LCOV - differential code coverage report
Current view: top level - contrib/amcheck - verify_nbtree.c (source / functions) Coverage Total Hit LBC UIC UBC GBC GIC GNC CBC EUB ECB DCB
Current: Differential Code Coverage HEAD vs 15 Lines: 69.3 % 655 454 22 130 49 4 307 7 136 148 295 1
Current Date: 2023-04-08 15:15:32 Functions: 90.3 % 31 28 3 27 1 3 28
Baseline: 15
Baseline Date: 2023-04-08 15:09:40
Legend: Lines: hit not hit

           TLA  Line data    Source code
       1                 : /*-------------------------------------------------------------------------
       2                 :  *
       3                 :  * verify_nbtree.c
       4                 :  *      Verifies the integrity of nbtree indexes based on invariants.
       5                 :  *
       6                 :  * For B-Tree indexes, verification includes checking that each page in the
       7                 :  * target index has items in logical order as reported by an insertion scankey
       8                 :  * (the insertion scankey sort-wise NULL semantics are needed for
       9                 :  * verification).
      10                 :  *
      11                 :  * When index-to-heap verification is requested, a Bloom filter is used to
      12                 :  * fingerprint all tuples in the target index, as the index is traversed to
      13                 :  * verify its structure.  A heap scan later uses Bloom filter probes to verify
      14                 :  * that every visible heap tuple has a matching index tuple.
      15                 :  *
      16                 :  *
      17                 :  * Copyright (c) 2017-2023, PostgreSQL Global Development Group
      18                 :  *
      19                 :  * IDENTIFICATION
      20                 :  *    contrib/amcheck/verify_nbtree.c
      21                 :  *
      22                 :  *-------------------------------------------------------------------------
      23                 :  */
      24                 : #include "postgres.h"
      25                 : 
      26                 : #include "access/htup_details.h"
      27                 : #include "access/nbtree.h"
      28                 : #include "access/table.h"
      29                 : #include "access/tableam.h"
      30                 : #include "access/transam.h"
      31                 : #include "access/xact.h"
      32                 : #include "catalog/index.h"
      33                 : #include "catalog/pg_am.h"
      34                 : #include "commands/tablecmds.h"
      35                 : #include "common/pg_prng.h"
      36                 : #include "lib/bloomfilter.h"
      37                 : #include "miscadmin.h"
      38                 : #include "storage/lmgr.h"
      39                 : #include "storage/smgr.h"
      40                 : #include "utils/guc.h"
      41                 : #include "utils/memutils.h"
      42                 : #include "utils/snapmgr.h"
      43                 : 
      44                 : 
      45 GIC         302 : PG_MODULE_MAGIC;
      46 ECB             : 
      47                 : /*
      48                 :  * A B-Tree cannot possibly have this many levels, since there must be one
      49                 :  * block per level, which is bound by the range of BlockNumber:
      50                 :  */
      51                 : #define InvalidBtreeLevel   ((uint32) InvalidBlockNumber)
      52                 : #define BTreeTupleGetNKeyAtts(itup, rel)   \
      53                 :     Min(IndexRelationGetNumberOfKeyAttributes(rel), BTreeTupleGetNAtts(itup, rel))
      54                 : 
      55                 : /*
      56                 :  * State associated with verifying a B-Tree index
      57                 :  *
      58                 :  * target is the point of reference for a verification operation.
      59                 :  *
      60                 :  * Other B-Tree pages may be allocated, but those are always auxiliary (e.g.,
      61                 :  * they are current target's child pages).  Conceptually, problems are only
      62                 :  * ever found in the current target page (or for a particular heap tuple during
      63                 :  * heapallindexed verification).  Each page found by verification's left/right,
      64                 :  * top/bottom scan becomes the target exactly once.
      65                 :  */
      66                 : typedef struct BtreeCheckState
      67                 : {
      68                 :     /*
      69                 :      * Unchanging state, established at start of verification:
      70                 :      */
      71                 : 
      72                 :     /* B-Tree Index Relation and associated heap relation */
      73                 :     Relation    rel;
      74                 :     Relation    heaprel;
      75                 :     /* rel is heapkeyspace index? */
      76                 :     bool        heapkeyspace;
      77                 :     /* ShareLock held on heap/index, rather than AccessShareLock? */
      78                 :     bool        readonly;
      79                 :     /* Also verifying heap has no unindexed tuples? */
      80                 :     bool        heapallindexed;
      81                 :     /* Also making sure non-pivot tuples can be found by new search? */
      82                 :     bool        rootdescend;
      83                 :     /* Per-page context */
      84                 :     MemoryContext targetcontext;
      85                 :     /* Buffer access strategy */
      86                 :     BufferAccessStrategy checkstrategy;
      87                 : 
      88                 :     /*
      89                 :      * Mutable state, for verification of particular page:
      90                 :      */
      91                 : 
      92                 :     /* Current target page */
      93                 :     Page        target;
      94                 :     /* Target block number */
      95                 :     BlockNumber targetblock;
      96                 :     /* Target page's LSN */
      97                 :     XLogRecPtr  targetlsn;
      98                 : 
      99                 :     /*
     100                 :      * Low key: high key of left sibling of target page.  Used only for child
     101                 :      * verification.  So, 'lowkey' is kept only when 'readonly' is set.
     102                 :      */
     103                 :     IndexTuple  lowkey;
     104                 : 
     105                 :     /*
     106                 :      * The rightlink and incomplete split flag of block one level down to the
     107                 :      * target page, which was visited last time via downlink from taget page.
     108                 :      * We use it to check for missing downlinks.
     109                 :      */
     110                 :     BlockNumber prevrightlink;
     111                 :     bool        previncompletesplit;
     112                 : 
     113                 :     /*
     114                 :      * Mutable state, for optional heapallindexed verification:
     115                 :      */
     116                 : 
     117                 :     /* Bloom filter fingerprints B-Tree index */
     118                 :     bloom_filter *filter;
     119                 :     /* Debug counter */
     120                 :     int64       heaptuplespresent;
     121                 : } BtreeCheckState;
     122                 : 
     123                 : /*
     124                 :  * Starting point for verifying an entire B-Tree index level
     125                 :  */
     126                 : typedef struct BtreeLevel
     127                 : {
     128                 :     /* Level number (0 is leaf page level). */
     129                 :     uint32      level;
     130                 : 
     131                 :     /* Left most block on level.  Scan of level begins here. */
     132                 :     BlockNumber leftmost;
     133                 : 
     134                 :     /* Is this level reported as "true" root level by meta page? */
     135                 :     bool        istruerootlevel;
     136                 : } BtreeLevel;
     137                 : 
     138 GIC          60 : PG_FUNCTION_INFO_V1(bt_index_check);
     139 CBC          35 : PG_FUNCTION_INFO_V1(bt_index_parent_check);
     140 ECB             : 
     141                 : static void bt_index_check_internal(Oid indrelid, bool parentcheck,
     142                 :                                     bool heapallindexed, bool rootdescend);
     143                 : static inline void btree_index_checkable(Relation rel);
     144                 : static inline bool btree_index_mainfork_expected(Relation rel);
     145                 : static void bt_check_every_level(Relation rel, Relation heaprel,
     146                 :                                  bool heapkeyspace, bool readonly, bool heapallindexed,
     147                 :                                  bool rootdescend);
     148                 : static BtreeLevel bt_check_level_from_leftmost(BtreeCheckState *state,
     149                 :                                                BtreeLevel level);
     150                 : static void bt_recheck_sibling_links(BtreeCheckState *state,
     151                 :                                      BlockNumber btpo_prev_from_target,
     152                 :                                      BlockNumber leftcurrent);
     153                 : static void bt_target_page_check(BtreeCheckState *state);
     154                 : static BTScanInsert bt_right_page_check_scankey(BtreeCheckState *state);
     155                 : static void bt_child_check(BtreeCheckState *state, BTScanInsert targetkey,
     156                 :                            OffsetNumber downlinkoffnum);
     157                 : static void bt_child_highkey_check(BtreeCheckState *state,
     158                 :                                    OffsetNumber target_downlinkoffnum,
     159                 :                                    Page loaded_child,
     160                 :                                    uint32 target_level);
     161                 : static void bt_downlink_missing_check(BtreeCheckState *state, bool rightsplit,
     162                 :                                       BlockNumber blkno, Page page);
     163                 : static void bt_tuple_present_callback(Relation index, ItemPointer tid,
     164                 :                                       Datum *values, bool *isnull,
     165                 :                                       bool tupleIsAlive, void *checkstate);
     166                 : static IndexTuple bt_normalize_tuple(BtreeCheckState *state,
     167                 :                                      IndexTuple itup);
     168                 : static inline IndexTuple bt_posting_plain_tuple(IndexTuple itup, int n);
     169                 : static bool bt_rootdescend(BtreeCheckState *state, IndexTuple itup);
     170                 : static inline bool offset_is_negative_infinity(BTPageOpaque opaque,
     171                 :                                                OffsetNumber offset);
     172                 : static inline bool invariant_l_offset(BtreeCheckState *state, BTScanInsert key,
     173                 :                                       OffsetNumber upperbound);
     174                 : static inline bool invariant_leq_offset(BtreeCheckState *state,
     175                 :                                         BTScanInsert key,
     176                 :                                         OffsetNumber upperbound);
     177                 : static inline bool invariant_g_offset(BtreeCheckState *state, BTScanInsert key,
     178                 :                                       OffsetNumber lowerbound);
     179                 : static inline bool invariant_l_nontarget_offset(BtreeCheckState *state,
     180                 :                                                 BTScanInsert key,
     181                 :                                                 BlockNumber nontargetblock,
     182                 :                                                 Page nontarget,
     183                 :                                                 OffsetNumber upperbound);
     184                 : static Page palloc_btree_page(BtreeCheckState *state, BlockNumber blocknum);
     185                 : static inline BTScanInsert bt_mkscankey_pivotsearch(Relation rel,
     186                 :                                                     Relation heaprel,
     187                 :                                                     IndexTuple itup);
     188                 : static ItemId PageGetItemIdCareful(BtreeCheckState *state, BlockNumber block,
     189                 :                                    Page page, OffsetNumber offset);
     190                 : static inline ItemPointer BTreeTupleGetHeapTIDCareful(BtreeCheckState *state,
     191                 :                                                       IndexTuple itup, bool nonpivot);
     192                 : static inline ItemPointer BTreeTupleGetPointsToTID(IndexTuple itup);
     193                 : 
     194                 : /*
     195                 :  * bt_index_check(index regclass, heapallindexed boolean)
     196                 :  *
     197                 :  * Verify integrity of B-Tree index.
     198                 :  *
     199                 :  * Acquires AccessShareLock on heap & index relations.  Does not consider
     200                 :  * invariants that exist between parent/child pages.  Optionally verifies
     201                 :  * that heap does not contain any unindexed or incorrectly indexed tuples.
     202                 :  */
     203                 : Datum
     204 GIC        2852 : bt_index_check(PG_FUNCTION_ARGS)
     205                 : {
     206 CBC        2852 :     Oid         indrelid = PG_GETARG_OID(0);
     207 GIC        2852 :     bool        heapallindexed = false;
     208 ECB             : 
     209 CBC        2852 :     if (PG_NARGS() == 2)
     210 GIC        2846 :         heapallindexed = PG_GETARG_BOOL(1);
     211 ECB             : 
     212 CBC        2852 :     bt_index_check_internal(indrelid, false, heapallindexed, false);
     213                 : 
     214            2832 :     PG_RETURN_VOID();
     215                 : }
     216 ECB             : 
     217                 : /*
     218                 :  * bt_index_parent_check(index regclass, heapallindexed boolean)
     219                 :  *
     220                 :  * Verify integrity of B-Tree index.
     221                 :  *
     222                 :  * Acquires ShareLock on heap & index relations.  Verifies that downlinks in
     223                 :  * parent pages are valid lower bounds on child pages.  Optionally verifies
     224                 :  * that heap does not contain any unindexed or incorrectly indexed tuples.
     225                 :  */
     226                 : Datum
     227 GIC          29 : bt_index_parent_check(PG_FUNCTION_ARGS)
     228                 : {
     229 CBC          29 :     Oid         indrelid = PG_GETARG_OID(0);
     230 GIC          29 :     bool        heapallindexed = false;
     231 CBC          29 :     bool        rootdescend = false;
     232 ECB             : 
     233 CBC          29 :     if (PG_NARGS() >= 2)
     234 GIC          24 :         heapallindexed = PG_GETARG_BOOL(1);
     235 CBC          29 :     if (PG_NARGS() == 3)
     236              22 :         rootdescend = PG_GETARG_BOOL(2);
     237 ECB             : 
     238 CBC          29 :     bt_index_check_internal(indrelid, true, heapallindexed, rootdescend);
     239                 : 
     240              19 :     PG_RETURN_VOID();
     241                 : }
     242 ECB             : 
     243                 : /*
     244                 :  * Helper for bt_index_[parent_]check, coordinating the bulk of the work.
     245                 :  */
     246                 : static void
     247 GIC        2881 : bt_index_check_internal(Oid indrelid, bool parentcheck, bool heapallindexed,
     248                 :                         bool rootdescend)
     249 ECB             : {
     250                 :     Oid         heapid;
     251                 :     Relation    indrel;
     252                 :     Relation    heaprel;
     253                 :     LOCKMODE    lockmode;
     254                 :     Oid         save_userid;
     255                 :     int         save_sec_context;
     256                 :     int         save_nestlevel;
     257                 : 
     258 GIC        2881 :     if (parentcheck)
     259              29 :         lockmode = ShareLock;
     260 ECB             :     else
     261 CBC        2852 :         lockmode = AccessShareLock;
     262                 : 
     263 ECB             :     /*
     264                 :      * We must lock table before index to avoid deadlocks.  However, if the
     265                 :      * passed indrelid isn't an index then IndexGetRelation() will fail.
     266                 :      * Rather than emitting a not-very-helpful error message, postpone
     267                 :      * complaining, expecting that the is-it-an-index test below will fail.
     268                 :      *
     269                 :      * In hot standby mode this will raise an error when parentcheck is true.
     270                 :      */
     271 GIC        2881 :     heapid = IndexGetRelation(indrelid, true);
     272            2881 :     if (OidIsValid(heapid))
     273 ECB             :     {
     274 CBC        2877 :         heaprel = table_open(heapid, lockmode);
     275                 : 
     276 ECB             :         /*
     277                 :          * Switch to the table owner's userid, so that any index functions are
     278                 :          * run as that user.  Also lock down security-restricted operations
     279                 :          * and arrange to make GUC variable changes local to this command.
     280                 :          */
     281 GIC        2877 :         GetUserIdAndSecContext(&save_userid, &save_sec_context);
     282            2877 :         SetUserIdAndSecContext(heaprel->rd_rel->relowner,
     283 ECB             :                                save_sec_context | SECURITY_RESTRICTED_OPERATION);
     284 CBC        2877 :         save_nestlevel = NewGUCNestLevel();
     285                 :     }
     286 ECB             :     else
     287                 :     {
     288 GIC           4 :         heaprel = NULL;
     289                 :         /* Set these just to suppress "uninitialized variable" warnings */
     290 CBC           4 :         save_userid = InvalidOid;
     291 GIC           4 :         save_sec_context = -1;
     292 CBC           4 :         save_nestlevel = -1;
     293 ECB             :     }
     294                 : 
     295                 :     /*
     296                 :      * Open the target index relations separately (like relation_openrv(), but
     297                 :      * with heap relation locked first to prevent deadlocking).  In hot
     298                 :      * standby mode this will raise an error when parentcheck is true.
     299                 :      *
     300                 :      * There is no need for the usual indcheckxmin usability horizon test
     301                 :      * here, even in the heapallindexed case, because index undergoing
     302                 :      * verification only needs to have entries for a new transaction snapshot.
     303                 :      * (If this is a parentcheck verification, there is no question about
     304                 :      * committed or recently dead heap tuples lacking index entries due to
     305                 :      * concurrent activity.)
     306                 :      */
     307 GIC        2881 :     indrel = index_open(indrelid, lockmode);
     308                 : 
     309 ECB             :     /*
     310                 :      * Since we did the IndexGetRelation call above without any lock, it's
     311                 :      * barely possible that a race against an index drop/recreation could have
     312                 :      * netted us the wrong table.
