first range starts at A.B.C.0, which is before A.B.C.1). We don't want
    2350                 :      * to produce a negative delta in this case, so we just cut the extra
    2351                 :      * bytes.
    2352                 :      *
    2353                 :      * XXX Maybe this should be a bit more careful and cut the bits, not just
    2354                 :      * whole bytes.
    2355                 :      */
    2356            1047 :     lena = ip_bits(ipa);
    2357            1047 :     lenb = ip_bits(ipb);
    2358                 : 
    2359            1047 :     len = ip_addrsize(ipa);
    2360                 : 
    2361                 :     /* apply the network mask to both addresses */
    2362            7899 :     for (i = 0; i < len; i++)
    2363                 :     {
    2364                 :         unsigned char mask;
    2365                 :         int         nbits;
    2366                 : 
    2367            6852 :         nbits = Max(0, lena - (i * 8));
    2368            6852 :         if (nbits < 8)
    2369                 :         {
    2370             825 :             mask = (0xFF << (8 - nbits));
    2371             825 :             addra[i] = (addra[i] & mask);
    2372                 :         }
    2373                 : 
    2374            6852 :         nbits = Max(0, lenb - (i * 8));
    2375            6852 :         if (nbits < 8)
    2376                 :         {
    2377             822 :             mask = (0xFF << (8 - nbits));
    2378             822 :             addrb[i] = (addrb[i] & mask);
    2379                 :         }
    2380                 :     }
    2381                 : 
    2382                 :     /* Calculate the difference between the addresses. */
    2383            1047 :     delta = 0;
    2384            7899 :     for (i = len - 1; i >= 0; i--)
    2385                 :     {
    2386            6852 :         unsigned char a = addra[i];
    2387            6852 :         unsigned char b = addrb[i];
    2388                 : 
    2389            6852 :         delta += (float8) b - (float8) a;
    2390            6852 :         delta /= 256;
    2391                 :     }
    2392                 : 
    2393            1047 :     Assert((delta >= 0) && (delta <= 1));
    2394                 : 
    2395            1047 :     pfree(addra);
    2396            1047 :     pfree(addrb);
    2397                 : 
    2398            1047 :     PG_RETURN_FLOAT8(delta);
    2399                 : }
    2400                 : 
    2401                 : static void
    2402            8535 : brin_minmax_multi_serialize(BrinDesc *bdesc, Datum src, Datum *dst)
    2403                 : {
    2404            8535 :     Ranges     *ranges = (Ranges *) DatumGetPointer(src);
    2405                 :     SerializedRanges *s;
    2406                 : 
    2407                 :     /*
    2408                 :      * In batch mode, we need to compress the accumulated values to the
    2409                 :      * actually requested number of values/ranges.
    2410                 :      */
    2411            8535 :     compactify_ranges(bdesc, ranges, ranges->target_maxvalues);
    2412                 : 
    2413                 :     /* At this point everything has to be fully sorted. */
    2414            8535 :     Assert(ranges->nsorted == ranges->nvalues);
    2415                 : 
    2416            8535 :     s = brin_range_serialize(ranges);
    2417            8535 :     dst[0] = PointerGetDatum(s);
    2418            8535 : }
    2419                 : 
    2420                 : static int
    2421            2226 : brin_minmax_multi_get_values(BrinDesc *bdesc, MinMaxMultiOptions *opts)
    2422                 : {
    2423            2226 :     return MinMaxMultiGetValuesPerRange(opts);
    2424                 : }
    2425                 : 
    2426                 : /*
    2427                 :  * Examine the given index tuple (which contains the partial status of a
    2428                 :  * certain page range) by comparing it to the given value that comes from
    2429                 :  * another heap tuple.  If the new value is outside the min/max range
    2430                 :  * specified by the existing tuple values, update the index tuple and return
    2431                 :  * true.  Otherwise, return false and do not modify in this case.
    2432                 :  */
    2433                 : Datum
    2434           49104 : brin_minmax_multi_add_value(PG_FUNCTION_ARGS)
    2435                 : {
    2436           49104 :     BrinDesc   *bdesc = (BrinDesc *) PG_GETARG_POINTER(0);
    2437           49104 :     BrinValues *column = (BrinValues *) PG_GETARG_POINTER(1);
    2438           49104 :     Datum       newval = PG_GETARG_DATUM(2);
    2439           49104 :     bool        isnull PG_USED_FOR_ASSERTS_ONLY = PG_GETARG_DATUM(3);
    2440           49104 :     MinMaxMultiOptions *opts = (MinMaxMultiOptions *) PG_GET_OPCLASS_OPTIONS();
    2441           49104 :     Oid         colloid = PG_GET_COLLATION();
    2442           49104 :     bool        modified = false;
    2443                 :     Form_pg_attribute attr;
    2444                 :     AttrNumber  attno;
    2445                 :     Ranges     *ranges;
    2446           49104 :     SerializedRanges *serialized = NULL;
    2447                 : 
    2448           49104 :     Assert(!isnull);
    2449                 : 
    2450           49104 :     attno = column->bv_attno;
    2451           49104 :     attr = TupleDescAttr(bdesc->bd_tupdesc, attno - 1);
    2452                 : 
    2453                 :     /* use the already deserialized value, if possible */
    2454           49104 :     ranges = (Ranges *) DatumGetPointer(column->bv_mem_value);
    2455                 : 
    2456                 :     /*
    2457                 :      * If this is the first non-null value, we need to initialize the range
    2458                 :      * list. Otherwise, just extract the existing range list from BrinValues.