     313                 :      */
     314 GIC        2877 :     if (heaprel == NULL || heapid != IndexGetRelation(indrelid, false))
     315 UIC           0 :         ereport(ERROR,
     316 ECB             :                 (errcode(ERRCODE_UNDEFINED_TABLE),
     317 EUB             :                  errmsg("could not open parent table of index \"%s\"",
     318                 :                         RelationGetRelationName(indrel))));
     319                 : 
     320                 :     /* Relation suitable for checking as B-Tree? */
     321 GIC        2877 :     btree_index_checkable(indrel);
     322                 : 
     323 CBC        2876 :     if (btree_index_mainfork_expected(indrel))
     324                 :     {
     325 ECB             :         bool        heapkeyspace,
     326                 :                     allequalimage;
     327                 : 
     328 GIC        2876 :         if (!smgrexists(RelationGetSmgr(indrel), MAIN_FORKNUM))
     329              14 :             ereport(ERROR,
     330 ECB             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
     331                 :                      errmsg("index \"%s\" lacks a main relation fork",
     332                 :                             RelationGetRelationName(indrel))));
     333                 : 
     334                 :         /* Extract metadata from metapage, and sanitize it in passing */
     335 GNC        2862 :         _bt_metaversion(indrel, heaprel, &heapkeyspace, &allequalimage);
     336 GIC        2862 :         if (allequalimage && !heapkeyspace)
     337 LBC           0 :             ereport(ERROR,
     338 ECB             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
     339 EUB             :                      errmsg("index \"%s\" metapage has equalimage field set on unsupported nbtree version",
     340                 :                             RelationGetRelationName(indrel))));
     341 GIC        2862 :         if (allequalimage && !_bt_allequalimage(indrel, false))
     342 UIC           0 :             ereport(ERROR,
     343 ECB             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
     344 EUB             :                      errmsg("index \"%s\" metapage incorrectly indicates that deduplication is safe",
     345                 :                             RelationGetRelationName(indrel))));
     346                 : 
     347                 :         /* Check index, possibly against table it is an index on */
     348 GIC        2862 :         bt_check_every_level(indrel, heaprel, heapkeyspace, parentcheck,
     349                 :                              heapallindexed, rootdescend);
     350 ECB             :     }
     351                 : 
     352                 :     /* Roll back any GUC changes executed by index functions */
     353 GIC        2851 :     AtEOXact_GUC(false, save_nestlevel);
     354                 : 
     355 ECB             :     /* Restore userid and security context */
     356 GIC        2851 :     SetUserIdAndSecContext(save_userid, save_sec_context);
     357                 : 
     358 ECB             :     /*
     359                 :      * Release locks early. That's ok here because nothing in the called
     360                 :      * routines will trigger shared cache invalidations to be sent, so we can
     361                 :      * relax the usual pattern of only releasing locks after commit.
     362                 :      */
     363 GIC        2851 :     index_close(indrel, lockmode);
     364            2851 :     if (heaprel)
     365 CBC        2851 :         table_close(heaprel, lockmode);
     366            2851 : }
     367 ECB             : 
     368                 : /*
     369                 :  * Basic checks about the suitability of a relation for checking as a B-Tree
     370                 :  * index.
     371                 :  *
     372                 :  * NB: Intentionally not checking permissions, the function is normally not
     373                 :  * callable by non-superusers. If granted, it's useful to be able to check a
     374                 :  * whole cluster.
     375                 :  */
     376                 : static inline void
     377 GIC        2877 : btree_index_checkable(Relation rel)
     378                 : {
     379 CBC        2877 :     if (rel->rd_rel->relkind != RELKIND_INDEX ||
     380 GIC        2877 :         rel->rd_rel->relam != BTREE_AM_OID)
     381 CBC           1 :         ereport(ERROR,
     382 ECB             :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     383                 :                  errmsg("only B-Tree indexes are supported as targets for verification"),
     384                 :                  errdetail("Relation \"%s\" is not a B-Tree index.",
     385                 :                            RelationGetRelationName(rel))));
     386                 : 
     387 GIC        2876 :     if (RELATION_IS_OTHER_TEMP(rel))
     388 UIC           0 :         ereport(ERROR,
     389 ECB             :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     390 EUB             :                  errmsg("cannot access temporary tables of other sessions"),
     391                 :                  errdetail("Index \"%s\" is associated with temporary relation.",
     392                 :                            RelationGetRelationName(rel))));
     393                 : 
     394 GIC        2876 :     if (!rel->rd_index->indisvalid)
     395 UIC           0 :         ereport(ERROR,
     396 ECB             :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     397 EUB             :                  errmsg("cannot check index \"%s\"",
     398                 :                         RelationGetRelationName(rel)),
     399                 :                  errdetail("Index is not valid.")));
     400 GIC        2876 : }
     401                 : 
     402 ECB             : /*
     403                 :  * Check if B-Tree index relation should have a file for its main relation
     404                 :  * fork.  Verification uses this to skip unlogged indexes when in hot standby
     405                 :  * mode, where there is simply nothing to verify.  We behave as if the
     406                 :  * relation is empty.
     407                 :  *
     408                 :  * NB: Caller should call btree_index_checkable() before calling here.
     409                 :  */
     410                 : static inline bool
     411 GIC        2876 : btree_index_mainfork_expected(Relation rel)
     412                 : {
     413 CBC        2876 :     if (rel->rd_rel->relpersistence != RELPERSISTENCE_UNLOGGED ||
     414 UIC           0 :         !RecoveryInProgress())
     415 CBC        2876 :         return true;
     416 EUB             : 
     417 LBC           0 :     ereport(DEBUG1,
     418                 :             (errcode(ERRCODE_READ_ONLY_SQL_TRANSACTION),
     419 EUB             :              errmsg("cannot verify unlogged index \"%s\" during recovery, skipping",
     420                 :                     RelationGetRelationName(rel))));
     421                 : 
     422 UIC           0 :     return false;
     423                 : }
     424 EUB             : 
     425                 : /*
     426                 :  * Main entry point for B-Tree SQL-callable functions. Walks the B-Tree in
     427                 :  * logical order, verifying invariants as it goes.  Optionally, verification
     428                 :  * checks if the heap relation contains any tuples that are not represented in
     429                 :  * the index but should be.
     430                 :  *
     431                 :  * It is the caller's responsibility to acquire appropriate heavyweight lock on
     432                 :  * the index relation, and advise us if extra checks are safe when a ShareLock
     433                 :  * is held.  (A lock of the same type must also have been acquired on the heap
     434                 :  * relation.)
     435                 :  *
     436                 :  * A ShareLock is generally assumed to prevent any kind of physical
     437                 :  * modification to the index structure, including modifications that VACUUM may
     438                 :  * make.  This does not include setting of the LP_DEAD bit by concurrent index
     439                 :  * scans, although that is just metadata that is not able to directly affect
     440                 :  * any check performed here.  Any concurrent process that might act on the
     441                 :  * LP_DEAD bit being set (recycle space) requires a heavyweight lock that
     442                 :  * cannot be held while we hold a ShareLock.  (Besides, even if that could
     443                 :  * happen, the ad-hoc recycling when a page might otherwise split is performed
     444                 :  * per-page, and requires an exclusive buffer lock, which wouldn't cause us
     445                 :  * trouble.  _bt_delitems_vacuum() may only delete leaf items, and so the extra
     446                 :  * parent/child check cannot be affected.)
     447                 :  */
     448                 : static void
     449 GIC        2862 : bt_check_every_level(Relation rel, Relation heaprel, bool heapkeyspace,
     450                 :                      bool readonly, bool heapallindexed, bool rootdescend)
     451 ECB             : {
     452                 :     BtreeCheckState *state;
     453                 :     Page        metapage;
     454                 :     BTMetaPageData *metad;
     455                 :     uint32      previouslevel;
     456                 :     BtreeLevel  current;
     457 GIC        2862 :     Snapshot    snapshot = SnapshotAny;
     458                 : 
     459 CBC        2862 :     if (!readonly)
     460 GIC        2840 :         elog(DEBUG1, "verifying consistency of tree structure for index \"%s\"",
     461 ECB             :              RelationGetRelationName(rel));
     462                 :     else
     463 GIC          22 :         elog(DEBUG1, "verifying consistency of tree structure for index \"%s\" with cross-level checks",
     464                 :              RelationGetRelationName(rel));
     465 ECB             : 
     466                 :     /*
     467                 :      * This assertion matches the one in index_getnext_tid().  See page
     468                 :      * recycling/"visible to everyone" notes in nbtree README.
     469                 :      */
     470 GIC        2862 :     Assert(TransactionIdIsValid(RecentXmin));
     471                 : 
     472 ECB             :     /*
     473                 :      * Initialize state for entire verification operation
     474                 :      */
     475 GIC        2862 :     state = palloc0(sizeof(BtreeCheckState));
     476            2862 :     state->rel = rel;
     477 CBC        2862 :     state->heaprel = heaprel;
     478            2862 :     state->heapkeyspace = heapkeyspace;
     479            2862 :     state->readonly = readonly;
     480            2862 :     state->heapallindexed = heapallindexed;
     481            2862 :     state->rootdescend = rootdescend;
     482 ECB             : 
     483 CBC        2862 :     if (state->heapallindexed)
     484                 :     {
     485 ECB             :         int64       total_pages;
     486                 :         int64       total_elems;
     487                 :         uint64      seed;
     488                 : 
     489                 :         /*
     490                 :          * Size Bloom filter based on estimated number of tuples in index,
     491                 :          * while conservatively assuming that each block must contain at least
     492                 :          * MaxTIDsPerBTreePage / 3 "plain" tuples -- see
     493                 :          * bt_posting_plain_tuple() for definition, and details of how posting
     494                 :          * list tuples are handled.
     495                 :          */
     496 GIC          56 :         total_pages = RelationGetNumberOfBlocks(rel);
     497              56 :         total_elems = Max(total_pages * (MaxTIDsPerBTreePage / 3),
     498 ECB             :                           (int64) state->rel->rd_rel->reltuples);
     499                 :         /* Generate a random seed to avoid repetition */
     500 GIC          56 :         seed = pg_prng_uint64(&pg_global_prng_state);
     501                 :         /* Create Bloom filter to fingerprint index */
     502 CBC          56 :         state->filter = bloom_create(total_elems, maintenance_work_mem, seed);
     503 GIC          56 :         state->heaptuplespresent = 0;
     504 ECB             : 
     505                 :         /*
     506                 :          * Register our own snapshot in !readonly case, rather than asking
     507                 :          * table_index_build_scan() to do this for us later.  This needs to
     508                 :          * happen before index fingerprinting begins, so we can later be
     509                 :          * certain that index fingerprinting should have reached all tuples
     510                 :          * returned by table_index_build_scan().
     511                 :          */
     512 GIC          56 :         if (!state->readonly)
     513                 :         {
     514 CBC          44 :             snapshot = RegisterSnapshot(GetTransactionSnapshot());
     515                 : 
     516 ECB             :             /*
     517                 :              * GetTransactionSnapshot() always acquires a new MVCC snapshot in
     518                 :              * READ COMMITTED mode.  A new snapshot is guaranteed to have all
     519                 :              * the entries it requires in the index.
     520                 :              *
     521                 :              * We must defend against the possibility that an old xact
     522                 :              * snapshot was returned at higher isolation levels when that
     523                 :              * snapshot is not safe for index scans of the target index.  This
     524                 :              * is possible when the snapshot sees tuples that are before the
     525                 :              * index's indcheckxmin horizon.  Throwing an error here should be
     526                 :              * very rare.  It doesn't seem worth using a secondary snapshot to
     527                 :              * avoid this.
     528                 :              */
     529 GIC          44 :             if (IsolationUsesXactSnapshot() && rel->rd_index->indcheckxmin &&
     530 UIC           0 :                 !TransactionIdPrecedes(HeapTupleHeaderGetXmin(rel->rd_indextuple->t_data),
     531 ECB             :                                        snapshot->xmin))
     532 UBC           0 :                 ereport(ERROR,
     533                 :                         (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
     534 EUB             :                          errmsg("index \"%s\" cannot be verified using transaction snapshot",
     535                 :                                 RelationGetRelationName(rel))));
     536                 :         }
     537                 :     }
     538                 : 
     539 GIC        2862 :     Assert(!state->rootdescend || state->readonly);
     540            2862 :     if (state->rootdescend && !state->heapkeyspace)
     541 LBC           0 :         ereport(ERROR,
     542 ECB             :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     543 EUB             :                  errmsg("cannot verify that tuples from index \"%s\" can each be found by an independent index search",
     544                 :                         RelationGetRelationName(rel)),
     545                 :                  errhint("Only B-Tree version 4 indexes support rootdescend verification.")));
     546                 : 
     547                 :     /* Create context for page */
     548 GIC        2862 :     state->targetcontext = AllocSetContextCreate(CurrentMemoryContext,
     549                 :                                                  "amcheck context",
     550 ECB             :                                                  ALLOCSET_DEFAULT_SIZES);
     551 GIC        2862 :     state->checkstrategy = GetAccessStrategy(BAS_BULKREAD);
     552                 : 
     553 ECB             :     /* Get true root block from meta-page */
     554 GIC        2862 :     metapage = palloc_btree_page(state, BTREE_METAPAGE);
     555            2862 :     metad = BTPageGetMeta(metapage);
     556 ECB             : 
     557                 :     /*
     558                 :      * Certain deletion patterns can result in "skinny" B-Tree indexes, where
     559                 :      * the fast root and true root differ.
     560                 :      *
     561                 :      * Start from the true root, not the fast root, unlike conventional index
     562                 :      * scans.  This approach is more thorough, and removes the risk of
     563                 :      * following a stale fast root from the meta page.
     564                 :      */
     565 GIC        2862 :     if (metad->btm_fastroot != metad->btm_root)
     566              11 :         ereport(DEBUG1,
     567 ECB             :                 (errcode(ERRCODE_NO_DATA),
     568                 :                  errmsg_internal("harmless fast root mismatch in index \"%s\"",
     569                 :                                  RelationGetRelationName(rel)),
     570                 :                  errdetail_internal("Fast root block %u (level %u) differs from true root block %u (level %u).",
     571                 :                                     metad->btm_fastroot, metad->btm_fastlevel,
     572                 :                                     metad->btm_root, metad->btm_level)));
     573                 : 
     574                 :     /*
     575                 :      * Starting at the root, verify every level.  Move left to right, top to
     576                 :      * bottom.  Note that there may be no pages other than the meta page (meta
     577                 :      * page can indicate that root is P_NONE when the index is totally empty).
     578                 :      */
     579 GIC        2862 :     previouslevel = InvalidBtreeLevel;
     580            2862 :     current.level = metad->btm_level;
     581 CBC        2862 :     current.leftmost = metad->btm_root;
     582            2862 :     current.istruerootlevel = true;
     583            4580 :     while (current.leftmost != P_NONE)
     584 ECB             :     {
     585                 :         /*
     586                 :          * Verify this level, and get left most page for next level down, if
     587                 :          * not at leaf level
     588                 :          */
     589 GIC        1728 :         current = bt_check_level_from_leftmost(state, current);
     590                 : 
     591 CBC        1718 :         if (current.leftmost == InvalidBlockNumber)
     592 UIC           0 :             ereport(ERROR,
     593 ECB             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
     594 EUB             :                      errmsg("index \"%s\" has no valid pages on level below %u or first level",
     595                 :                             RelationGetRelationName(rel), previouslevel)));
     596                 : 
     597 GIC        1718 :         previouslevel = current.level;
     598                 :     }
     599 ECB             : 
     600                 :     /*
     601                 :      * * Check whether heap contains unindexed/malformed tuples *
     602                 :      */
     603 GIC        2852 :     if (state->heapallindexed)
     604                 :     {
     605 CBC          55 :         IndexInfo  *indexinfo = BuildIndexInfo(state->rel);
     606                 :         TableScanDesc scan;
     607 ECB             : 
     608                 :         /*
     609                 :          * Create our own scan for table_index_build_scan(), rather than
     610                 :          * getting it to do so for us.  This is required so that we can
     611                 :          * actually use the MVCC snapshot registered earlier in !readonly
     612                 :          * case.
     613                 :          *
     614                 :          * Note that table_index_build_scan() calls heap_endscan() for us.
     615                 :          */
     616 GIC          55 :         scan = table_beginscan_strat(state->heaprel, /* relation */
     617                 :                                      snapshot,  /* snapshot */
     618 ECB             :                                      0, /* number of keys */
     619                 :                                      NULL,  /* scan key */
     620                 :                                      true,  /* buffer access strategy OK */
     621                 :                                      true); /* syncscan OK? */
     622                 : 
     623                 :         /*
     624                 :          * Scan will behave as the first scan of a CREATE INDEX CONCURRENTLY
     625                 :          * behaves in !readonly case.
     626                 :          *
     627                 :          * It's okay that we don't actually use the same lock strength for the
     628                 :          * heap relation as any other ii_Concurrent caller would in !readonly
     629                 :          * case.  We have no reason to care about a concurrent VACUUM
     630                 :          * operation, since there isn't going to be a second scan of the heap
     631                 :          * that needs to be sure that there was no concurrent recycling of
     632                 :          * TIDs.
     633                 :          */
     634 GIC          54 :         indexinfo->ii_Concurrent = !state->readonly;
     635                 : 
     636 ECB             :         /*
     637                 :          * Don't wait for uncommitted tuple xact commit/abort when index is a
     638                 :          * unique index on a catalog (or an index used by an exclusion
     639                 :          * constraint).  This could otherwise happen in the readonly case.