    2459                 :      *
    2460                 :      * When starting with an empty range, we assume this is a batch mode and
    2461                 :      * we use a larger buffer. The buffer size is derived from the BRIN range
    2462                 :      * size, number of rows per page, with some sensible min/max values. A
    2463                 :      * small buffer would be bad for performance, but a large buffer might
    2464                 :      * require a lot of memory (because of keeping all the values).
    2465                 :      */
    2466           49104 :     if (column->bv_allnulls)
    2467                 :     {
    2468                 :         MemoryContext oldctx;
    2469                 : 
    2470                 :         int         target_maxvalues;
    2471                 :         int         maxvalues;
    2472            2226 :         BlockNumber pagesPerRange = BrinGetPagesPerRange(bdesc->bd_index);
    2473                 : 
    2474                 :         /* what was specified as a reloption? */
    2475            2226 :         target_maxvalues = brin_minmax_multi_get_values(bdesc, opts);
    2476                 : 
    2477                 :         /*
    2478                 :          * Determine the insert buffer size - we use 10x the target, capped to
    2479                 :          * the maximum number of values in the heap range. This is more than
    2480                 :          * enough, considering the actual number of rows per page is likely
    2481                 :          * much lower, but meh.
    2482                 :          */
    2483            2226 :         maxvalues = Min(target_maxvalues * MINMAX_BUFFER_FACTOR,
    2484                 :                         MaxHeapTuplesPerPage * pagesPerRange);
    2485                 : 
    2486                 :         /* but always at least the original value */
    2487            2226 :         maxvalues = Max(maxvalues, target_maxvalues);
    2488                 : 
    2489                 :         /* always cap by MIN/MAX */
    2490            2226 :         maxvalues = Max(maxvalues, MINMAX_BUFFER_MIN);
    2491            2226 :         maxvalues = Min(maxvalues, MINMAX_BUFFER_MAX);
    2492                 : 
    2493            2226 :         oldctx = MemoryContextSwitchTo(column->bv_context);
    2494            2226 :         ranges = minmax_multi_init(maxvalues);
    2495            2226 :         ranges->attno = attno;
    2496            2226 :         ranges->colloid = colloid;
    2497            2226 :         ranges->typid = attr->atttypid;
    2498            2226 :         ranges->target_maxvalues = target_maxvalues;
    2499                 : 
    2500                 :         /* we'll certainly need the comparator, so just look it up now */
    2501            2226 :         ranges->cmp = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
    2502                 :                                                          BTLessStrategyNumber);
    2503                 : 
    2504            2226 :         MemoryContextSwitchTo(oldctx);
    2505                 : 
    2506            2226 :         column->bv_allnulls = false;
    2507            2226 :         modified = true;
    2508                 : 
    2509            2226 :         column->bv_mem_value = PointerGetDatum(ranges);
    2510            2226 :         column->bv_serialize = brin_minmax_multi_serialize;
    2511                 :     }
    2512           46878 :     else if (!ranges)
    2513                 :     {
    2514                 :         MemoryContext oldctx;
    2515                 : 
    2516                 :         int         maxvalues;
    2517            6309 :         BlockNumber pagesPerRange = BrinGetPagesPerRange(bdesc->bd_index);
    2518                 : 
    2519            6309 :         oldctx = MemoryContextSwitchTo(column->bv_context);
    2520                 : 
    2521            6309 :         serialized = (SerializedRanges *) PG_DETOAST_DATUM(column->bv_values[0]);
    2522                 : 
    2523                 :         /*
    2524                 :          * Determine the insert buffer size - we use 10x the target, capped to
    2525                 :          * the maximum number of values in the heap range. This is more than
    2526                 :          * enough, considering the actual number of rows per page is likely
    2527                 :          * much lower, but meh.
    2528                 :          */
    2529            6309 :         maxvalues = Min(serialized->maxvalues * MINMAX_BUFFER_FACTOR,
    2530                 :                         MaxHeapTuplesPerPage * pagesPerRange);
    2531                 : 
    2532                 :         /* but always at least the original value */
    2533            6309 :         maxvalues = Max(maxvalues, serialized->maxvalues);
    2534                 : 
    2535                 :         /* always cap by MIN/MAX */
    2536            6309 :         maxvalues = Max(maxvalues, MINMAX_BUFFER_MIN);
    2537            6309 :         maxvalues = Min(maxvalues, MINMAX_BUFFER_MAX);
    2538                 : 
    2539            6309 :         ranges = brin_range_deserialize(maxvalues, serialized);
    2540                 : 
    2541            6309 :         ranges->attno = attno;
    2542            6309 :         ranges->colloid = colloid;
    2543            6309 :         ranges->typid = attr->atttypid;
    2544                 : 
    2545                 :         /* we'll certainly need the comparator, so just look it up now */
    2546            6309 :         ranges->cmp = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
    2547                 :                                                          BTLessStrategyNumber);
    2548                 : 
    2549            6309 :         column->bv_mem_value = PointerGetDatum(ranges);
    2550            6309 :         column->bv_serialize = brin_minmax_multi_serialize;
    2551                 : 
    2552            6309 :         MemoryContextSwitchTo(oldctx);
    2553                 :     }
    2554                 : 
    2555                 :     /*
    2556                 :      * Try to add the new value to the range. We need to update the modified
    2557                 :      * flag, so that we serialize the updated summary later.
    2558                 :      */
    2559           49104 :     modified |= range_add_value(bdesc, colloid, attno, attr, ranges, newval);
    2560                 : 
    2561                 : 
    2562           49104 :     PG_RETURN_BOOL(modified);
    2563                 : }
    2564                 : 
    2565                 : /*
    2566                 :  * Given an index tuple corresponding to a certain page range and a scan key,
    2567                 :  * return whether the scan key is consistent with the index tuple's min/max
    2568                 :  * values.  Return true if so, false otherwise.
    2569                 :  */
    2570                 : Datum
    2571           14652 : brin_minmax_multi_consistent(PG_FUNCTION_ARGS)
    2572                 : {
    2573           14652 :     BrinDesc   *bdesc = (BrinDesc *) PG_GETARG_POINTER(0);
    2574           14652 :     BrinValues *column = (BrinValues *) PG_GETARG_POINTER(1);
    2575           14652 :     ScanKey    *keys = (ScanKey *) PG_GETARG_POINTER(2);
    2576           14652 :     int         nkeys = PG_GETARG_INT32(3);
    2577                 : 
    2578           14652 :     Oid         colloid = PG_GET_COLLATION(),
    2579                 :                 subtype;
    2580                 :     AttrNumber  attno;
    2581                 :     Datum       value;
    2582                 :     FmgrInfo   *finfo;
    2583                 :     SerializedRanges *serialized;
    2584                 :     Ranges     *ranges;
    2585                 :     int         keyno;
    2586                 :     int         rangeno;
    2587                 :     int         i;
    2588                 : 
    2589           14652 :     attno = column->bv_attno;
    2590                 : 
    2591           14652 :     serialized = (SerializedRanges *) PG_DETOAST_DATUM(column->bv_values[0]);
    2592           14652 :     ranges = brin_range_deserialize(serialized->maxvalues, serialized);
    2593                 : 
    2594                 :     /* inspect the ranges, and for each one evaluate the scan keys */
    2595           14652 :     for (rangeno = 0; rangeno < ranges->nranges; rangeno++)
    2596                 :     {
    2597 UBC           0 :         Datum       minval = ranges->values[2 * rangeno];
    2598               0 :         Datum       maxval = ranges->values[2 * rangeno + 1];
    2599                 : 
    2600                 :         /* assume the range is matching, and we'll try to prove otherwise */
    2601               0 :         bool        matching = true;
    2602                 : 
    2603               0 :         for (keyno = 0; keyno < nkeys; keyno++)
    2604                 :         {
    2605                 :             Datum       matches;
    2606               0 :             ScanKey     key = keys[keyno];
    2607                 : 
    2608                 :             /* NULL keys are handled and filtered-out in bringetbitmap */
    2609               0 :             Assert(!(key->sk_flags & SK_ISNULL));
    2610                 : 
    2611               0 :             attno = key->sk_attno;
    2612               0 :             subtype = key->sk_subtype;
    2613               0 :             value = key->sk_argument;
    2614               0 :             switch (key->sk_strategy)
    2615                 :             {
    2616               0 :                 case BTLessStrategyNumber:
    2617                 :                 case BTLessEqualStrategyNumber:
    2618               0 :                     finfo = minmax_multi_get_strategy_procinfo(bdesc, attno, subtype,
    2619               0 :                                                                key->sk_strategy);
    2620                 :                     /* first value from the array */
    2621               0 :                     matches = FunctionCall2Coll(finfo, colloid, minval, value);
    2622               0 :                     break;
    2623                 : 
    2624               0 :                 case BTEqualStrategyNumber:
    2625                 :                     {
    2626                 :                         Datum       compar;
    2627                 :                         FmgrInfo   *cmpFn;
    2628                 : 
    2629                 :                         /* by default this range does not match */
    2630               0 :                         matches = false;
    2631                 : 
    2632                 :                         /*
    2633                 :                          * Otherwise, need to compare the new value with
    2634                 :                          * boundaries of all the ranges. First check if it's
    2635                 :                          * less than the absolute minimum, which is the first
    2636                 :                          * value in the array.
    2637                 :                          */
    2638               0 :                         cmpFn = minmax_multi_get_strategy_procinfo(bdesc, attno, subtype,
    2639                 :                                                                    BTGreaterStrategyNumber);
    2640               0 :                         compar = FunctionCall2Coll(cmpFn, colloid, minval, value);
    2641                 : 
    2642                 :                         /* smaller than the smallest value in this range */
    2643               0 :                         if (DatumGetBool(compar))
    2644               0 :                             break;
    2645                 : 
    2646               0 :                         cmpFn = minmax_multi_get_strategy_procinfo(bdesc, attno, subtype,
    2647                 :                                                                    BTLessStrategyNumber);
    2648               0 :                         compar = FunctionCall2Coll(cmpFn, colloid, maxval, value);
    2649                 : 
    2650                 :                         /* larger than the largest value in this range */
    2651               0 :                         if (DatumGetBool(compar))
    2652               0 :                             break;
    2653                 : 
    2654                 :                         /*
    2655                 :                          * We haven't managed to eliminate this range, so
    2656                 :                          * consider it matching.