     640                 :          */
     641 GIC          54 :         indexinfo->ii_Unique = false;
     642              54 :         indexinfo->ii_ExclusionOps = NULL;
     643 CBC          54 :         indexinfo->ii_ExclusionProcs = NULL;
     644              54 :         indexinfo->ii_ExclusionStrats = NULL;
     645 ECB             : 
     646 CBC          54 :         elog(DEBUG1, "verifying that tuples from index \"%s\" are present in \"%s\"",
     647                 :              RelationGetRelationName(state->rel),
     648 ECB             :              RelationGetRelationName(state->heaprel));
     649                 : 
     650 GIC          54 :         table_index_build_scan(state->heaprel, state->rel, indexinfo, true, false,
     651                 :                                bt_tuple_present_callback, (void *) state, scan);
     652 ECB             : 
     653 GIC          54 :         ereport(DEBUG1,
     654                 :                 (errmsg_internal("finished verifying presence of " INT64_FORMAT " tuples from table \"%s\" with bitset %.2f%% set",
     655 ECB             :                                  state->heaptuplespresent, RelationGetRelationName(heaprel),
     656                 :                                  100.0 * bloom_prop_bits_set(state->filter))));
     657                 : 
     658 GIC          54 :         if (snapshot != SnapshotAny)
     659              44 :             UnregisterSnapshot(snapshot);
     660 ECB             : 
     661 CBC          54 :         bloom_free(state->filter);
     662                 :     }
     663 ECB             : 
     664                 :     /* Be tidy: */
     665 GIC        2851 :     MemoryContextDelete(state->targetcontext);
     666            2851 : }
     667 ECB             : 
     668                 : /*
     669                 :  * Given a left-most block at some level, move right, verifying each page
     670                 :  * individually (with more verification across pages for "readonly"
     671                 :  * callers).  Caller should pass the true root page as the leftmost initially,
     672                 :  * working their way down by passing what is returned for the last call here
     673                 :  * until level 0 (leaf page level) was reached.
     674                 :  *
     675                 :  * Returns state for next call, if any.  This includes left-most block number
     676                 :  * one level lower that should be passed on next level/call, which is set to
     677                 :  * P_NONE on last call here (when leaf level is verified).  Level numbers
     678                 :  * follow the nbtree convention: higher levels have higher numbers, because new
     679                 :  * levels are added only due to a root page split.  Note that prior to the
     680                 :  * first root page split, the root is also a leaf page, so there is always a
     681                 :  * level 0 (leaf level), and it's always the last level processed.
     682                 :  *
     683                 :  * Note on memory management:  State's per-page context is reset here, between
     684                 :  * each call to bt_target_page_check().
     685                 :  */
     686                 : static BtreeLevel
     687 GIC        1728 : bt_check_level_from_leftmost(BtreeCheckState *state, BtreeLevel level)
     688                 : {
     689 ECB             :     /* State to establish early, concerning entire level */
     690                 :     BTPageOpaque opaque;
     691                 :     MemoryContext oldcontext;
     692                 :     BtreeLevel  nextleveldown;
     693                 : 
     694                 :     /* Variables for iterating across level using right links */
     695 GIC        1728 :     BlockNumber leftcurrent = P_NONE;
     696            1728 :     BlockNumber current = level.leftmost;
     697 ECB             : 
     698                 :     /* Initialize return state */
     699 GIC        1728 :     nextleveldown.leftmost = InvalidBlockNumber;
     700            1728 :     nextleveldown.level = InvalidBtreeLevel;
     701 CBC        1728 :     nextleveldown.istruerootlevel = false;
     702 ECB             : 
     703                 :     /* Use page-level context for duration of this call */
     704 GIC        1728 :     oldcontext = MemoryContextSwitchTo(state->targetcontext);
     705                 : 
     706 CBC        1728 :     elog(DEBUG1, "verifying level %u%s", level.level,
     707                 :          level.istruerootlevel ?
     708 ECB             :          " (true root level)" : level.level == 0 ? " (leaf level)" : "");
     709                 : 
     710 GIC        1728 :     state->prevrightlink = InvalidBlockNumber;
     711            1728 :     state->previncompletesplit = false;
     712 ECB             : 
     713                 :     do
     714                 :     {
     715                 :         /* Don't rely on CHECK_FOR_INTERRUPTS() calls at lower level */
     716 GIC        6883 :         CHECK_FOR_INTERRUPTS();
     717                 : 
     718 ECB             :         /* Initialize state for this iteration */
     719 GIC        6883 :         state->targetblock = current;
     720            6883 :         state->target = palloc_btree_page(state, state->targetblock);
     721 CBC        6873 :         state->targetlsn = PageGetLSN(state->target);
     722 ECB             : 
     723 CBC        6873 :         opaque = BTPageGetOpaque(state->target);
     724                 : 
     725            6873 :         if (P_IGNORE(opaque))
     726                 :         {
     727 ECB             :             /*
     728                 :              * Since there cannot be a concurrent VACUUM operation in readonly
     729                 :              * mode, and since a page has no links within other pages
     730                 :              * (siblings and parent) once it is marked fully deleted, it
     731                 :              * should be impossible to land on a fully deleted page in
     732                 :              * readonly mode. See bt_child_check() for further details.
     733                 :              *
     734                 :              * The bt_child_check() P_ISDELETED() check is repeated here so
     735                 :              * that pages that are only reachable through sibling links get
     736                 :              * checked.
     737                 :              */
     738 UIC           0 :             if (state->readonly && P_ISDELETED(opaque))
     739               0 :                 ereport(ERROR,
     740 EUB             :                         (errcode(ERRCODE_INDEX_CORRUPTED),
     741                 :                          errmsg("downlink or sibling link points to deleted block in index \"%s\"",
     742                 :                                 RelationGetRelationName(state->rel)),
     743                 :                          errdetail_internal("Block=%u left block=%u left link from block=%u.",
     744                 :                                             current, leftcurrent, opaque->btpo_prev)));
     745                 : 
     746 UIC           0 :             if (P_RIGHTMOST(opaque))
     747               0 :                 ereport(ERROR,
     748 EUB             :                         (errcode(ERRCODE_INDEX_CORRUPTED),
     749                 :                          errmsg("block %u fell off the end of index \"%s\"",
     750                 :                                 current, RelationGetRelationName(state->rel))));
     751                 :             else
     752 UIC           0 :                 ereport(DEBUG1,
     753                 :                         (errcode(ERRCODE_NO_DATA),
     754 EUB             :                          errmsg_internal("block %u of index \"%s\" concurrently deleted",
     755                 :                                          current, RelationGetRelationName(state->rel))));
     756 UIC           0 :             goto nextpage;
     757                 :         }
     758 GBC        6873 :         else if (nextleveldown.leftmost == InvalidBlockNumber)
     759                 :         {
     760 ECB             :             /*
     761                 :              * A concurrent page split could make the caller supplied leftmost
     762                 :              * block no longer contain the leftmost page, or no longer be the
     763                 :              * true root, but where that isn't possible due to heavyweight
     764                 :              * locking, check that the first valid page meets caller's
     765                 :              * expectations.
     766                 :              */
     767 GIC        1718 :             if (state->readonly)
     768                 :             {
     769 CBC          22 :                 if (!P_LEFTMOST(opaque))
     770 UIC           0 :                     ereport(ERROR,
     771 ECB             :                             (errcode(ERRCODE_INDEX_CORRUPTED),
     772 EUB             :                              errmsg("block %u is not leftmost in index \"%s\"",
     773                 :                                     current, RelationGetRelationName(state->rel))));
     774                 : 
     775 GIC          22 :                 if (level.istruerootlevel && !P_ISROOT(opaque))
     776 UIC           0 :                     ereport(ERROR,
     777 ECB             :                             (errcode(ERRCODE_INDEX_CORRUPTED),
     778 EUB             :                              errmsg("block %u is not true root in index \"%s\"",
     779                 :                                     current, RelationGetRelationName(state->rel))));
     780                 :             }
     781                 : 
     782                 :             /*
     783                 :              * Before beginning any non-trivial examination of level, prepare
     784                 :              * state for next bt_check_level_from_leftmost() invocation for
     785                 :              * the next level for the next level down (if any).
     786                 :              *
     787                 :              * There should be at least one non-ignorable page per level,
     788                 :              * unless this is the leaf level, which is assumed by caller to be
     789                 :              * final level.
     790                 :              */
     791 GIC        1718 :             if (!P_ISLEAF(opaque))
     792                 :             {
     793 ECB             :                 IndexTuple  itup;
     794                 :                 ItemId      itemid;
     795                 : 
     796                 :                 /* Internal page -- downlink gets leftmost on next level */
     797 GIC         358 :                 itemid = PageGetItemIdCareful(state, state->targetblock,
     798                 :                                               state->target,
     799 CBC         358 :                                               P_FIRSTDATAKEY(opaque));
     800 GIC         358 :                 itup = (IndexTuple) PageGetItem(state->target, itemid);
     801 CBC         358 :                 nextleveldown.leftmost = BTreeTupleGetDownLink(itup);
     802             358 :                 nextleveldown.level = opaque->btpo_level - 1;
     803 ECB             :             }
     804                 :             else
     805                 :             {
     806                 :                 /*
     807                 :                  * Leaf page -- final level caller must process.
     808                 :                  *
     809                 :                  * Note that this could also be the root page, if there has
     810                 :                  * been no root page split yet.
     811                 :                  */
     812 GIC        1360 :                 nextleveldown.leftmost = P_NONE;
     813            1360 :                 nextleveldown.level = InvalidBtreeLevel;
     814 ECB             :             }
     815                 : 
     816                 :             /*
     817                 :              * Finished setting up state for this call/level.  Control will
     818                 :              * never end up back here in any future loop iteration for this
     819                 :              * level.
     820                 :              */
     821                 :         }
     822                 : 
     823                 :         /* Sibling links should be in mutual agreement */
     824 GIC        6873 :         if (opaque->btpo_prev != leftcurrent)
     825 UIC           0 :             bt_recheck_sibling_links(state, opaque->btpo_prev, leftcurrent);
     826 ECB             : 
     827 EUB             :         /* Check level */
     828 GIC        6873 :         if (level.level != opaque->btpo_level)
     829 UIC           0 :             ereport(ERROR,
     830 ECB             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
     831 EUB             :                      errmsg("leftmost down link for level points to block in index \"%s\" whose level is not one level down",
     832                 :                             RelationGetRelationName(state->rel)),
     833                 :                      errdetail_internal("Block pointed to=%u expected level=%u level in pointed to block=%u.",
     834                 :                                         current, level.level, opaque->btpo_level)));
     835                 : 
     836                 :         /* Verify invariants for page */
     837 GIC        6873 :         bt_target_page_check(state);
     838                 : 
     839 CBC        6873 : nextpage:
     840                 : 
     841 ECB             :         /* Try to detect circular links */
     842 GIC        6873 :         if (current == leftcurrent || current == opaque->btpo_prev)
     843 UIC           0 :             ereport(ERROR,
     844 ECB             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
     845 EUB             :                      errmsg("circular link chain found in block %u of index \"%s\"",
     846                 :                             current, RelationGetRelationName(state->rel))));
     847                 : 
     848 GIC        6873 :         leftcurrent = current;
     849            6873 :         current = opaque->btpo_next;
     850 ECB             : 
     851 CBC        6873 :         if (state->lowkey)
     852                 :         {
     853            1586 :             Assert(state->readonly);
     854 GIC        1586 :             pfree(state->lowkey);
     855 CBC        1586 :             state->lowkey = NULL;
     856 ECB             :         }
     857                 : 
     858                 :         /*
     859                 :          * Copy current target high key as the low key of right sibling.
     860                 :          * Allocate memory in upper level context, so it would be cleared
     861                 :          * after reset of target context.
     862                 :          *
     863                 :          * We only need the low key in corner cases of checking child high
     864                 :          * keys. We use high key only when incomplete split on the child level
     865                 :          * falls to the boundary of pages on the target level.  See
     866                 :          * bt_child_highkey_check() for details.  So, typically we won't end
     867                 :          * up doing anything with low key, but it's simpler for general case
     868                 :          * high key verification to always have it available.
     869                 :          *
     870                 :          * The correctness of managing low key in the case of concurrent
     871                 :          * splits wasn't investigated yet.  Thankfully we only need low key
     872                 :          * for readonly verification and concurrent splits won't happen.
     873                 :          */
     874 GIC        6873 :         if (state->readonly && !P_RIGHTMOST(opaque))
     875                 :         {
     876 ECB             :             IndexTuple  itup;
     877                 :             ItemId      itemid;
     878                 : 
     879 GIC        1586 :             itemid = PageGetItemIdCareful(state, state->targetblock,
     880                 :                                           state->target, P_HIKEY);
     881 CBC        1586 :             itup = (IndexTuple) PageGetItem(state->target, itemid);
     882                 : 
     883            1586 :             state->lowkey = MemoryContextAlloc(oldcontext, IndexTupleSize(itup));
     884 GIC        1586 :             memcpy(state->lowkey, itup, IndexTupleSize(itup));
     885 ECB             :         }
     886                 : 
     887                 :         /* Free page and associated memory for this iteration */
     888 GIC        6873 :         MemoryContextReset(state->targetcontext);
     889                 :     }
     890 CBC        6873 :     while (current != P_NONE);
     891                 : 
     892            1718 :     if (state->lowkey)
     893                 :     {
     894 LBC           0 :         Assert(state->readonly);
     895 UIC           0 :         pfree(state->lowkey);
     896 UBC           0 :         state->lowkey = NULL;
     897 EUB             :     }
     898                 : 
     899                 :     /* Don't change context for caller */
     900 GIC        1718 :     MemoryContextSwitchTo(oldcontext);
     901                 : 
     902 CBC        1718 :     return nextleveldown;
     903                 : }
     904 ECB             : 
     905                 : /*
     906                 :  * Raise an error when target page's left link does not point back to the
     907                 :  * previous target page, called leftcurrent here.  The leftcurrent page's
     908                 :  * right link was followed to get to the current target page, and we expect
     909                 :  * mutual agreement among leftcurrent and the current target page.  Make sure
     910                 :  * that this condition has definitely been violated in the !readonly case,
     911                 :  * where concurrent page splits are something that we need to deal with.
     912                 :  *
     913                 :  * Cross-page inconsistencies involving pages that don't agree about being
     914                 :  * siblings are known to be a particularly good indicator of corruption
     915                 :  * involving partial writes/lost updates.  The bt_right_page_check_scankey
     916                 :  * check also provides a way of detecting cross-page inconsistencies for
     917                 :  * !readonly callers, but it can only detect sibling pages that have an
     918                 :  * out-of-order keyspace, which can't catch many of the problems that we
     919                 :  * expect to catch here.
     920                 :  *
     921                 :  * The classic example of the kind of inconsistency that we can only catch
     922                 :  * with this check (when in !readonly mode) involves three sibling pages that
     923                 :  * were affected by a faulty page split at some point in the past.  The
     924                 :  * effects of the split are reflected in the original page and its new right
     925                 :  * sibling page, with a lack of any accompanying changes for the _original_
     926                 :  * right sibling page.  The original right sibling page's left link fails to
     927                 :  * point to the new right sibling page (its left link still points to the
     928                 :  * original page), even though the first phase of a page split is supposed to
     929                 :  * work as a single atomic action.  This subtle inconsistency will probably
     930                 :  * only break backwards scans in practice.
     931                 :  *
     932                 :  * Note that this is the only place where amcheck will "couple" buffer locks
     933                 :  * (and only for !readonly callers).  In general we prefer to avoid more
     934                 :  * thorough cross-page checks in !readonly mode, but it seems worth the
     935                 :  * complexity here.  Also, the performance overhead of performing lock
     936                 :  * coupling here is negligible in practice.  Control only reaches here with a
     937                 :  * non-corrupt index when there is a concurrent page split at the instant
     938                 :  * caller crossed over to target page from leftcurrent page.
     939                 :  */
     940                 : static void
     941 UIC           0 : bt_recheck_sibling_links(BtreeCheckState *state,
     942                 :                          BlockNumber btpo_prev_from_target,
     943 EUB             :                          BlockNumber leftcurrent)
     944                 : {
     945 UIC           0 :     if (!state->readonly)
     946                 :     {
     947 EUB             :         Buffer      lbuf;
     948                 :         Buffer      newtargetbuf;
     949                 :         Page        page;
     950                 :         BTPageOpaque opaque;
     951                 :         BlockNumber newtargetblock;
     952                 : 
     953                 :         /* Couple locks in the usual order for nbtree:  Left to right */
     954 UIC           0 :         lbuf = ReadBufferExtended(state->rel, MAIN_FORKNUM, leftcurrent,
     955                 :                                   RBM_NORMAL, state->checkstrategy);
     956 UBC           0 :         LockBuffer(lbuf, BT_READ);
     957 UIC           0 :         _bt_checkpage(state->rel, lbuf);
     958 UBC           0 :         page = BufferGetPage(lbuf);
     959               0 :         opaque = BTPageGetOpaque(page);
     960               0 :         if (P_ISDELETED(opaque))
     961 EUB             :         {
     962                 :             /*
     963                 :              * Cannot reason about concurrently deleted page -- the left link
     964                 :              * in the page to the right is expected to point to some other
     965                 :              * page to the left (not leftcurrent page).
     966                 :              *
     967                 :              * Note that we deliberately don't give up with a half-dead page.
     968                 :              */
     969 UIC           0 :             UnlockReleaseBuffer(lbuf);
     970               0 :             return;
     971 EUB             :         }
     972                 : 
     973 UIC           0 :         newtargetblock = opaque->btpo_next;
     974                 :         /* Avoid self-deadlock when newtargetblock == leftcurrent */
     975 UBC           0 :         if (newtargetblock != leftcurrent)
     976                 :         {
     977               0 :             newtargetbuf = ReadBufferExtended(state->rel, MAIN_FORKNUM,
     978                 :                                               newtargetblock, RBM_NORMAL,
     979 EUB             :                                               state->checkstrategy);
     980 UIC           0 :             LockBuffer(newtargetbuf, BT_READ);
     981               0 :             _bt_checkpage(state->rel, newtargetbuf);
     982 UBC           0 :             page = BufferGetPage(newtargetbuf);
     983               0 :             opaque = BTPageGetOpaque(page);
     984 EUB             :             /* btpo_prev_from_target may have changed; update it */
     985 UBC           0 :             btpo_prev_from_target = opaque->btpo_prev;
     986                 :         }
     987 EUB             :         else
     988                 :         {
     989                 :             /*
     990                 :              * leftcurrent right sibling points back to leftcurrent block.
     991                 :              * Index is corrupt.  Easiest way to handle this is to pretend
     992                 :              * that we actually read from a distinct page that has an invalid
     993                 :              * block number in its btpo_prev.
     994                 :              */
     995 UIC           0 :             newtargetbuf = InvalidBuffer;
     996               0 :             btpo_prev_from_target = InvalidBlockNumber;
     997 EUB             :         }
     998                 : 
     999                 :         /*
    1000                 :          * No need to check P_ISDELETED here, since new target block cannot be
    1001                 :          * marked deleted as long as we hold a lock on lbuf
    1002                 :          */
    1003 UIC           0 :         if (BufferIsValid(newtargetbuf))
    1004               0 :             UnlockReleaseBuffer(newtargetbuf);
    1005 UBC           0 :         UnlockReleaseBuffer(lbuf);
    1006 EUB             : 
    1007 UBC           0 :         if (btpo_prev_from_target == leftcurrent)
    1008                 :         {
    1009 EUB             :             /* Report split in left sibling, not target (or new target) */
    1010 UIC           0 :             ereport(DEBUG1,
    1011                 :                     (errcode(ERRCODE_INTERNAL_ERROR),
    1012 EUB             :                      errmsg_internal("harmless concurrent page split detected in index \"%s\"",
    1013                 :                                      RelationGetRelationName(state->rel)),
    1014                 :                      errdetail_internal("Block=%u new right sibling=%u original right sibling=%u.",
    1015                 :                                         leftcurrent, newtargetblock,
    1016                 :                                         state->targetblock)));
    1017 UIC           0 :             return;
    1018                 :         }
    1019 EUB             : 
    1020                 :         /*
    1021                 :          * Index is corrupt.  Make sure that we report correct target page.
    1022                 :          *
    1023                 :          * This could have changed in cases where there was a concurrent page
    1024                 :          * split, as well as index corruption (at least in theory).  Note that
    1025                 :          * btpo_prev_from_target was already updated above.
    1026                 :          */
    1027 UIC           0 :         state->targetblock = newtargetblock;
    1028                 :     }
    1029 EUB             : 
    1030 UIC           0 :     ereport(ERROR,
    1031                 :             (errcode(ERRCODE_INDEX_CORRUPTED),
    1032 EUB             :              errmsg("left link/right link pair in index \"%s\" not in agreement",
    1033                 :                     RelationGetRelationName(state->rel)),
    1034                 :              errdetail_internal("Block=%u left block=%u left link from block=%u.",
    1035                 :                                 state->targetblock, leftcurrent,
    1036                 :                                 btpo_prev_from_target)));
    1037                 : }
    1038                 : 
    1039                 : /*
    1040                 :  * Function performs the following checks on target page, or pages ancillary to
    1041                 :  * target page:
    1042                 :  *
    1043                 :  * - That every "real" data item is less than or equal to the high key, which
    1044                 :  *   is an upper bound on the items on the page.  Data items should be
    1045                 :  *   strictly less than the high key when the page is an internal page.
    1046                 :  *
    1047                 :  * - That within the page, every data item is strictly less than the item
    1048                 :  *   immediately to its right, if any (i.e., that the items are in order
    1049                 :  *   within the page, so that the binary searches performed by index scans are
    1050                 :  *   sane).
    1051                 :  *
    1052                 :  * - That the last data item stored on the page is strictly less than the
    1053                 :  *   first data item on the page to the right (when such a first item is
    1054                 :  *   available).
    1055                 :  *
    1056                 :  * - Various checks on the structure of tuples themselves.  For example, check
    1057                 :  *   that non-pivot tuples have no truncated attributes.
    1058                 :  *
    1059                 :  * Furthermore, when state passed shows ShareLock held, function also checks:
    1060                 :  *
    1061                 :  * - That all child pages respect strict lower bound from parent's pivot
    1062                 :  *   tuple.
    1063                 :  *
    1064                 :  * - That downlink to block was encountered in parent where that's expected.
    1065                 :  *
    1066                 :  * - That high keys of child pages matches corresponding pivot keys in parent.
    1067                 :  *
    1068                 :  * This is also where heapallindexed callers use their Bloom filter to
    1069                 :  * fingerprint IndexTuples for later table_index_build_scan() verification.
    1070                 :  *
    1071                 :  * Note:  Memory allocated in this routine is expected to be released by caller
    1072                 :  * resetting state->targetcontext.
    1073                 :  */
    1074                 : static void
    1075 GIC        6873 : bt_target_page_check(BtreeCheckState *state)
    1076                 : {
    1077 ECB             :     OffsetNumber offset;
    1078                 :     OffsetNumber max;
    1079                 :     BTPageOpaque topaque;
    1080                 : 
    1081 GIC        6873 :     topaque = BTPageGetOpaque(state->target);
    1082            6873 :     max = PageGetMaxOffsetNumber(state->target);
    1083 ECB             : 
    1084 CBC        6873 :     elog(DEBUG2, "verifying %u items on %s block %u", max,
    1085                 :          P_ISLEAF(topaque) ? "leaf" : "internal", state->targetblock);
    1086 ECB             : 
    1087                 :     /*
    1088                 :      * Check the number of attributes in high key. Note, rightmost page
    1089                 :      * doesn't contain a high key, so nothing to check
    1090                 :      */
    1091 GIC        6873 :     if (!P_RIGHTMOST(topaque))
    1092                 :     {
    1093 ECB             :         ItemId      itemid;
    1094                 :         IndexTuple  itup;
    1095                 : 
    1096                 :         /* Verify line pointer before checking tuple */
    1097 GIC        5155 :         itemid = PageGetItemIdCareful(state, state->targetblock,
    1098                 :                                       state->target, P_HIKEY);
    1099 CBC        5155 :         if (!_bt_check_natts(state->rel, state->heapkeyspace, state->target,
    1100                 :                              P_HIKEY))
    1101 ECB             :         {
    1102 UIC           0 :             itup = (IndexTuple) PageGetItem(state->target, itemid);
    1103               0 :             ereport(ERROR,
    1104 EUB             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    1105                 :                      errmsg("wrong number of high key index tuple attributes in index \"%s\"",
    1106                 :                             RelationGetRelationName(state->rel)),
    1107                 :                      errdetail_internal("Index block=%u natts=%u block type=%s page lsn=%X/%X.",
    1108                 :                                         state->targetblock,
    1109                 :                                         BTreeTupleGetNAtts(itup, state->rel),
    1110                 :                                         P_ISLEAF(topaque) ? "heap" : "index",
    1111                 :                                         LSN_FORMAT_ARGS(state->targetlsn))));
    1112                 :         }
    1113                 :     }
    1114                 : 
    1115                 :     /*
    1116                 :      * Loop over page items, starting from first non-highkey item, not high
    1117                 :      * key (if any).  Most tests are not performed for the "negative infinity"
    1118                 :      * real item (if any).
    1119                 :      */
    1120 GIC        6873 :     for (offset = P_FIRSTDATAKEY(topaque);
    1121         1582525 :          offset <= max;
    1122 CBC     1575652 :          offset = OffsetNumberNext(offset))
    1123 ECB             :     {
    1124                 :         ItemId      itemid;
    1125                 :         IndexTuple  itup;
    1126                 :         size_t      tupsize;
    1127                 :         BTScanInsert skey;
    1128                 :         bool        lowersizelimit;
    1129                 :         ItemPointer scantid;
    1130                 : 
    1131 GIC     1575652 :         CHECK_FOR_INTERRUPTS();
    1132                 : 
    1133 CBC     1575652 :         itemid = PageGetItemIdCareful(state, state->targetblock,
    1134                 :                                       state->target, offset);
    1135         1575652 :         itup = (IndexTuple) PageGetItem(state->target, itemid);
    1136 GIC     1575652 :         tupsize = IndexTupleSize(itup);
    1137 ECB             : 
    1138                 :         /*
    1139                 :          * lp_len should match the IndexTuple reported length exactly, since
    1140                 :          * lp_len is completely redundant in indexes, and both sources of
    1141                 :          * tuple length are MAXALIGN()'d.  nbtree does not use lp_len all that
    1142                 :          * frequently, and is surprisingly tolerant of corrupt lp_len fields.
    1143                 :          */
    1144 GIC     1575652 :         if (tupsize != ItemIdGetLength(itemid))
    1145 UIC           0 :             ereport(ERROR,
    1146 ECB             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    1147 EUB             :                      errmsg("index tuple size does not equal lp_len in index \"%s\"",
    1148                 :                             RelationGetRelationName(state->rel)),
    1149                 :                      errdetail_internal("Index tid=(%u,%u) tuple size=%zu lp_len=%u page lsn=%X/%X.",
    1150                 :                                         state->targetblock, offset,
    1151                 :                                         tupsize, ItemIdGetLength(itemid),
    1152                 :                                         LSN_FORMAT_ARGS(state->targetlsn)),
    1153                 :                      errhint("This could be a torn page problem.")));
    1154                 : 
    1155                 :         /* Check the number of index tuple attributes */
    1156 GIC     1575652 :         if (!_bt_check_natts(state->rel, state->heapkeyspace, state->target,
    1157                 :                              offset))
    1158 ECB             :         {
    1159                 :             ItemPointer tid;
    1160                 :             char       *itid,
    1161                 :                        *htid;
    1162                 : 
    1163 UIC           0 :             itid = psprintf("(%u,%u)", state->targetblock, offset);
    1164               0 :             tid = BTreeTupleGetPointsToTID(itup);
    1165 UBC           0 :             htid = psprintf("(%u,%u)",
    1166 EUB             :                             ItemPointerGetBlockNumberNoCheck(tid),
    1167 UBC           0 :                             ItemPointerGetOffsetNumberNoCheck(tid));
    1168                 : 
    1169               0 :             ereport(ERROR,
    1170                 :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    1171 EUB             :                      errmsg("wrong number of index tuple attributes in index \"%s\"",
    1172                 :                             RelationGetRelationName(state->rel)),
    1173                 :                      errdetail_internal("Index tid=%s natts=%u points to %s tid=%s page lsn=%X/%X.",
    1174                 :                                         itid,
    1175                 :                                         BTreeTupleGetNAtts(itup, state->rel),
    1176                 :                                         P_ISLEAF(topaque) ? "heap" : "index",
    1177                 :                                         htid,
    1178                 :                                         LSN_FORMAT_ARGS(state->targetlsn))));
    1179                 :         }
    1180                 : 
    1181                 :         /*
    1182                 :          * Don't try to generate scankey using "negative infinity" item on
    1183                 :          * internal pages. They are always truncated to zero attributes.
    1184                 :          */
    1185 GIC     1575652 :         if (offset_is_negative_infinity(topaque, offset))
    1186                 :         {
    1187 ECB             :             /*
    1188                 :              * We don't call bt_child_check() for "negative infinity" items.
    1189                 :              * But if we're performing downlink connectivity check, we do it
    1190                 :              * for every item including "negative infinity" one.
    1191                 :              */
    1192 GIC         360 :             if (!P_ISLEAF(topaque) && state->readonly)
    1193                 :             {
    1194 CBC           9 :                 bt_child_highkey_check(state,
    1195                 :                                        offset,
    1196 ECB             :                                        NULL,
    1197                 :                                        topaque->btpo_level);
    1198                 :             }
    1199 GIC         360 :             continue;
    1200                 :         }
    1201 ECB             : 
    1202                 :         /*
    1203                 :          * Readonly callers may optionally verify that non-pivot tuples can
    1204                 :          * each be found by an independent search that starts from the root.
    1205                 :          * Note that we deliberately don't do individual searches for each
    1206                 :          * TID, since the posting list itself is validated by other checks.
    1207                 :          */
    1208 GIC     1575292 :         if (state->rootdescend && P_ISLEAF(topaque) &&
    1209          200041 :             !bt_rootdescend(state, itup))
    1210 ECB             :         {
    1211 LBC           0 :             ItemPointer tid = BTreeTupleGetPointsToTID(itup);
    1212                 :             char       *itid,
    1213 EUB             :                        *htid;
    1214                 : 
    1215 UIC           0 :             itid = psprintf("(%u,%u)", state->targetblock, offset);
    1216               0 :             htid = psprintf("(%u,%u)", ItemPointerGetBlockNumber(tid),
    1217 UBC           0 :                             ItemPointerGetOffsetNumber(tid));
    1218 EUB             : 
    1219 UBC           0 :             ereport(ERROR,
    1220                 :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    1221 EUB             :                      errmsg("could not find tuple using search from root page in index \"%s\"",
    1222                 :                             RelationGetRelationName(state->rel)),
    1223                 :                      errdetail_internal("Index tid=%s points to heap tid=%s page lsn=%X/%X.",
    1224                 :                                         itid, htid,
    1225                 :                                         LSN_FORMAT_ARGS(state->targetlsn))));
    1226                 :         }
    1227                 : 
    1228                 :         /*
    1229                 :          * If tuple is a posting list tuple, make sure posting list TIDs are
    1230                 :          * in order
    1231                 :          */
    1232 GIC     1575292 :         if (BTreeTupleIsPosting(itup))
    1233                 :         {
    1234 ECB             :             ItemPointerData last;
    1235                 :             ItemPointer current;
    1236                 : 
    1237 GIC        7140 :             ItemPointerCopy(BTreeTupleGetHeapTID(itup), &last);
    1238                 : 
    1239 CBC       45860 :             for (int i = 1; i < BTreeTupleGetNPosting(itup); i++)
    1240                 :             {
    1241 ECB             : 
    1242 GIC       38720 :                 current = BTreeTupleGetPostingN(itup, i);
    1243                 : 
    1244 CBC       38720 :                 if (ItemPointerCompare(current, &last) <= 0)
    1245                 :                 {
    1246 LBC           0 :                     char       *itid = psprintf("(%u,%u)", state->targetblock, offset);
    1247                 : 
    1248 UBC           0 :                     ereport(ERROR,
    1249                 :                             (errcode(ERRCODE_INDEX_CORRUPTED),
    1250 EUB             :                              errmsg_internal("posting list contains misplaced TID in index \"%s\"",
    1251                 :                                              RelationGetRelationName(state->rel)),
    1252                 :                              errdetail_internal("Index tid=%s posting list offset=%d page lsn=%X/%X.",
    1253                 :                                                 itid, i,
    1254                 :                                                 LSN_FORMAT_ARGS(state->targetlsn))));
    1255                 :                 }
    1256                 : 
    1257 GIC       38720 :                 ItemPointerCopy(current, &last);
    1258                 :             }
    1259 ECB             :         }
    1260                 : 
    1261                 :         /* Build insertion scankey for current page offset */
    1262 GNC     1575292 :         skey = bt_mkscankey_pivotsearch(state->rel, state->heaprel, itup);
    1263                 : 
    1264 ECB             :         /*
    1265                 :          * Make sure tuple size does not exceed the relevant BTREE_VERSION
    1266                 :          * specific limit.
    1267                 :          *
    1268                 :          * BTREE_VERSION 4 (which introduced heapkeyspace rules) requisitioned
    1269                 :          * a small amount of space from BTMaxItemSize() in order to ensure
    1270                 :          * that suffix truncation always has enough space to add an explicit
    1271                 :          * heap TID back to a tuple -- we pessimistically assume that every
    1272                 :          * newly inserted tuple will eventually need to have a heap TID
    1273                 :          * appended during a future leaf page split, when the tuple becomes
    1274                 :          * the basis of the new high key (pivot tuple) for the leaf page.
    1275                 :          *
    1276                 :          * Since the reclaimed space is reserved for that purpose, we must not
    1277                 :          * enforce the slightly lower limit when the extra space has been used
    1278                 :          * as intended.  In other words, there is only a cross-version
    1279                 :          * difference in the limit on tuple size within leaf pages.
    1280                 :          *
    1281                 :          * Still, we're particular about the details within BTREE_VERSION 4
    1282                 :          * internal pages.  Pivot tuples may only use the extra space for its
    1283                 :          * designated purpose.  Enforce the lower limit for pivot tuples when
    1284                 :          * an explicit heap TID isn't actually present. (In all other cases
    1285                 :          * suffix truncation is guaranteed to generate a pivot tuple that's no
    1286                 :          * larger than the firstright tuple provided to it by its caller.)