    2657                 :                          */
    2658               0 :                         matches = true;
    2659                 : 
    2660               0 :                         break;
    2661                 :                     }
    2662               0 :                 case BTGreaterEqualStrategyNumber:
    2663                 :                 case BTGreaterStrategyNumber:
    2664               0 :                     finfo = minmax_multi_get_strategy_procinfo(bdesc, attno, subtype,
    2665               0 :                                                                key->sk_strategy);
    2666                 :                     /* last value from the array */
    2667               0 :                     matches = FunctionCall2Coll(finfo, colloid, maxval, value);
    2668               0 :                     break;
    2669                 : 
    2670               0 :                 default:
    2671                 :                     /* shouldn't happen */
    2672               0 :                     elog(ERROR, "invalid strategy number %d", key->sk_strategy);
    2673                 :                     matches = 0;
    2674                 :                     break;
    2675                 :             }
    2676                 : 
    2677                 :             /* the range has to match all the scan keys */
    2678               0 :             matching &= DatumGetBool(matches);
    2679                 : 
    2680                 :             /* once we find a non-matching key, we're done */
    2681               0 :             if (!matching)
    2682               0 :                 break;
    2683                 :         }
    2684                 : 
    2685                 :         /*
    2686                 :          * have we found a range matching all scan keys? if yes, we're done
    2687                 :          */
    2688               0 :         if (matching)
    2689               0 :             PG_RETURN_DATUM(BoolGetDatum(true));
    2690                 :     }
    2691                 : 
    2692                 :     /*
    2693                 :      * And now inspect the values. We don't bother with doing a binary search
    2694                 :      * here, because we're dealing with serialized / fully compacted ranges,
    2695                 :      * so there should be only very few values.
    2696                 :      */
    2697 CBC       23937 :     for (i = 0; i < ranges->nvalues; i++)
    2698                 :     {
    2699           21033 :         Datum       val = ranges->values[2 * ranges->nranges + i];
    2700                 : 
    2701                 :         /* assume the range is matching, and we'll try to prove otherwise */
    2702           21033 :         bool        matching = true;
    2703                 : 
    2704           32781 :         for (keyno = 0; keyno < nkeys; keyno++)
    2705                 :         {
    2706                 :             Datum       matches;
    2707           21033 :             ScanKey     key = keys[keyno];
    2708                 : 
    2709                 :             /* we've already dealt with NULL keys at the beginning */
    2710           21033 :             if (key->sk_flags & SK_ISNULL)
    2711 UBC           0 :                 continue;
    2712                 : 
    2713 CBC       21033 :             attno = key->sk_attno;
    2714           21033 :             subtype = key->sk_subtype;
    2715           21033 :             value = key->sk_argument;
    2716           21033 :             switch (key->sk_strategy)
    2717                 :             {
    2718           21033 :                 case BTLessStrategyNumber:
    2719                 :                 case BTLessEqualStrategyNumber:
    2720                 :                 case BTEqualStrategyNumber:
    2721                 :                 case BTGreaterEqualStrategyNumber:
    2722                 :                 case BTGreaterStrategyNumber:
    2723                 : 
    2724           21033 :                     finfo = minmax_multi_get_strategy_procinfo(bdesc, attno, subtype,
    2725           21033 :                                                                key->sk_strategy);
    2726           21033 :                     matches = FunctionCall2Coll(finfo, colloid, val, value);
    2727           21033 :                     break;
    2728                 : 
    2729 UBC           0 :                 default:
    2730                 :                     /* shouldn't happen */
    2731               0 :                     elog(ERROR, "invalid strategy number %d", key->sk_strategy);
    2732                 :                     matches = 0;
    2733                 :                     break;
    2734                 :             }
    2735                 : 
    2736                 :             /* the range has to match all the scan keys */
    2737 CBC       21033 :             matching &= DatumGetBool(matches);
    2738                 : 
    2739                 :             /* once we find a non-matching key, we're done */
    2740           21033 :             if (!matching)
    2741            9285 :                 break;
    2742                 :         }
    2743                 : 
    2744                 :         /* have we found a range matching all scan keys? if yes, we're done */
    2745           21033 :         if (matching)
    2746           11748 :             PG_RETURN_DATUM(BoolGetDatum(true));
    2747                 :     }
    2748                 : 
    2749            2904 :     PG_RETURN_DATUM(BoolGetDatum(false));
    2750                 : }
    2751                 : 
    2752                 : /*
    2753                 :  * Given two BrinValues, update the first of them as a union of the summary
    2754                 :  * values contained in both.  The second one is untouched.
    2755                 :  */
    2756                 : Datum
    2757 UBC           0 : brin_minmax_multi_union(PG_FUNCTION_ARGS)
    2758                 : {
    2759               0 :     BrinDesc   *bdesc = (BrinDesc *) PG_GETARG_POINTER(0);
    2760               0 :     BrinValues *col_a = (BrinValues *) PG_GETARG_POINTER(1);
    2761               0 :     BrinValues *col_b = (BrinValues *) PG_GETARG_POINTER(2);
    2762                 : 
    2763               0 :     Oid         colloid = PG_GET_COLLATION();
    2764                 :     SerializedRanges *serialized_a;
    2765                 :     SerializedRanges *serialized_b;
    2766                 :     Ranges     *ranges_a;
    2767                 :     Ranges     *ranges_b;
    2768                 :     AttrNumber  attno;
    2769                 :     Form_pg_attribute attr;
    2770                 :     ExpandedRange *eranges;
    2771                 :     int         neranges;
    2772                 :     FmgrInfo   *cmpFn,
    2773                 :                *distanceFn;
    2774                 :     DistanceValue *distances;
    2775                 :     MemoryContext ctx;
    2776                 :     MemoryContext oldctx;
    2777                 : 
    2778               0 :     Assert(col_a->bv_attno == col_b->bv_attno);
    2779               0 :     Assert(!col_a->bv_allnulls && !col_b->bv_allnulls);
    2780                 : 
    2781               0 :     attno = col_a->bv_attno;
    2782               0 :     attr = TupleDescAttr(bdesc->bd_tupdesc, attno - 1);
    2783                 : 
    2784               0 :     serialized_a = (SerializedRanges *) PG_DETOAST_DATUM(col_a->bv_values[0]);
    2785               0 :     serialized_b = (SerializedRanges *) PG_DETOAST_DATUM(col_b->bv_values[0]);
    2786                 : 
    2787               0 :     ranges_a = brin_range_deserialize(serialized_a->maxvalues, serialized_a);
    2788               0 :     ranges_b = brin_range_deserialize(serialized_b->maxvalues, serialized_b);
    2789                 : 
    2790                 :     /* make sure neither of the ranges is NULL */
    2791               0 :     Assert(ranges_a && ranges_b);
    2792                 : 
    2793               0 :     neranges = (ranges_a->nranges + ranges_a->nvalues) +
    2794               0 :         (ranges_b->nranges + ranges_b->nvalues);
    2795                 : 
    2796                 :     /*
    2797                 :      * The distanceFn calls (which may internally call e.g. numeric_le) may
    2798                 :      * allocate quite a bit of memory, and we must not leak it. Otherwise,
    2799                 :      * we'd have problems e.g. when building indexes. So we create a local
    2800                 :      * memory context and make sure we free the memory before leaving this
    2801                 :      * function (not after every call).
    2802                 :      */
    2803               0 :     ctx = AllocSetContextCreate(CurrentMemoryContext,
    2804                 :                                 "minmax-multi context",
    2805                 :                                 ALLOCSET_DEFAULT_SIZES);
    2806                 : 
    2807               0 :     oldctx = MemoryContextSwitchTo(ctx);
    2808                 : 
    2809                 :     /* allocate and fill */
    2810               0 :     eranges = (ExpandedRange *) palloc0(neranges * sizeof(ExpandedRange));
    2811                 : 
    2812                 :     /* fill the expanded ranges with entries for the first range */
    2813               0 :     fill_expanded_ranges(eranges, ranges_a->nranges + ranges_a->nvalues,
    2814                 :                          ranges_a);
    2815                 : 
    2816                 :     /* and now add combine ranges for the second range */
    2817               0 :     fill_expanded_ranges(&eranges[ranges_a->nranges + ranges_a->nvalues],
    2818               0 :                          ranges_b->nranges + ranges_b->nvalues,
    2819                 :                          ranges_b);
    2820                 : 
    2821               0 :     cmpFn = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
    2822                 :                                                BTLessStrategyNumber);
    2823                 : 
    2824                 :     /* sort the expanded ranges */
    2825               0 :     neranges = sort_expanded_ranges(cmpFn, colloid, eranges, neranges);
    2826                 : 
    2827                 :     /*
    2828                 :      * We've loaded two different lists of expanded ranges, so some of them
    2829                 :      * may be overlapping. So walk through them and merge them.
    2830                 :      */
    2831               0 :     neranges = merge_overlapping_ranges(cmpFn, colloid, eranges, neranges);
    2832                 : 
    2833                 :     /* check that the combine ranges are correct (no overlaps, ordering) */
    2834               0 :     AssertCheckExpandedRanges(bdesc, colloid, attno, attr, eranges, neranges);
    2835                 : 
    2836                 :     /*
    2837                 :      * If needed, reduce some of the ranges.
    2838                 :      *
    2839                 :      * XXX This may be fairly expensive, so maybe we should do it only when
    2840                 :      * it's actually needed (when we have too many ranges).
    2841                 :      */
    2842                 : 
    2843                 :     /* build array of gap distances and sort them in ascending order */
    2844               0 :     distanceFn = minmax_multi_get_procinfo(bdesc, attno, PROCNUM_DISTANCE);
    2845               0 :     distances = build_distances(distanceFn, colloid, eranges, neranges);
    2846                 : 
    2847                 :     /*
    2848                 :      * See how many values would be needed to store the current ranges, and if
    2849                 :      * needed combine as many of them to get below the threshold. The
    2850                 :      * collapsed ranges will be stored as a single value.
    2851                 :      *
    2852                 :      * XXX This does not apply the load factor, as we don't expect to add more
    2853                 :      * values to the range, so we prefer to keep as many ranges as possible.
    2854                 :      *
    2855                 :      * XXX Can the maxvalues be different in the two ranges? Perhaps we should
    2856                 :      * use maximum of those?