    1287                 :          */
    1288 GIC     3150584 :         lowersizelimit = skey->heapkeyspace &&
    1289         1575292 :             (P_ISLEAF(topaque) || BTreeTupleGetHeapTID(itup) == NULL);
    1290 CBC     1575293 :         if (tupsize > (lowersizelimit ? BTMaxItemSize(state->target) :
    1291               1 :                        BTMaxItemSizeNoHeapTid(state->target)))
    1292 ECB             :         {
    1293 LBC           0 :             ItemPointer tid = BTreeTupleGetPointsToTID(itup);
    1294                 :             char       *itid,
    1295 EUB             :                        *htid;
    1296                 : 
    1297 UIC           0 :             itid = psprintf("(%u,%u)", state->targetblock, offset);
    1298               0 :             htid = psprintf("(%u,%u)",
    1299 EUB             :                             ItemPointerGetBlockNumberNoCheck(tid),
    1300 UBC           0 :                             ItemPointerGetOffsetNumberNoCheck(tid));
    1301                 : 
    1302               0 :             ereport(ERROR,
    1303                 :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    1304 EUB             :                      errmsg("index row size %zu exceeds maximum for index \"%s\"",
    1305                 :                             tupsize, RelationGetRelationName(state->rel)),
    1306                 :                      errdetail_internal("Index tid=%s points to %s tid=%s page lsn=%X/%X.",
    1307                 :                                         itid,
    1308                 :                                         P_ISLEAF(topaque) ? "heap" : "index",
    1309                 :                                         htid,
    1310                 :                                         LSN_FORMAT_ARGS(state->targetlsn))));
    1311                 :         }
    1312                 : 
    1313                 :         /* Fingerprint leaf page tuples (those that point to the heap) */
    1314 GIC     1575292 :         if (state->heapallindexed && P_ISLEAF(topaque) && !ItemIdIsDead(itemid))
    1315                 :         {
    1316 ECB             :             IndexTuple  norm;
    1317                 : 
    1318 GIC      401373 :             if (BTreeTupleIsPosting(itup))
    1319                 :             {
    1320 ECB             :                 /* Fingerprint all elements as distinct "plain" tuples */
    1321 GIC        9454 :                 for (int i = 0; i < BTreeTupleGetNPosting(itup); i++)
    1322                 :                 {
    1323 ECB             :                     IndexTuple  logtuple;
    1324                 : 
    1325 GIC        9369 :                     logtuple = bt_posting_plain_tuple(itup, i);
    1326            9369 :                     norm = bt_normalize_tuple(state, logtuple);
    1327 CBC        9369 :                     bloom_add_element(state->filter, (unsigned char *) norm,
    1328            9369 :                                       IndexTupleSize(norm));
    1329 ECB             :                     /* Be tidy */
    1330 CBC        9369 :                     if (norm != logtuple)
    1331 UIC           0 :                         pfree(norm);
    1332 CBC        9369 :                     pfree(logtuple);
    1333 EUB             :                 }
    1334 ECB             :             }
    1335                 :             else
    1336                 :             {
    1337 GIC      401288 :                 norm = bt_normalize_tuple(state, itup);
    1338          401288 :                 bloom_add_element(state->filter, (unsigned char *) norm,
    1339 CBC      401288 :                                   IndexTupleSize(norm));
    1340 ECB             :                 /* Be tidy */
    1341 CBC      401288 :                 if (norm != itup)
    1342 UIC           0 :                     pfree(norm);
    1343 ECB             :             }
    1344 EUB             :         }
    1345                 : 
    1346                 :         /*
    1347                 :          * * High key check *
    1348                 :          *
    1349                 :          * If there is a high key (if this is not the rightmost page on its
    1350                 :          * entire level), check that high key actually is upper bound on all
    1351                 :          * page items.  If this is a posting list tuple, we'll need to set
    1352                 :          * scantid to be highest TID in posting list.
    1353                 :          *
    1354                 :          * We prefer to check all items against high key rather than checking
    1355                 :          * just the last and trusting that the operator class obeys the
    1356                 :          * transitive law (which implies that all previous items also
    1357                 :          * respected the high key invariant if they pass the item order
    1358                 :          * check).
    1359                 :          *
    1360                 :          * Ideally, we'd compare every item in the index against every other
    1361                 :          * item in the index, and not trust opclass obedience of the
    1362                 :          * transitive law to bridge the gap between children and their
    1363                 :          * grandparents (as well as great-grandparents, and so on).  We don't
    1364                 :          * go to those lengths because that would be prohibitively expensive,
    1365                 :          * and probably not markedly more effective in practice.
    1366                 :          *
    1367                 :          * On the leaf level, we check that the key is <= the highkey.
    1368                 :          * However, on non-leaf levels we check that the key is < the highkey,
    1369                 :          * because the high key is "just another separator" rather than a copy
    1370                 :          * of some existing key item; we expect it to be unique among all keys
    1371                 :          * on the same level.  (Suffix truncation will sometimes produce a
    1372                 :          * leaf highkey that is an untruncated copy of the lastleft item, but
    1373                 :          * never any other item, which necessitates weakening the leaf level
    1374                 :          * check to <=.)
    1375                 :          *
    1376                 :          * Full explanation for why a highkey is never truly a copy of another
    1377                 :          * item from the same level on internal levels:
    1378                 :          *
    1379                 :          * While the new left page's high key is copied from the first offset
    1380                 :          * on the right page during an internal page split, that's not the
    1381                 :          * full story.  In effect, internal pages are split in the middle of
    1382                 :          * the firstright tuple, not between the would-be lastleft and
    1383                 :          * firstright tuples: the firstright key ends up on the left side as
    1384                 :          * left's new highkey, and the firstright downlink ends up on the
    1385                 :          * right side as right's new "negative infinity" item.  The negative
    1386                 :          * infinity tuple is truncated to zero attributes, so we're only left
    1387                 :          * with the downlink.  In other words, the copying is just an
    1388                 :          * implementation detail of splitting in the middle of a (pivot)
    1389                 :          * tuple. (See also: "Notes About Data Representation" in the nbtree
    1390                 :          * README.)
    1391                 :          */
    1392 GIC     1575292 :         scantid = skey->scantid;
    1393         1575292 :         if (state->heapkeyspace && BTreeTupleIsPosting(itup))
    1394 CBC        7140 :             skey->scantid = BTreeTupleGetMaxHeapTID(itup);
    1395 ECB             : 
    1396 CBC     3026318 :         if (!P_RIGHTMOST(topaque) &&
    1397 GIC     1451026 :             !(P_ISLEAF(topaque) ? invariant_leq_offset(state, skey, P_HIKEY) :
    1398 CBC         566 :               invariant_l_offset(state, skey, P_HIKEY)))
    1399 ECB             :         {
    1400 LBC           0 :             ItemPointer tid = BTreeTupleGetPointsToTID(itup);
    1401                 :             char       *itid,
    1402 EUB             :                        *htid;
    1403                 : 
    1404 UIC           0 :             itid = psprintf("(%u,%u)", state->targetblock, offset);
    1405               0 :             htid = psprintf("(%u,%u)",
    1406 EUB             :                             ItemPointerGetBlockNumberNoCheck(tid),
    1407 UBC           0 :                             ItemPointerGetOffsetNumberNoCheck(tid));
    1408                 : 
    1409               0 :             ereport(ERROR,
    1410                 :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    1411 EUB             :                      errmsg("high key invariant violated for index \"%s\"",
    1412                 :                             RelationGetRelationName(state->rel)),
    1413                 :                      errdetail_internal("Index tid=%s points to %s tid=%s page lsn=%X/%X.",
    1414                 :                                         itid,
    1415                 :                                         P_ISLEAF(topaque) ? "heap" : "index",
    1416                 :                                         htid,
    1417                 :                                         LSN_FORMAT_ARGS(state->targetlsn))));
    1418                 :         }
    1419                 :         /* Reset, in case scantid was set to (itup) posting tuple's max TID */
    1420 GIC     1575292 :         skey->scantid = scantid;
    1421                 : 
    1422 ECB             :         /*
    1423                 :          * * Item order check *
    1424                 :          *
    1425                 :          * Check that items are stored on page in logical order, by checking
    1426                 :          * current item is strictly less than next item (if any).
    1427                 :          */
    1428 GIC     1575292 :         if (OffsetNumberNext(offset) <= max &&
    1429         1568421 :             !invariant_l_offset(state, skey, OffsetNumberNext(offset)))
    1430 ECB             :         {
    1431                 :             ItemPointer tid;
    1432                 :             char       *itid,
    1433                 :                        *htid,
    1434                 :                        *nitid,
    1435                 :                        *nhtid;
    1436                 : 
    1437 UIC           0 :             itid = psprintf("(%u,%u)", state->targetblock, offset);
    1438               0 :             tid = BTreeTupleGetPointsToTID(itup);
    1439 UBC           0 :             htid = psprintf("(%u,%u)",
    1440 EUB             :                             ItemPointerGetBlockNumberNoCheck(tid),
    1441 UBC           0 :                             ItemPointerGetOffsetNumberNoCheck(tid));
    1442 UIC           0 :             nitid = psprintf("(%u,%u)", state->targetblock,
    1443 UBC           0 :                              OffsetNumberNext(offset));
    1444 EUB             : 
    1445                 :             /* Reuse itup to get pointed-to heap location of second item */
    1446 UIC           0 :             itemid = PageGetItemIdCareful(state, state->targetblock,
    1447                 :                                           state->target,
    1448 UBC           0 :                                           OffsetNumberNext(offset));
    1449 UIC           0 :             itup = (IndexTuple) PageGetItem(state->target, itemid);
    1450 UBC           0 :             tid = BTreeTupleGetPointsToTID(itup);
    1451               0 :             nhtid = psprintf("(%u,%u)",
    1452 EUB             :                              ItemPointerGetBlockNumberNoCheck(tid),
    1453 UBC           0 :                              ItemPointerGetOffsetNumberNoCheck(tid));
    1454                 : 
    1455               0 :             ereport(ERROR,
    1456                 :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    1457 EUB             :                      errmsg("item order invariant violated for index \"%s\"",
    1458                 :                             RelationGetRelationName(state->rel)),
    1459                 :                      errdetail_internal("Lower index tid=%s (points to %s tid=%s) "
    1460                 :                                         "higher index tid=%s (points to %s tid=%s) "
    1461                 :                                         "page lsn=%X/%X.",
    1462                 :                                         itid,
    1463                 :                                         P_ISLEAF(topaque) ? "heap" : "index",
    1464                 :                                         htid,
    1465                 :                                         nitid,
    1466                 :                                         P_ISLEAF(topaque) ? "heap" : "index",
    1467                 :                                         nhtid,
    1468                 :                                         LSN_FORMAT_ARGS(state->targetlsn))));
    1469                 :         }
    1470                 : 
    1471                 :         /*
    1472                 :          * * Last item check *
    1473                 :          *
    1474                 :          * Check last item against next/right page's first data item's when
    1475                 :          * last item on page is reached.  This additional check will detect
    1476                 :          * transposed pages iff the supposed right sibling page happens to
    1477                 :          * belong before target in the key space.  (Otherwise, a subsequent
    1478                 :          * heap verification will probably detect the problem.)
    1479                 :          *
    1480                 :          * This check is similar to the item order check that will have
    1481                 :          * already been performed for every other "real" item on target page
    1482                 :          * when last item is checked.  The difference is that the next item
    1483                 :          * (the item that is compared to target's last item) needs to come
    1484                 :          * from the next/sibling page.  There may not be such an item
    1485                 :          * available from sibling for various reasons, though (e.g., target is
    1486                 :          * the rightmost page on level).
    1487                 :          */
    1488 GIC     1575292 :         else if (offset == max)
    1489                 :         {
    1490 ECB             :             BTScanInsert rightkey;
    1491                 : 
    1492                 :             /* Get item in next/right page */
    1493 GIC        6871 :             rightkey = bt_right_page_check_scankey(state);
    1494                 : 
    1495 CBC        6871 :             if (rightkey &&
    1496 GIC        5155 :                 !invariant_g_offset(state, rightkey, max))
    1497 ECB             :             {
    1498                 :                 /*
    1499                 :                  * As explained at length in bt_right_page_check_scankey(),
    1500                 :                  * there is a known !readonly race that could account for
    1501                 :                  * apparent violation of invariant, which we must check for
    1502                 :                  * before actually proceeding with raising error.  Our canary
    1503                 :                  * condition is that target page was deleted.
    1504                 :                  */
    1505 UIC           0 :                 if (!state->readonly)
    1506                 :                 {
    1507 EUB             :                     /* Get fresh copy of target page */
    1508 UIC           0 :                     state->target = palloc_btree_page(state, state->targetblock);
    1509                 :                     /* Note that we deliberately do not update target LSN */
    1510 UBC           0 :                     topaque = BTPageGetOpaque(state->target);
    1511                 : 
    1512 EUB             :                     /*
    1513                 :                      * All !readonly checks now performed; just return
    1514                 :                      */
    1515 UIC           0 :                     if (P_IGNORE(topaque))
    1516               0 :                         return;
    1517 EUB             :                 }
    1518                 : 
    1519 UIC           0 :                 ereport(ERROR,
    1520                 :                         (errcode(ERRCODE_INDEX_CORRUPTED),
    1521 EUB             :                          errmsg("cross page item order invariant violated for index \"%s\"",
    1522                 :                                 RelationGetRelationName(state->rel)),
    1523                 :                          errdetail_internal("Last item on page tid=(%u,%u) page lsn=%X/%X.",
    1524                 :                                             state->targetblock, offset,
    1525                 :                                             LSN_FORMAT_ARGS(state->targetlsn))));
    1526                 :             }
    1527                 :         }
    1528                 : 
    1529                 :         /*
    1530                 :          * * Downlink check *
    1531                 :          *
    1532                 :          * Additional check of child items iff this is an internal page and
    1533                 :          * caller holds a ShareLock.  This happens for every downlink (item)
    1534                 :          * in target excluding the negative-infinity downlink (again, this is
    1535                 :          * because it has no useful value to compare).
    1536                 :          */
    1537 GIC     1575292 :         if (!P_ISLEAF(topaque) && state->readonly)
    1538            1585 :             bt_child_check(state, skey, offset);
    1539 ECB             :     }
    1540                 : 
    1541                 :     /*
    1542                 :      * Special case bt_child_highkey_check() call
    1543                 :      *
    1544                 :      * We don't pass a real downlink, but we've to finish the level
    1545                 :      * processing. If condition is satisfied, we've already processed all the
    1546                 :      * downlinks from the target level.  But there still might be pages to the
    1547                 :      * right of the child page pointer to by our rightmost downlink.  And they
    1548                 :      * might have missing downlinks.  This final call checks for them.
    1549                 :      */
    1550 GIC        6873 :     if (!P_ISLEAF(topaque) && P_RIGHTMOST(topaque) && state->readonly)
    1551                 :     {
    1552 CBC           8 :         bt_child_highkey_check(state, InvalidOffsetNumber,
    1553                 :                                NULL, topaque->btpo_level);
    1554 ECB             :     }
    1555                 : }
    1556                 : 
    1557                 : /*
    1558                 :  * Return a scankey for an item on page to right of current target (or the
    1559                 :  * first non-ignorable page), sufficient to check ordering invariant on last
    1560                 :  * item in current target page.  Returned scankey relies on local memory
    1561                 :  * allocated for the child page, which caller cannot pfree().  Caller's memory
    1562                 :  * context should be reset between calls here.
    1563                 :  *
    1564                 :  * This is the first data item, and so all adjacent items are checked against
    1565                 :  * their immediate sibling item (which may be on a sibling page, or even a
    1566                 :  * "cousin" page at parent boundaries where target's rightlink points to page
    1567                 :  * with different parent page).  If no such valid item is available, return
    1568                 :  * NULL instead.
    1569                 :  *
    1570                 :  * Note that !readonly callers must reverify that target page has not
    1571                 :  * been concurrently deleted.
    1572                 :  */
    1573                 : static BTScanInsert
    1574 GIC        6871 : bt_right_page_check_scankey(BtreeCheckState *state)
    1575                 : {
    1576 ECB             :     BTPageOpaque opaque;
    1577                 :     ItemId      rightitem;
    1578                 :     IndexTuple  firstitup;
    1579                 :     BlockNumber targetnext;
    1580                 :     Page        rightpage;
    1581                 :     OffsetNumber nline;
    1582                 : 
    1583                 :     /* Determine target's next block number */
    1584 GIC        6871 :     opaque = BTPageGetOpaque(state->target);
    1585                 : 
    1586 ECB             :     /* If target is already rightmost, no right sibling; nothing to do here */
    1587 GIC        6871 :     if (P_RIGHTMOST(opaque))
    1588            1716 :         return NULL;
    1589 ECB             : 
    1590                 :     /*
    1591                 :      * General notes on concurrent page splits and page deletion:
    1592                 :      *
    1593                 :      * Routines like _bt_search() don't require *any* page split interlock
    1594                 :      * when descending the tree, including something very light like a buffer
    1595                 :      * pin. That's why it's okay that we don't either.  This avoidance of any
    1596                 :      * need to "couple" buffer locks is the raison d' etre of the Lehman & Yao
    1597                 :      * algorithm, in fact.