    2857                 :      */
    2858               0 :     neranges = reduce_expanded_ranges(eranges, neranges, distances,
    2859                 :                                       ranges_a->maxvalues,
    2860                 :                                       cmpFn, colloid);
    2861                 : 
    2862                 :     /* update the first range summary */
    2863               0 :     store_expanded_ranges(ranges_a, eranges, neranges);
    2864                 : 
    2865               0 :     MemoryContextSwitchTo(oldctx);
    2866               0 :     MemoryContextDelete(ctx);
    2867                 : 
    2868                 :     /* cleanup and update the serialized value */
    2869               0 :     pfree(serialized_a);
    2870               0 :     col_a->bv_values[0] = PointerGetDatum(brin_range_serialize(ranges_a));
    2871                 : 
    2872               0 :     PG_RETURN_VOID();
    2873                 : }
    2874                 : 
    2875                 : /*
    2876                 :  * Cache and return minmax multi opclass support procedure
    2877                 :  *
    2878                 :  * Return the procedure corresponding to the given function support number
    2879                 :  * or null if it does not exist.
    2880                 :  */
    2881                 : static FmgrInfo *
    2882 CBC        2667 : minmax_multi_get_procinfo(BrinDesc *bdesc, uint16 attno, uint16 procnum)
    2883                 : {
    2884                 :     MinmaxMultiOpaque *opaque;
    2885            2667 :     uint16      basenum = procnum - PROCNUM_BASE;
    2886                 : 
    2887                 :     /*
    2888                 :      * We cache these in the opaque struct, to avoid repetitive syscache
    2889                 :      * lookups.
    2890                 :      */
    2891            2667 :     opaque = (MinmaxMultiOpaque *) bdesc->bd_info[attno - 1]->oi_opaque;
    2892                 : 
    2893                 :     /*
    2894                 :      * If we already searched for this proc and didn't find it, don't bother
    2895                 :      * searching again.
    2896                 :      */
    2897            2667 :     if (opaque->extra_proc_missing[basenum])
    2898 UBC           0 :         return NULL;
    2899                 : 
    2900 CBC        2667 :     if (opaque->extra_procinfos[basenum].fn_oid == InvalidOid)
    2901                 :     {
    2902             195 :         if (RegProcedureIsValid(index_getprocid(bdesc->bd_index, attno,
    2903                 :                                                 procnum)))
    2904                 :         {
    2905             195 :             fmgr_info_copy(&opaque->extra_procinfos[basenum],
    2906                 :                            index_getprocinfo(bdesc->bd_index, attno, procnum),
    2907                 :                            bdesc->bd_context);
    2908                 :         }
    2909                 :         else
    2910                 :         {
    2911 UBC           0 :             opaque->extra_proc_missing[basenum] = true;
    2912               0 :             return NULL;
    2913                 :         }
    2914                 :     }
    2915                 : 
    2916 CBC        2667 :     return &opaque->extra_procinfos[basenum];
    2917                 : }
    2918                 : 
    2919                 : /*
    2920                 :  * Cache and return the procedure for the given strategy.
    2921                 :  *
    2922                 :  * Note: this function mirrors minmax_multi_get_strategy_procinfo; see notes
    2923                 :  * there.  If changes are made here, see that function too.
    2924                 :  */
    2925                 : static FmgrInfo *
    2926          289692 : minmax_multi_get_strategy_procinfo(BrinDesc *bdesc, uint16 attno, Oid subtype,
    2927                 :                                    uint16 strategynum)
    2928                 : {
    2929                 :     MinmaxMultiOpaque *opaque;
    2930                 : 
    2931          289692 :     Assert(strategynum >= 1 &&
    2932                 :            strategynum <= BTMaxStrategyNumber);
    2933                 : 
    2934          289692 :     opaque = (MinmaxMultiOpaque *) bdesc->bd_info[attno - 1]->oi_opaque;
    2935                 : 
    2936                 :     /*
    2937                 :      * We cache the procedures for the previous subtype in the opaque struct,
    2938                 :      * to avoid repetitive syscache lookups.  If the subtype changed,
    2939                 :      * invalidate all the cached entries.