    1598                 :      *
    1599                 :      * That leaves deletion.  A deleted page won't actually be recycled by
    1600                 :      * VACUUM early enough for us to fail to at least follow its right link
    1601                 :      * (or left link, or downlink) and find its sibling, because recycling
    1602                 :      * does not occur until no possible index scan could land on the page.
    1603                 :      * Index scans can follow links with nothing more than their snapshot as
    1604                 :      * an interlock and be sure of at least that much.  (See page
    1605                 :      * recycling/"visible to everyone" notes in nbtree README.)
    1606                 :      *
    1607                 :      * Furthermore, it's okay if we follow a rightlink and find a half-dead or
    1608                 :      * dead (ignorable) page one or more times.  There will either be a
    1609                 :      * further right link to follow that leads to a live page before too long
    1610                 :      * (before passing by parent's rightmost child), or we will find the end
    1611                 :      * of the entire level instead (possible when parent page is itself the
    1612                 :      * rightmost on its level).
    1613                 :      */
    1614 GIC        5155 :     targetnext = opaque->btpo_next;
    1615                 :     for (;;)
    1616 ECB             :     {
    1617 GIC        5155 :         CHECK_FOR_INTERRUPTS();
    1618                 : 
    1619 CBC        5155 :         rightpage = palloc_btree_page(state, targetnext);
    1620 GIC        5155 :         opaque = BTPageGetOpaque(rightpage);
    1621 ECB             : 
    1622 CBC        5155 :         if (!P_IGNORE(opaque) || P_RIGHTMOST(opaque))
    1623                 :             break;
    1624 ECB             : 
    1625                 :         /*
    1626                 :          * We landed on a deleted or half-dead sibling page.  Step right until
    1627                 :          * we locate a live sibling page.
    1628                 :          */
    1629 UIC           0 :         ereport(DEBUG2,
    1630                 :                 (errcode(ERRCODE_NO_DATA),
    1631 EUB             :                  errmsg_internal("level %u sibling page in block %u of index \"%s\" was found deleted or half dead",
    1632                 :                                  opaque->btpo_level, targetnext, RelationGetRelationName(state->rel)),
    1633                 :                  errdetail_internal("Deleted page found when building scankey from right sibling.")));
    1634                 : 
    1635 UIC           0 :         targetnext = opaque->btpo_next;
    1636                 : 
    1637 EUB             :         /* Be slightly more pro-active in freeing this memory, just in case */
    1638 UIC           0 :         pfree(rightpage);
    1639                 :     }
    1640 EUB             : 
    1641                 :     /*
    1642                 :      * No ShareLock held case -- why it's safe to proceed.
    1643                 :      *
    1644                 :      * Problem:
    1645                 :      *
    1646                 :      * We must avoid false positive reports of corruption when caller treats
    1647                 :      * item returned here as an upper bound on target's last item.  In
    1648                 :      * general, false positives are disallowed.  Avoiding them here when
    1649                 :      * caller is !readonly is subtle.
    1650                 :      *
    1651                 :      * A concurrent page deletion by VACUUM of the target page can result in
    1652                 :      * the insertion of items on to this right sibling page that would
    1653                 :      * previously have been inserted on our target page.  There might have
    1654                 :      * been insertions that followed the target's downlink after it was made
    1655                 :      * to point to right sibling instead of target by page deletion's first
    1656                 :      * phase. The inserters insert items that would belong on target page.
    1657                 :      * This race is very tight, but it's possible.  This is our only problem.
    1658                 :      *
    1659                 :      * Non-problems:
    1660                 :      *
    1661                 :      * We are not hindered by a concurrent page split of the target; we'll
    1662                 :      * never land on the second half of the page anyway.  A concurrent split
    1663                 :      * of the right page will also not matter, because the first data item
    1664                 :      * remains the same within the left half, which we'll reliably land on. If
    1665                 :      * we had to skip over ignorable/deleted pages, it cannot matter because
    1666                 :      * their key space has already been atomically merged with the first
    1667                 :      * non-ignorable page we eventually find (doesn't matter whether the page
    1668                 :      * we eventually find is a true sibling or a cousin of target, which we go
    1669                 :      * into below).
    1670                 :      *
    1671                 :      * Solution:
    1672                 :      *
    1673                 :      * Caller knows that it should reverify that target is not ignorable
    1674                 :      * (half-dead or deleted) when cross-page sibling item comparison appears
    1675                 :      * to indicate corruption (invariant fails).  This detects the single race
    1676                 :      * condition that exists for caller.  This is correct because the
    1677                 :      * continued existence of target block as non-ignorable (not half-dead or
    1678                 :      * deleted) implies that target page was not merged into from the right by
    1679                 :      * deletion; the key space at or after target never moved left.  Target's
    1680                 :      * parent either has the same downlink to target as before, or a <
    1681                 :      * downlink due to deletion at the left of target.  Target either has the
    1682                 :      * same highkey as before, or a highkey < before when there is a page
    1683                 :      * split. (The rightmost concurrently-split-from-target-page page will
    1684                 :      * still have the same highkey as target was originally found to have,
    1685                 :      * which for our purposes is equivalent to target's highkey itself never
    1686                 :      * changing, since we reliably skip over
    1687                 :      * concurrently-split-from-target-page pages.)
    1688                 :      *
    1689                 :      * In simpler terms, we allow that the key space of the target may expand
    1690                 :      * left (the key space can move left on the left side of target only), but
    1691                 :      * the target key space cannot expand right and get ahead of us without
    1692                 :      * our detecting it.  The key space of the target cannot shrink, unless it
    1693                 :      * shrinks to zero due to the deletion of the original page, our canary
    1694                 :      * condition.  (To be very precise, we're a bit stricter than that because
    1695                 :      * it might just have been that the target page split and only the
    1696                 :      * original target page was deleted.  We can be more strict, just not more
    1697                 :      * lax.)
    1698                 :      *
    1699                 :      * Top level tree walk caller moves on to next page (makes it the new
    1700                 :      * target) following recovery from this race.  (cf.  The rationale for
    1701                 :      * child/downlink verification needing a ShareLock within
    1702                 :      * bt_child_check(), where page deletion is also the main source of
    1703                 :      * trouble.)
    1704                 :      *
    1705                 :      * Note that it doesn't matter if right sibling page here is actually a
    1706                 :      * cousin page, because in order for the key space to be readjusted in a
    1707                 :      * way that causes us issues in next level up (guiding problematic
    1708                 :      * concurrent insertions to the cousin from the grandparent rather than to
    1709                 :      * the sibling from the parent), there'd have to be page deletion of
    1710                 :      * target's parent page (affecting target's parent's downlink in target's
    1711                 :      * grandparent page).  Internal page deletion only occurs when there are
    1712                 :      * no child pages (they were all fully deleted), and caller is checking
    1713                 :      * that the target's parent has at least one non-deleted (so
    1714                 :      * non-ignorable) child: the target page.  (Note that the first phase of
    1715                 :      * deletion atomically marks the page to be deleted half-dead/ignorable at
    1716                 :      * the same time downlink in its parent is removed, so caller will
    1717                 :      * definitely not fail to detect that this happened.)
    1718                 :      *
    1719                 :      * This trick is inspired by the method backward scans use for dealing
    1720                 :      * with concurrent page splits; concurrent page deletion is a problem that
    1721                 :      * similarly receives special consideration sometimes (it's possible that
    1722                 :      * the backwards scan will re-read its "original" block after failing to
    1723                 :      * find a right-link to it, having already moved in the opposite direction
    1724                 :      * (right/"forwards") a few times to try to locate one).  Just like us,
    1725                 :      * that happens only to determine if there was a concurrent page deletion
    1726                 :      * of a reference page, and just like us if there was a page deletion of
    1727                 :      * that reference page it means we can move on from caring about the
    1728                 :      * reference page.  See the nbtree README for a full description of how
    1729                 :      * that works.
    1730                 :      */
    1731 GIC        5155 :     nline = PageGetMaxOffsetNumber(rightpage);
    1732                 : 
    1733 ECB             :     /*
    1734                 :      * Get first data item, if any
    1735                 :      */
    1736 GIC        5155 :     if (P_ISLEAF(opaque) && nline >= P_FIRSTDATAKEY(opaque))
    1737                 :     {
    1738 ECB             :         /* Return first data item (if any) */
    1739 GIC        5153 :         rightitem = PageGetItemIdCareful(state, targetnext, rightpage,
    1740            5153 :                                          P_FIRSTDATAKEY(opaque));
    1741 ECB             :     }
    1742 CBC           4 :     else if (!P_ISLEAF(opaque) &&
    1743 GIC           2 :              nline >= OffsetNumberNext(P_FIRSTDATAKEY(opaque)))
    1744 ECB             :     {
    1745                 :         /*
    1746                 :          * Return first item after the internal page's "negative infinity"
    1747                 :          * item
    1748                 :          */
    1749 GIC           2 :         rightitem = PageGetItemIdCareful(state, targetnext, rightpage,
    1750               2 :                                          OffsetNumberNext(P_FIRSTDATAKEY(opaque)));
    1751 ECB             :     }
    1752                 :     else
    1753                 :     {
    1754                 :         /*
    1755                 :          * No first item.  Page is probably empty leaf page, but it's also
    1756                 :          * possible that it's an internal page with only a negative infinity
    1757                 :          * item.
    1758                 :          */
    1759 UIC           0 :         ereport(DEBUG2,
    1760                 :                 (errcode(ERRCODE_NO_DATA),
    1761 EUB             :                  errmsg_internal("%s block %u of index \"%s\" has no first data item",
    1762                 :                                  P_ISLEAF(opaque) ? "leaf" : "internal", targetnext,
    1763                 :                                  RelationGetRelationName(state->rel))));
    1764 UIC           0 :         return NULL;
    1765                 :     }
    1766 EUB             : 
    1767                 :     /*
    1768                 :      * Return first real item scankey.  Note that this relies on right page
    1769                 :      * memory remaining allocated.
    1770                 :      */
    1771 GIC        5155 :     firstitup = (IndexTuple) PageGetItem(rightpage, rightitem);
    1772 GNC        5155 :     return bt_mkscankey_pivotsearch(state->rel, state->heaprel, firstitup);
    1773 ECB             : }
    1774                 : 
    1775                 : /*
    1776                 :  * Check if two tuples are binary identical except the block number.  So,
    1777                 :  * this function is capable to compare pivot keys on different levels.
    1778                 :  */
    1779                 : static bool
    1780 GIC        1586 : bt_pivot_tuple_identical(bool heapkeyspace, IndexTuple itup1, IndexTuple itup2)
    1781                 : {
    1782 CBC        1586 :     if (IndexTupleSize(itup1) != IndexTupleSize(itup2))
    1783 UIC           0 :         return false;
    1784 ECB             : 
    1785 GBC        1586 :     if (heapkeyspace)
    1786                 :     {
    1787 ECB             :         /*
    1788                 :          * Offset number will contain important information in heapkeyspace
    1789                 :          * indexes: the number of attributes left in the pivot tuple following
    1790                 :          * suffix truncation.  Don't skip over it (compare it too).
    1791                 :          */
    1792 GIC        1586 :         if (memcmp(&itup1->t_tid.ip_posid, &itup2->t_tid.ip_posid,
    1793            1586 :                    IndexTupleSize(itup1) -
    1794 ECB             :                    offsetof(ItemPointerData, ip_posid)) != 0)
    1795 LBC           0 :             return false;
    1796                 :     }
    1797 EUB             :     else
    1798                 :     {
    1799                 :         /*
    1800                 :          * Cannot rely on offset number field having consistent value across
    1801                 :          * levels on pg_upgrade'd !heapkeyspace indexes.  Compare contents of
    1802                 :          * tuple starting from just after item pointer (i.e. after block
    1803                 :          * number and offset number).
    1804                 :          */
    1805 UIC           0 :         if (memcmp(&itup1->t_info, &itup2->t_info,
    1806               0 :                    IndexTupleSize(itup1) -
    1807 EUB             :                    offsetof(IndexTupleData, t_info)) != 0)
    1808 UBC           0 :             return false;
    1809                 :     }
    1810 EUB             : 
    1811 GIC        1586 :     return true;
    1812                 : }
    1813 ECB             : 
    1814                 : /*---
    1815                 :  * Check high keys on the child level.  Traverse rightlinks from previous
    1816                 :  * downlink to the current one.  Check that there are no intermediate pages
    1817                 :  * with missing downlinks.
    1818                 :  *
    1819                 :  * If 'loaded_child' is given, it's assumed to be the page pointed to by the
    1820                 :  * downlink referenced by 'downlinkoffnum' of the target page.
    1821                 :  *
    1822                 :  * Basically this function is called for each target downlink and checks two
    1823                 :  * invariants:
    1824                 :  *
    1825                 :  * 1) You can reach the next child from previous one via rightlinks;
    1826                 :  * 2) Each child high key have matching pivot key on target level.
    1827                 :  *
    1828                 :  * Consider the sample tree picture.
    1829                 :  *
    1830                 :  *               1
    1831                 :  *           /       \
    1832                 :  *        2     <->     3
    1833                 :  *      /   \        /     \
    1834                 :  *    4  <>  5  <> 6 <> 7 <> 8
    1835                 :  *
    1836                 :  * This function will be called for blocks 4, 5, 6 and 8.  Consider what is
    1837                 :  * happening for each function call.
    1838                 :  *
    1839                 :  * - The function call for block 4 initializes data structure and matches high
    1840                 :  *   key of block 4 to downlink's pivot key of block 2.
    1841                 :  * - The high key of block 5 is matched to the high key of block 2.
    1842                 :  * - The block 6 has an incomplete split flag set, so its high key isn't
    1843                 :  *   matched to anything.
    1844                 :  * - The function call for block 8 checks that block 8 can be found while
    1845                 :  *   following rightlinks from block 6.  The high key of block 7 will be
    1846                 :  *   matched to downlink's pivot key in block 3.
    1847                 :  *
    1848                 :  * There is also final call of this function, which checks that there is no
    1849                 :  * missing downlinks for children to the right of the child referenced by
    1850                 :  * rightmost downlink in target level.
    1851                 :  */
    1852                 : static void
    1853 GIC        1602 : bt_child_highkey_check(BtreeCheckState *state,
    1854                 :                        OffsetNumber target_downlinkoffnum,
    1855 ECB             :                        Page loaded_child,
    1856                 :                        uint32 target_level)
    1857                 : {
    1858 GIC        1602 :     BlockNumber blkno = state->prevrightlink;
    1859                 :     Page        page;
    1860 ECB             :     BTPageOpaque opaque;
    1861 GIC        1602 :     bool        rightsplit = state->previncompletesplit;
    1862            1602 :     bool        first = true;
    1863 ECB             :     ItemId      itemid;
    1864                 :     IndexTuple  itup;
    1865                 :     BlockNumber downlink;
    1866                 : 
    1867 GIC        1602 :     if (OffsetNumberIsValid(target_downlinkoffnum))
    1868                 :     {
    1869 CBC        1594 :         itemid = PageGetItemIdCareful(state, state->targetblock,
    1870                 :                                       state->target, target_downlinkoffnum);
    1871            1594 :         itup = (IndexTuple) PageGetItem(state->target, itemid);
    1872 GIC        1594 :         downlink = BTreeTupleGetDownLink(itup);
    1873 ECB             :     }
    1874                 :     else
    1875                 :     {
    1876 GIC           8 :         downlink = P_NONE;
    1877                 :     }
    1878 ECB             : 
    1879                 :     /*
    1880                 :      * If no previous rightlink is memorized for current level just below
    1881                 :      * target page's level, we are about to start from the leftmost page. We
    1882                 :      * can't follow rightlinks from previous page, because there is no
    1883                 :      * previous page.  But we still can match high key.
    1884                 :      *
    1885                 :      * So we initialize variables for the loop above like there is previous
    1886                 :      * page referencing current child.  Also we imply previous page to not
    1887                 :      * have incomplete split flag, that would make us require downlink for
    1888                 :      * current child.  That's correct, because leftmost page on the level
    1889                 :      * should always have parent downlink.
    1890                 :      */
    1891 GIC        1602 :     if (!BlockNumberIsValid(blkno))
    1892                 :     {
    1893 CBC           8 :         blkno = downlink;
    1894 GIC           8 :         rightsplit = false;
    1895 ECB             :     }
    1896                 : 
    1897                 :     /* Move to the right on the child level */
    1898                 :     while (true)
    1899                 :     {
    1900                 :         /*
    1901                 :          * Did we traverse the whole tree level and this is check for pages to
    1902                 :          * the right of rightmost downlink?