    2940                 :      */
    2941          289692 :     if (opaque->cached_subtype != subtype)
    2942                 :     {
    2943                 :         uint16      i;
    2944                 : 
    2945            4194 :         for (i = 1; i <= BTMaxStrategyNumber; i++)
    2946            3495 :             opaque->strategy_procinfos[i - 1].fn_oid = InvalidOid;
    2947             699 :         opaque->cached_subtype = subtype;
    2948                 :     }
    2949                 : 
    2950          289692 :     if (opaque->strategy_procinfos[strategynum - 1].fn_oid == InvalidOid)
    2951                 :     {
    2952                 :         Form_pg_attribute attr;
    2953                 :         HeapTuple   tuple;
    2954                 :         Oid         opfamily,
    2955                 :                     oprid;
    2956 ECB             : 
    2957 CBC         957 :         opfamily = bdesc->bd_index->rd_opfamily[attno - 1];
    2958             957 :         attr = TupleDescAttr(bdesc->bd_tupdesc, attno - 1);
    2959 GIC         957 :         tuple = SearchSysCache4(AMOPSTRATEGY, ObjectIdGetDatum(opfamily),
    2960                 :                                 ObjectIdGetDatum(attr->atttypid),
    2961                 :                                 ObjectIdGetDatum(subtype),
    2962 ECB             :                                 Int16GetDatum(strategynum));
    2963 GBC         957 :         if (!HeapTupleIsValid(tuple))
    2964 UIC           0 :             elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
    2965                 :                  strategynum, attr->atttypid, subtype, opfamily);
    2966 ECB             : 
    2967 GNC         957 :         oprid = DatumGetObjectId(SysCacheGetAttrNotNull(AMOPSTRATEGY, tuple,
    2968                 :                                                         Anum_pg_amop_amopopr));
    2969 CBC         957 :         ReleaseSysCache(tuple);
    2970 GNC         957 :         Assert(RegProcedureIsValid(oprid));
    2971 ECB             : 
    2972 CBC         957 :         fmgr_info_cxt(get_opcode(oprid),
    2973 GIC         957 :                       &opaque->strategy_procinfos[strategynum - 1],
    2974                 :                       bdesc->bd_context);
    2975                 :     }
    2976 ECB             : 
    2977 GIC      289692 :     return &opaque->strategy_procinfos[strategynum - 1];
    2978                 : }
    2979                 : 
    2980 ECB             : Datum
    2981 GIC         344 : brin_minmax_multi_options(PG_FUNCTION_ARGS)
    2982 ECB             : {
    2983 GIC         344 :     local_relopts *relopts = (local_relopts *) PG_GETARG_POINTER(0);
    2984 ECB             : 
    2985 GIC         344 :     init_local_reloptions(relopts, sizeof(MinMaxMultiOptions));
    2986 ECB             : 
    2987 GIC         344 :     add_local_int_reloption(relopts, "values_per_range", "desc",
    2988                 :                             MINMAX_MULTI_DEFAULT_VALUES_PER_PAGE, 8, 256,
    2989                 :                             offsetof(MinMaxMultiOptions, valuesPerRange));
    2990 ECB             : 
    2991 GIC         344 :     PG_RETURN_VOID();
    2992                 : }
    2993                 : 
    2994                 : /*
    2995                 :  * brin_minmax_multi_summary_in
    2996                 :  *      - input routine for type brin_minmax_multi_summary.
    2997                 :  *
    2998                 :  * brin_minmax_multi_summary is only used internally to represent summaries
    2999                 :  * in BRIN minmax-multi indexes, so it has no operations of its own, and we
    3000                 :  * disallow input too.
    3001                 :  */
    3002 EUB             : Datum
    3003 UIC           0 : brin_minmax_multi_summary_in(PG_FUNCTION_ARGS)
    3004                 : {
    3005                 :     /*
    3006                 :      * brin_minmax_multi_summary stores the data in binary form and parsing
    3007                 :      * text input is not needed, so disallow this.
    3008 EUB             :      */
    3009 UIC           0 :     ereport(ERROR,
    3010                 :             (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
    3011                 :              errmsg("cannot accept a value of type %s", "brin_minmax_multi_summary")));
    3012                 : 
    3013                 :     PG_RETURN_VOID();           /* keep compiler quiet */
    3014                 : }
    3015                 : 
    3016                 : 
    3017                 : /*
    3018                 :  * brin_minmax_multi_summary_out
    3019                 :  *      - output routine for type brin_minmax_multi_summary.
    3020                 :  *
    3021                 :  * BRIN minmax-multi summaries are serialized into a bytea value, but we
    3022                 :  * want to output something nicer humans can understand.
    3023                 :  */
    3024 EUB             : Datum
    3025 UIC           0 : brin_minmax_multi_summary_out(PG_FUNCTION_ARGS)
    3026                 : {
    3027                 :     int         i;
    3028                 :     int         idx;
    3029                 :     SerializedRanges *ranges;
    3030                 :     Ranges     *ranges_deserialized;
    3031                 :     StringInfoData str;
    3032                 :     bool        isvarlena;
    3033                 :     Oid         outfunc;
    3034 EUB             :     FmgrInfo    fmgrinfo;
    3035 UIC           0 :     ArrayBuildState *astate_values = NULL;
    3036 EUB             : 
    3037 UBC           0 :     initStringInfo(&str);
    3038 UIC           0 :     appendStringInfoChar(&str, '{');
    3039                 : 
    3040                 :     /*
    3041                 :      * Detoast to get value with full 4B header (can't be stored in a toast
    3042                 :      * table, but can use 1B header).
    3043 EUB             :      */
    3044 UNC           0 :     ranges = (SerializedRanges *) PG_DETOAST_DATUM_PACKED(PG_GETARG_DATUM(0));
    3045                 : 
    3046 EUB             :     /* lookup output func for the type */
    3047 UBC           0 :     getTypeOutputInfo(ranges->typid, &outfunc, &isvarlena);
    3048 UIC           0 :     fmgr_info(outfunc, &fmgrinfo);
    3049                 : 
    3050 EUB             :     /* deserialize the range info easy-to-process pieces */
    3051 UIC           0 :     ranges_deserialized = brin_range_deserialize(ranges->maxvalues, ranges);
    3052 EUB             : 
    3053 UIC           0 :     appendStringInfo(&str, "nranges: %d  nvalues: %d  maxvalues: %d",
    3054                 :                      ranges_deserialized->nranges,
    3055                 :                      ranges_deserialized->nvalues,
    3056                 :                      ranges_deserialized->maxvalues);
    3057                 : 
    3058 EUB             :     /* serialize ranges */
    3059 UBC           0 :     idx = 0;
    3060 UIC           0 :     for (i = 0; i < ranges_deserialized->nranges; i++)
    3061                 :     {
    3062                 :         char       *a,
    3063                 :                    *b;
    3064                 :         text       *c;
    3065                 :         StringInfoData buf;
    3066 EUB             : 
    3067 UNC           0 :         initStringInfo(&buf);
    3068 EUB             : 
    3069 UBC           0 :         a = OutputFunctionCall(&fmgrinfo, ranges_deserialized->values[idx++]);
    3070 UIC           0 :         b = OutputFunctionCall(&fmgrinfo, ranges_deserialized->values[idx++]);
    3071 EUB             : 
    3072 UNC           0 :         appendStringInfo(&buf, "%s ... %s", a, b);
    3073 EUB             : 
    3074 UNC           0 :         c = cstring_to_text_with_len(buf.data, buf.len);
    3075 EUB             : 
    3076 UIC           0 :         astate_values = accumArrayResult(astate_values,
    3077                 :                                          PointerGetDatum(c),
    3078                 :                                          false,
    3079                 :                                          TEXTOID,
    3080                 :                                          CurrentMemoryContext);
    3081                 :     }
    3082 EUB             : 
    3083 UIC           0 :     if (ranges_deserialized->nranges > 0)
    3084                 :     {
    3085                 :         Oid         typoutput;
    3086                 :         bool        typIsVarlena;
    3087                 :         Datum       val;
    3088                 :         char       *extval;
    3089 EUB             : 
    3090 UIC           0 :         getTypeOutputInfo(ANYARRAYOID, &typoutput, &typIsVarlena);
    3091 EUB             : 
    3092 UNC           0 :         val = makeArrayResult(astate_values, CurrentMemoryContext);
    3093 EUB             : 
    3094 UIC           0 :         extval = OidOutputFunctionCall(typoutput, val);
    3095 EUB             : 
    3096 UIC           0 :         appendStringInfo(&str, " ranges: %s", extval);
    3097                 :     }
    3098                 : 
    3099 EUB             :     /* serialize individual values */
    3100 UIC           0 :     astate_values = NULL;
    3101 EUB             : 
    3102 UIC           0 :     for (i = 0; i < ranges_deserialized->nvalues; i++)
    3103                 :     {
    3104                 :         Datum       a;
    3105                 :         text       *b;
    3106 EUB             : 
    3107 UIC           0 :         a = FunctionCall1(&fmgrinfo, ranges_deserialized->values[idx++]);
    3108 UNC           0 :         b = cstring_to_text(DatumGetCString(a));
    3109                 : 
    3110 UBC           0 :         astate_values = accumArrayResult(astate_values,
    3111                 :                                          PointerGetDatum(b),
    3112                 :                                          false,
    3113                 :                                          TEXTOID,
    3114                 :                                          CurrentMemoryContext);
    3115                 :     }
    3116                 : 
    3117               0 :     if (ranges_deserialized->nvalues > 0)
    3118                 :     {
    3119 EUB             :         Oid         typoutput;
    3120                 :         bool        typIsVarlena;
    3121                 :         Datum       val;
    3122                 :         char       *extval;
    3123                 : 
    3124 UIC           0 :         getTypeOutputInfo(ANYARRAYOID, &typoutput, &typIsVarlena);
    3125                 : 
    3126 UNC           0 :         val = makeArrayResult(astate_values, CurrentMemoryContext);
    3127 EUB             : 
    3128 UIC           0 :         extval = OidOutputFunctionCall(typoutput, val);
    3129 EUB             : 
    3130 UIC           0 :         appendStringInfo(&str, " values: %s", extval);
    3131                 :     }
    3132                 : 
    3133                 : 
    3134               0 :     appendStringInfoChar(&str, '}');
    3135                 : 
    3136               0 :     PG_RETURN_CSTRING(str.data);
    3137 EUB             : }
    3138                 : 
    3139                 : /*
    3140                 :  * brin_minmax_multi_summary_recv
    3141                 :  *      - binary input routine for type brin_minmax_multi_summary.
    3142                 :  */
    3143                 : Datum
    3144 UIC           0 : brin_minmax_multi_summary_recv(PG_FUNCTION_ARGS)
    3145                 : {
    3146               0 :     ereport(ERROR,
    3147                 :             (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
    3148                 :              errmsg("cannot accept a value of type %s", "brin_minmax_multi_summary")));
    3149                 : 
    3150                 :     PG_RETURN_VOID();           /* keep compiler quiet */
    3151                 : }
    3152                 : 
    3153                 : /*
    3154 EUB             :  * brin_minmax_multi_summary_send
    3155                 :  *      - binary output routine for type brin_minmax_multi_summary.
    3156                 :  *
    3157                 :  * BRIN minmax-multi summaries are serialized in a bytea value (although
    3158                 :  * the type is named differently), so let's just send that.
    3159                 :  */
    3160                 : Datum
    3161 UIC           0 : brin_minmax_multi_summary_send(PG_FUNCTION_ARGS)
    3162                 : {
    3163               0 :     return byteasend(fcinfo);
    3164                 : }
        

Generated by: LCOV version v1.16-55-g56c0a2a