    1903                 :          */
    1904 GIC        1602 :         if (blkno == P_NONE && downlink == P_NONE)
    1905                 :         {
    1906 CBC           8 :             state->prevrightlink = InvalidBlockNumber;
    1907 GIC           8 :             state->previncompletesplit = false;
    1908 CBC           8 :             return;
    1909 ECB             :         }
    1910                 : 
    1911                 :         /* Did we traverse the whole tree level and don't find next downlink? */
    1912 GIC        1594 :         if (blkno == P_NONE)
    1913 UIC           0 :             ereport(ERROR,
    1914 ECB             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    1915 EUB             :                      errmsg("can't traverse from downlink %u to downlink %u of index \"%s\"",
    1916                 :                             state->prevrightlink, downlink,
    1917                 :                             RelationGetRelationName(state->rel))));
    1918                 : 
    1919                 :         /* Load page contents */
    1920 GIC        1594 :         if (blkno == downlink && loaded_child)
    1921            1585 :             page = loaded_child;
    1922 ECB             :         else
    1923 CBC           9 :             page = palloc_btree_page(state, blkno);
    1924                 : 
    1925            1594 :         opaque = BTPageGetOpaque(page);
    1926                 : 
    1927 ECB             :         /* The first page we visit at the level should be leftmost */
    1928 GIC        1594 :         if (first && !BlockNumberIsValid(state->prevrightlink) && !P_LEFTMOST(opaque))
    1929 UIC           0 :             ereport(ERROR,
    1930 ECB             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    1931 EUB             :                      errmsg("the first child of leftmost target page is not leftmost of its level in index \"%s\"",
    1932                 :                             RelationGetRelationName(state->rel)),
    1933                 :                      errdetail_internal("Target block=%u child block=%u target page lsn=%X/%X.",
    1934                 :                                         state->targetblock, blkno,
    1935                 :                                         LSN_FORMAT_ARGS(state->targetlsn))));
    1936                 : 
    1937                 :         /* Do level sanity check */
    1938 GIC        1594 :         if ((!P_ISDELETED(opaque) || P_HAS_FULLXID(opaque)) &&
    1939            1594 :             opaque->btpo_level != target_level - 1)
    1940 LBC           0 :             ereport(ERROR,
    1941 ECB             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    1942 EUB             :                      errmsg("block found while following rightlinks from child of index \"%s\" has invalid level",
    1943                 :                             RelationGetRelationName(state->rel)),
    1944                 :                      errdetail_internal("Block pointed to=%u expected level=%u level in pointed to block=%u.",
    1945                 :                                         blkno, target_level - 1, opaque->btpo_level)));
    1946                 : 
    1947                 :         /* Try to detect circular links */
    1948 GIC        1594 :         if ((!first && blkno == state->prevrightlink) || blkno == opaque->btpo_prev)
    1949 UIC           0 :             ereport(ERROR,
    1950 ECB             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    1951 EUB             :                      errmsg("circular link chain found in block %u of index \"%s\"",
    1952                 :                             blkno, RelationGetRelationName(state->rel))));
    1953                 : 
    1954 GIC        1594 :         if (blkno != downlink && !P_IGNORE(opaque))
    1955                 :         {
    1956 ECB             :             /* blkno probably has missing parent downlink */
    1957 UIC           0 :             bt_downlink_missing_check(state, rightsplit, blkno, page);
    1958                 :         }
    1959 EUB             : 
    1960 GIC        1594 :         rightsplit = P_INCOMPLETE_SPLIT(opaque);
    1961                 : 
    1962 ECB             :         /*
    1963                 :          * If we visit page with high key, check that it is equal to the
    1964                 :          * target key next to corresponding downlink.
    1965                 :          */
    1966 GIC        1594 :         if (!rightsplit && !P_RIGHTMOST(opaque))
    1967                 :         {
    1968 ECB             :             BTPageOpaque topaque;
    1969                 :             IndexTuple  highkey;
    1970                 :             OffsetNumber pivotkey_offset;
    1971                 : 
    1972                 :             /* Get high key */
    1973 GIC        1586 :             itemid = PageGetItemIdCareful(state, blkno, page, P_HIKEY);
    1974            1586 :             highkey = (IndexTuple) PageGetItem(page, itemid);
    1975 ECB             : 
    1976                 :             /*
    1977                 :              * There might be two situations when we examine high key.  If
    1978                 :              * current child page is referenced by given target downlink, we
    1979                 :              * should look to the next offset number for matching key from
    1980                 :              * target page.
    1981                 :              *
    1982                 :              * Alternatively, we're following rightlinks somewhere in the
    1983                 :              * middle between page referenced by previous target's downlink
    1984                 :              * and the page referenced by current target's downlink.  If
    1985                 :              * current child page hasn't incomplete split flag set, then its
    1986                 :              * high key should match to the target's key of current offset
    1987                 :              * number. This happens when a previous call here (to
    1988                 :              * bt_child_highkey_check()) found an incomplete split, and we
    1989                 :              * reach a right sibling page without a downlink -- the right
    1990                 :              * sibling page's high key still needs to be matched to a
    1991                 :              * separator key on the parent/target level.
    1992                 :              *
    1993                 :              * Don't apply OffsetNumberNext() to target_downlinkoffnum when we
    1994                 :              * already had to step right on the child level. Our traversal of
    1995                 :              * the child level must try to move in perfect lockstep behind (to
    1996                 :              * the left of) the target/parent level traversal.
    1997                 :              */
    1998 GIC        1586 :             if (blkno == downlink)
    1999            1586 :                 pivotkey_offset = OffsetNumberNext(target_downlinkoffnum);
    2000 ECB             :             else
    2001 LBC           0 :                 pivotkey_offset = target_downlinkoffnum;
    2002                 : 
    2003 GBC        1586 :             topaque = BTPageGetOpaque(state->target);
    2004                 : 
    2005 CBC        1586 :             if (!offset_is_negative_infinity(topaque, pivotkey_offset))
    2006                 :             {
    2007 ECB             :                 /*
    2008                 :                  * If we're looking for the next pivot tuple in target page,
    2009                 :                  * but there is no more pivot tuples, then we should match to
    2010                 :                  * high key instead.
    2011                 :                  */
    2012 GIC        1586 :                 if (pivotkey_offset > PageGetMaxOffsetNumber(state->target))
    2013                 :                 {
    2014 CBC           1 :                     if (P_RIGHTMOST(topaque))
    2015 UIC           0 :                         ereport(ERROR,
    2016 ECB             :                                 (errcode(ERRCODE_INDEX_CORRUPTED),
    2017 EUB             :                                  errmsg("child high key is greater than rightmost pivot key on target level in index \"%s\"",
    2018                 :                                         RelationGetRelationName(state->rel)),
    2019                 :                                  errdetail_internal("Target block=%u child block=%u target page lsn=%X/%X.",
    2020                 :                                                     state->targetblock, blkno,
    2021                 :                                                     LSN_FORMAT_ARGS(state->targetlsn))));
    2022 GIC           1 :                     pivotkey_offset = P_HIKEY;
    2023                 :                 }
    2024 CBC        1586 :                 itemid = PageGetItemIdCareful(state, state->targetblock,
    2025                 :                                               state->target, pivotkey_offset);
    2026            1586 :                 itup = (IndexTuple) PageGetItem(state->target, itemid);
    2027                 :             }
    2028 ECB             :             else
    2029                 :             {
    2030                 :                 /*
    2031                 :                  * We cannot try to match child's high key to a negative
    2032                 :                  * infinity key in target, since there is nothing to compare.
    2033                 :                  * However, it's still possible to match child's high key
    2034                 :                  * outside of target page.  The reason why we're are is that
    2035                 :                  * bt_child_highkey_check() was previously called for the
    2036                 :                  * cousin page of 'loaded_child', which is incomplete split.
    2037                 :                  * So, now we traverse to the right of that cousin page and
    2038                 :                  * current child level page under consideration still belongs
    2039                 :                  * to the subtree of target's left sibling.  Thus, we need to
    2040                 :                  * match child's high key to it's left uncle page high key.
    2041                 :                  * Thankfully we saved it, it's called a "low key" of target
    2042                 :                  * page.
    2043                 :                  */
    2044 UIC           0 :                 if (!state->lowkey)
    2045               0 :                     ereport(ERROR,
    2046 EUB             :                             (errcode(ERRCODE_INDEX_CORRUPTED),
    2047                 :                              errmsg("can't find left sibling high key in index \"%s\"",
    2048                 :                                     RelationGetRelationName(state->rel)),
    2049                 :                              errdetail_internal("Target block=%u child block=%u target page lsn=%X/%X.",
    2050                 :                                                 state->targetblock, blkno,
    2051                 :                                                 LSN_FORMAT_ARGS(state->targetlsn))));
    2052 UIC           0 :                 itup = state->lowkey;
    2053                 :             }
    2054 EUB             : 
    2055 GIC        1586 :             if (!bt_pivot_tuple_identical(state->heapkeyspace, highkey, itup))
    2056                 :             {
    2057 LBC           0 :                 ereport(ERROR,
    2058                 :                         (errcode(ERRCODE_INDEX_CORRUPTED),
    2059 EUB             :                          errmsg("mismatch between parent key and child high key in index \"%s\"",
    2060                 :                                 RelationGetRelationName(state->rel)),
    2061                 :                          errdetail_internal("Target block=%u child block=%u target page lsn=%X/%X.",
    2062                 :                                             state->targetblock, blkno,
    2063                 :                                             LSN_FORMAT_ARGS(state->targetlsn))));
    2064                 :             }
    2065                 :         }
    2066                 : 
    2067                 :         /* Exit if we already found next downlink */
    2068 GIC        1594 :         if (blkno == downlink)
    2069                 :         {
    2070 CBC        1594 :             state->prevrightlink = opaque->btpo_next;
    2071 GIC        1594 :             state->previncompletesplit = rightsplit;
    2072 CBC        1594 :             return;
    2073 ECB             :         }
    2074                 : 
    2075                 :         /* Traverse to the next page using rightlink */
    2076 UIC           0 :         blkno = opaque->btpo_next;
    2077                 : 
    2078 EUB             :         /* Free page contents if it's allocated by us */
    2079 UIC           0 :         if (page != loaded_child)
    2080               0 :             pfree(page);
    2081 UBC           0 :         first = false;
    2082 EUB             :     }
    2083                 : }
    2084                 : 
    2085                 : /*
    2086                 :  * Checks one of target's downlink against its child page.
    2087                 :  *
    2088                 :  * Conceptually, the target page continues to be what is checked here.  The
    2089                 :  * target block is still blamed in the event of finding an invariant violation.
    2090                 :  * The downlink insertion into the target is probably where any problem raised
    2091                 :  * here arises, and there is no such thing as a parent link, so doing the
    2092                 :  * verification this way around is much more practical.
    2093                 :  *
    2094                 :  * This function visits child page and it's sequentially called for each
    2095                 :  * downlink of target page.  Assuming this we also check downlink connectivity
    2096                 :  * here in order to save child page visits.
    2097                 :  */
    2098                 : static void
    2099 GIC        1585 : bt_child_check(BtreeCheckState *state, BTScanInsert targetkey,
    2100                 :                OffsetNumber downlinkoffnum)
    2101 ECB             : {
    2102                 :     ItemId      itemid;
    2103                 :     IndexTuple  itup;
    2104                 :     BlockNumber childblock;
    2105                 :     OffsetNumber offset;
    2106                 :     OffsetNumber maxoffset;
    2107                 :     Page        child;
    2108                 :     BTPageOpaque copaque;
    2109                 :     BTPageOpaque topaque;
    2110                 : 
    2111 GIC        1585 :     itemid = PageGetItemIdCareful(state, state->targetblock,
    2112                 :                                   state->target, downlinkoffnum);
    2113 CBC        1585 :     itup = (IndexTuple) PageGetItem(state->target, itemid);
    2114 GIC        1585 :     childblock = BTreeTupleGetDownLink(itup);
    2115 ECB             : 
    2116                 :     /*
    2117                 :      * Caller must have ShareLock on target relation, because of
    2118                 :      * considerations around page deletion by VACUUM.
    2119                 :      *
    2120                 :      * NB: In general, page deletion deletes the right sibling's downlink, not
    2121                 :      * the downlink of the page being deleted; the deleted page's downlink is
    2122                 :      * reused for its sibling.  The key space is thereby consolidated between
    2123                 :      * the deleted page and its right sibling.  (We cannot delete a parent
    2124                 :      * page's rightmost child unless it is the last child page, and we intend
    2125                 :      * to also delete the parent itself.)
    2126                 :      *
    2127                 :      * If this verification happened without a ShareLock, the following race
    2128                 :      * condition could cause false positives:
    2129                 :      *
    2130                 :      * In general, concurrent page deletion might occur, including deletion of
    2131                 :      * the left sibling of the child page that is examined here.  If such a
    2132                 :      * page deletion were to occur, closely followed by an insertion into the
    2133                 :      * newly expanded key space of the child, a window for the false positive
    2134                 :      * opens up: the stale parent/target downlink originally followed to get
    2135                 :      * to the child legitimately ceases to be a lower bound on all items in
    2136                 :      * the page, since the key space was concurrently expanded "left".
    2137                 :      * (Insertion followed the "new" downlink for the child, not our now-stale
    2138                 :      * downlink, which was concurrently physically removed in target/parent as
    2139                 :      * part of deletion's first phase.)
    2140                 :      *
    2141                 :      * While we use various techniques elsewhere to perform cross-page
    2142                 :      * verification for !readonly callers, a similar trick seems difficult
    2143                 :      * here.  The tricks used by bt_recheck_sibling_links and by
    2144                 :      * bt_right_page_check_scankey both involve verification of a same-level,
    2145                 :      * cross-sibling invariant.  Cross-level invariants are far more squishy,
    2146                 :      * though.  The nbtree REDO routines do not actually couple buffer locks
    2147                 :      * across levels during page splits, so making any cross-level check work
    2148                 :      * reliably in !readonly mode may be impossible.
    2149                 :      */
    2150 GIC        1585 :     Assert(state->readonly);
    2151                 : 
    2152 ECB             :     /*
    2153                 :      * Verify child page has the downlink key from target page (its parent) as
    2154                 :      * a lower bound; downlink must be strictly less than all keys on the
    2155                 :      * page.
    2156                 :      *
    2157                 :      * Check all items, rather than checking just the first and trusting that
    2158                 :      * the operator class obeys the transitive law.
    2159                 :      */
    2160 GIC        1585 :     topaque = BTPageGetOpaque(state->target);
    2161            1585 :     child = palloc_btree_page(state, childblock);
    2162 CBC        1585 :     copaque = BTPageGetOpaque(child);
    2163            1585 :     maxoffset = PageGetMaxOffsetNumber(child);
    2164 ECB             : 
    2165                 :     /*
    2166                 :      * Since we've already loaded the child block, combine this check with
    2167                 :      * check for downlink connectivity.
    2168                 :      */
    2169 GIC        1585 :     bt_child_highkey_check(state, downlinkoffnum,
    2170                 :                            child, topaque->btpo_level);
    2171 ECB             : 
    2172                 :     /*
    2173                 :      * Since there cannot be a concurrent VACUUM operation in readonly mode,
    2174                 :      * and since a page has no links within other pages (siblings and parent)
    2175                 :      * once it is marked fully deleted, it should be impossible to land on a
    2176                 :      * fully deleted page.
    2177                 :      *
    2178                 :      * It does not quite make sense to enforce that the page cannot even be
    2179                 :      * half-dead, despite the fact the downlink is modified at the same stage
    2180                 :      * that the child leaf page is marked half-dead.  That's incorrect because
    2181                 :      * there may occasionally be multiple downlinks from a chain of pages
    2182                 :      * undergoing deletion, where multiple successive calls are made to
    2183                 :      * _bt_unlink_halfdead_page() by VACUUM before it can finally safely mark
    2184                 :      * the leaf page as fully dead.  While _bt_mark_page_halfdead() usually
    2185                 :      * removes the downlink to the leaf page that is marked half-dead, that's
    2186                 :      * not guaranteed, so it's possible we'll land on a half-dead page with a
    2187                 :      * downlink due to an interrupted multi-level page deletion.
    2188                 :      *
    2189                 :      * We go ahead with our checks if the child page is half-dead.  It's safe
    2190                 :      * to do so because we do not test the child's high key, so it does not
    2191                 :      * matter that the original high key will have been replaced by a dummy
    2192                 :      * truncated high key within _bt_mark_page_halfdead().  All other page
    2193                 :      * items are left intact on a half-dead page, so there is still something
    2194                 :      * to test.
    2195                 :      */
    2196 GIC        1585 :     if (P_ISDELETED(copaque))
    2197 UIC           0 :         ereport(ERROR,
    2198 ECB             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    2199 EUB             :                  errmsg("downlink to deleted page found in index \"%s\"",
    2200                 :                         RelationGetRelationName(state->rel)),
    2201                 :                  errdetail_internal("Parent block=%u child block=%u parent page lsn=%X/%X.",
    2202                 :                                     state->targetblock, childblock,
    2203                 :                                     LSN_FORMAT_ARGS(state->targetlsn))));
    2204                 : 
    2205 GIC        1585 :     for (offset = P_FIRSTDATAKEY(copaque);
    2206          499804 :          offset <= maxoffset;
    2207 CBC      498219 :          offset = OffsetNumberNext(offset))
    2208 ECB             :     {
    2209                 :         /*
    2210                 :          * Skip comparison of target page key against "negative infinity"
    2211                 :          * item, if any.  Checking it would indicate that it's not a strict
    2212                 :          * lower bound, but that's only because of the hard-coding for
    2213                 :          * negative infinity items within _bt_compare().
    2214                 :          *
    2215                 :          * If nbtree didn't truncate negative infinity tuples during internal
    2216                 :          * page splits then we'd expect child's negative infinity key to be
    2217                 :          * equal to the scankey/downlink from target/parent (it would be a
    2218                 :          * "low key" in this hypothetical scenario, and so it would still need
    2219                 :          * to be treated as a special case here).
    2220                 :          *
    2221                 :          * Negative infinity items can be thought of as a strict lower bound
    2222                 :          * that works transitively, with the last non-negative-infinity pivot
    2223                 :          * followed during a descent from the root as its "true" strict lower
    2224                 :          * bound.  Only a small number of negative infinity items are truly
    2225                 :          * negative infinity; those that are the first items of leftmost
    2226                 :          * internal pages.  In more general terms, a negative infinity item is
    2227                 :          * only negative infinity with respect to the subtree that the page is
    2228                 :          * at the root of.
    2229                 :          *
    2230                 :          * See also: bt_rootdescend(), which can even detect transitive
    2231                 :          * inconsistencies on cousin leaf pages.
    2232                 :          */
    2233 GIC      498219 :         if (offset_is_negative_infinity(copaque, offset))
    2234               1 :             continue;
    2235 ECB             : 
    2236 CBC      498218 :         if (!invariant_l_nontarget_offset(state, targetkey, childblock, child,
    2237                 :                                           offset))
    2238 LBC           0 :             ereport(ERROR,
    2239                 :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    2240 EUB             :                      errmsg("down-link lower bound invariant violated for index \"%s\"",
    2241                 :                             RelationGetRelationName(state->rel)),
    2242                 :                      errdetail_internal("Parent block=%u child index tid=(%u,%u) parent page lsn=%X/%X.",
    2243                 :                                         state->targetblock, childblock, offset,
    2244                 :                                         LSN_FORMAT_ARGS(state->targetlsn))));
    2245                 :     }
    2246                 : 
    2247 GIC        1585 :     pfree(child);
    2248            1585 : }
    2249 ECB             : 
    2250                 : /*
    2251                 :  * Checks if page is missing a downlink that it should have.
    2252                 :  *
    2253                 :  * A page that lacks a downlink/parent may indicate corruption.  However, we
    2254                 :  * must account for the fact that a missing downlink can occasionally be
    2255                 :  * encountered in a non-corrupt index.  This can be due to an interrupted page
    2256                 :  * split, or an interrupted multi-level page deletion (i.e. there was a hard
    2257                 :  * crash or an error during a page split, or while VACUUM was deleting a
    2258                 :  * multi-level chain of pages).
    2259                 :  *
    2260                 :  * Note that this can only be called in readonly mode, so there is no need to
    2261                 :  * be concerned about concurrent page splits or page deletions.
    2262                 :  */
    2263                 : static void
    2264 UIC           0 : bt_downlink_missing_check(BtreeCheckState *state, bool rightsplit,
    2265                 :                           BlockNumber blkno, Page page)
    2266 EUB             : {
    2267 UIC           0 :     BTPageOpaque opaque = BTPageGetOpaque(page);
    2268                 :     ItemId      itemid;
    2269 EUB             :     IndexTuple  itup;
    2270                 :     Page        child;
    2271                 :     BTPageOpaque copaque;
    2272                 :     uint32      level;
    2273                 :     BlockNumber childblk;
    2274                 :     XLogRecPtr  pagelsn;
    2275                 : 
    2276 UIC           0 :     Assert(state->readonly);
    2277               0 :     Assert(!P_IGNORE(opaque));
    2278 EUB             : 
    2279                 :     /* No next level up with downlinks to fingerprint from the true root */
    2280 UIC           0 :     if (P_ISROOT(opaque))
    2281               0 :         return;
    2282 EUB             : 
    2283 UBC           0 :     pagelsn = PageGetLSN(page);
    2284                 : 
    2285 EUB             :     /*
    2286                 :      * Incomplete (interrupted) page splits can account for the lack of a
    2287                 :      * downlink.  Some inserting transaction should eventually complete the
    2288                 :      * page split in passing, when it notices that the left sibling page is
    2289                 :      * P_INCOMPLETE_SPLIT().
    2290                 :      *
    2291                 :      * In general, VACUUM is not prepared for there to be no downlink to a
    2292                 :      * page that it deletes.  This is the main reason why the lack of a
    2293                 :      * downlink can be reported as corruption here.  It's not obvious that an
    2294                 :      * invalid missing downlink can result in wrong answers to queries,
    2295                 :      * though, since index scans that land on the child may end up
    2296                 :      * consistently moving right. The handling of concurrent page splits (and
    2297                 :      * page deletions) within _bt_moveright() cannot distinguish
    2298                 :      * inconsistencies that last for a moment from inconsistencies that are
    2299                 :      * permanent and irrecoverable.
    2300                 :      *
    2301                 :      * VACUUM isn't even prepared to delete pages that have no downlink due to
    2302                 :      * an incomplete page split, but it can detect and reason about that case
    2303                 :      * by design, so it shouldn't be taken to indicate corruption.  See
    2304                 :      * _bt_pagedel() for full details.
    2305                 :      */
    2306 UIC           0 :     if (rightsplit)
    2307                 :     {
    2308 UBC           0 :         ereport(DEBUG1,
    2309                 :                 (errcode(ERRCODE_NO_DATA),
    2310 EUB             :                  errmsg_internal("harmless interrupted page split detected in index \"%s\"",
    2311                 :                                  RelationGetRelationName(state->rel)),
    2312                 :                  errdetail_internal("Block=%u level=%u left sibling=%u page lsn=%X/%X.",
    2313                 :                                     blkno, opaque->btpo_level,
    2314                 :                                     opaque->btpo_prev,
    2315                 :                                     LSN_FORMAT_ARGS(pagelsn))));
    2316 UIC           0 :         return;
    2317                 :     }
    2318 EUB             : 
    2319                 :     /*
    2320                 :      * Page under check is probably the "top parent" of a multi-level page
    2321                 :      * deletion.  We'll need to descend the subtree to make sure that
    2322                 :      * descendant pages are consistent with that, though.
    2323                 :      *
    2324                 :      * If the page (which must be non-ignorable) is a leaf page, then clearly
    2325                 :      * it can't be the top parent.  The lack of a downlink is probably a
    2326                 :      * symptom of a broad problem that could just as easily cause
    2327                 :      * inconsistencies anywhere else.
    2328                 :      */
    2329 UIC           0 :     if (P_ISLEAF(opaque))
    2330               0 :         ereport(ERROR,
    2331 EUB             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    2332                 :                  errmsg("leaf index block lacks downlink in index \"%s\"",
    2333                 :                         RelationGetRelationName(state->rel)),
    2334                 :                  errdetail_internal("Block=%u page lsn=%X/%X.",
    2335                 :                                     blkno,
    2336                 :                                     LSN_FORMAT_ARGS(pagelsn))));
    2337                 : 
    2338                 :     /* Descend from the given page, which is an internal page */
    2339 UIC           0 :     elog(DEBUG1, "checking for interrupted multi-level deletion due to missing downlink in index \"%s\"",
    2340                 :          RelationGetRelationName(state->rel));
    2341 EUB             : 
    2342 UIC           0 :     level = opaque->btpo_level;
    2343               0 :     itemid = PageGetItemIdCareful(state, blkno, page, P_FIRSTDATAKEY(opaque));
    2344 UBC           0 :     itup = (IndexTuple) PageGetItem(page, itemid);
    2345               0 :     childblk = BTreeTupleGetDownLink(itup);
    2346 EUB             :     for (;;)
    2347                 :     {
    2348 UIC           0 :         CHECK_FOR_INTERRUPTS();
    2349                 : 
    2350 UBC           0 :         child = palloc_btree_page(state, childblk);
    2351 UIC           0 :         copaque = BTPageGetOpaque(child);
    2352 EUB             : 
    2353 UBC           0 :         if (P_ISLEAF(copaque))
    2354 UIC           0 :             break;
    2355 EUB             : 
    2356                 :         /* Do an extra sanity check in passing on internal pages */
    2357 UIC           0 :         if (copaque->btpo_level != level - 1)
    2358               0 :             ereport(ERROR,
    2359 EUB             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    2360                 :                      errmsg_internal("downlink points to block in index \"%s\" whose level is not one level down",
    2361                 :                                      RelationGetRelationName(state->rel)),
    2362                 :                      errdetail_internal("Top parent/under check block=%u block pointed to=%u expected level=%u level in pointed to block=%u.",
    2363                 :                                         blkno, childblk,
    2364                 :                                         level - 1, copaque->btpo_level)));
    2365                 : 
    2366 UIC           0 :         level = copaque->btpo_level;
    2367               0 :         itemid = PageGetItemIdCareful(state, childblk, child,
    2368 UBC           0 :                                       P_FIRSTDATAKEY(copaque));
    2369               0 :         itup = (IndexTuple) PageGetItem(child, itemid);
    2370               0 :         childblk = BTreeTupleGetDownLink(itup);
    2371 EUB             :         /* Be slightly more pro-active in freeing this memory, just in case */
    2372 UBC           0 :         pfree(child);
    2373                 :     }
    2374 EUB             : 
    2375                 :     /*
    2376                 :      * Since there cannot be a concurrent VACUUM operation in readonly mode,
    2377                 :      * and since a page has no links within other pages (siblings and parent)
    2378                 :      * once it is marked fully deleted, it should be impossible to land on a
    2379                 :      * fully deleted page.  See bt_child_check() for further details.
    2380                 :      *
    2381                 :      * The bt_child_check() P_ISDELETED() check is repeated here because
    2382                 :      * bt_child_check() does not visit pages reachable through negative
    2383                 :      * infinity items.  Besides, bt_child_check() is unwilling to descend
    2384                 :      * multiple levels.  (The similar bt_child_check() P_ISDELETED() check
    2385                 :      * within bt_check_level_from_leftmost() won't reach the page either,
    2386                 :      * since the leaf's live siblings should have their sibling links updated
    2387                 :      * to bypass the deletion target page when it is marked fully dead.)
    2388                 :      *
    2389                 :      * If this error is raised, it might be due to a previous multi-level page
    2390                 :      * deletion that failed to realize that it wasn't yet safe to mark the
    2391                 :      * leaf page as fully dead.  A "dangling downlink" will still remain when
    2392                 :      * this happens.  The fact that the dangling downlink's page (the leaf's
    2393                 :      * parent/ancestor page) lacked a downlink is incidental.
    2394                 :      */
    2395 UIC           0 :     if (P_ISDELETED(copaque))
    2396               0 :         ereport(ERROR,
    2397 EUB             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    2398                 :                  errmsg_internal("downlink to deleted leaf page found in index \"%s\"",
    2399                 :                                  RelationGetRelationName(state->rel)),
    2400                 :                  errdetail_internal("Top parent/target block=%u leaf block=%u top parent/under check lsn=%X/%X.",
    2401                 :                                     blkno, childblk,
    2402                 :                                     LSN_FORMAT_ARGS(pagelsn))));
    2403                 : 
    2404                 :     /*
    2405                 :      * Iff leaf page is half-dead, its high key top parent link should point
    2406                 :      * to what VACUUM considered to be the top parent page at the instant it
    2407                 :      * was interrupted.  Provided the high key link actually points to the
    2408                 :      * page under check, the missing downlink we detected is consistent with
    2409                 :      * there having been an interrupted multi-level page deletion.  This means
    2410                 :      * that the subtree with the page under check at its root (a page deletion
    2411                 :      * chain) is in a consistent state, enabling VACUUM to resume deleting the
    2412                 :      * entire chain the next time it encounters the half-dead leaf page.
    2413                 :      */
    2414 UIC           0 :     if (P_ISHALFDEAD(copaque) && !P_RIGHTMOST(copaque))
    2415                 :     {
    2416 UBC           0 :         itemid = PageGetItemIdCareful(state, childblk, child, P_HIKEY);
    2417 UIC           0 :         itup = (IndexTuple) PageGetItem(child, itemid);
    2418 UBC           0 :         if (BTreeTupleGetTopParent(itup) == blkno)
    2419               0 :             return;
    2420 EUB             :     }
    2421                 : 
    2422 UIC           0 :     ereport(ERROR,
    2423                 :             (errcode(ERRCODE_INDEX_CORRUPTED),
    2424 EUB             :              errmsg("internal index block lacks downlink in index \"%s\"",
    2425                 :                     RelationGetRelationName(state->rel)),
    2426                 :              errdetail_internal("Block=%u level=%u page lsn=%X/%X.",
    2427                 :                                 blkno, opaque->btpo_level,
    2428                 :                                 LSN_FORMAT_ARGS(pagelsn))));
    2429                 : }
    2430                 : 
    2431                 : /*
    2432                 :  * Per-tuple callback from table_index_build_scan, used to determine if index has
    2433                 :  * all the entries that definitely should have been observed in leaf pages of
    2434                 :  * the target index (that is, all IndexTuples that were fingerprinted by our
    2435                 :  * Bloom filter).  All heapallindexed checks occur here.
    2436                 :  *
    2437                 :  * The redundancy between an index and the table it indexes provides a good
    2438                 :  * opportunity to detect corruption, especially corruption within the table.
    2439                 :  * The high level principle behind the verification performed here is that any
    2440                 :  * IndexTuple that should be in an index following a fresh CREATE INDEX (based
    2441                 :  * on the same index definition) should also have been in the original,
    2442                 :  * existing index, which should have used exactly the same representation
    2443                 :  *
    2444                 :  * Since the overall structure of the index has already been verified, the most
    2445                 :  * likely explanation for error here is a corrupt heap page (could be logical
    2446                 :  * or physical corruption).  Index corruption may still be detected here,
    2447                 :  * though.  Only readonly callers will have verified that left links and right
    2448                 :  * links are in agreement, and so it's possible that a leaf page transposition
    2449                 :  * within index is actually the source of corruption detected here (for
    2450                 :  * !readonly callers).  The checks performed only for readonly callers might
    2451                 :  * more accurately frame the problem as a cross-page invariant issue (this
    2452                 :  * could even be due to recovery not replaying all WAL records).  The !readonly
    2453                 :  * ERROR message raised here includes a HINT about retrying with readonly
    2454                 :  * verification, just in case it's a cross-page invariant issue, though that
    2455                 :  * isn't particularly likely.
    2456                 :  *
    2457                 :  * table_index_build_scan() expects to be able to find the root tuple when a
    2458                 :  * heap-only tuple (the live tuple at the end of some HOT chain) needs to be
    2459                 :  * indexed, in order to replace the actual tuple's TID with the root tuple's
    2460                 :  * TID (which is what we're actually passed back here).  The index build heap
    2461                 :  * scan code will raise an error when a tuple that claims to be the root of the
    2462                 :  * heap-only tuple's HOT chain cannot be located.  This catches cases where the
    2463                 :  * original root item offset/root tuple for a HOT chain indicates (for whatever
    2464                 :  * reason) that the entire HOT chain is dead, despite the fact that the latest
    2465                 :  * heap-only tuple should be indexed.  When this happens, sequential scans may
    2466                 :  * always give correct answers, and all indexes may be considered structurally
    2467                 :  * consistent (i.e. the nbtree structural checks would not detect corruption).
    2468                 :  * It may be the case that only index scans give wrong answers, and yet heap or
    2469                 :  * SLRU corruption is the real culprit.  (While it's true that LP_DEAD bit
    2470                 :  * setting will probably also leave the index in a corrupt state before too
    2471                 :  * long, the problem is nonetheless that there is heap corruption.)
    2472                 :  *
    2473                 :  * Heap-only tuple handling within table_index_build_scan() works in a way that
    2474                 :  * helps us to detect index tuples that contain the wrong values (values that
    2475                 :  * don't match the latest tuple in the HOT chain).  This can happen when there
    2476                 :  * is no superseding index tuple due to a faulty assessment of HOT safety,
    2477                 :  * perhaps during the original CREATE INDEX.  Because the latest tuple's
    2478                 :  * contents are used with the root TID, an error will be raised when a tuple
    2479                 :  * with the same TID but non-matching attribute values is passed back to us.
    2480                 :  * Faulty assessment of HOT-safety was behind at least two distinct CREATE
    2481                 :  * INDEX CONCURRENTLY bugs that made it into stable releases, one of which was
    2482                 :  * undetected for many years.  In short, the same principle that allows a
    2483                 :  * REINDEX to repair corruption when there was an (undetected) broken HOT chain
    2484                 :  * also allows us to detect the corruption in many cases.
    2485                 :  */
    2486                 : static void
    2487 GIC      410615 : bt_tuple_present_callback(Relation index, ItemPointer tid, Datum *values,
    2488                 :                           bool *isnull, bool tupleIsAlive, void *checkstate)
    2489 ECB             : {
    2490 GIC      410615 :     BtreeCheckState *state = (BtreeCheckState *) checkstate;
    2491                 :     IndexTuple  itup,
    2492 ECB             :                 norm;
    2493                 : 
    2494 GIC      410615 :     Assert(state->heapallindexed);
    2495                 : 
    2496 ECB             :     /* Generate a normalized index tuple for fingerprinting */
    2497 GIC      410615 :     itup = index_form_tuple(RelationGetDescr(index), values, isnull);
    2498          410615 :     itup->t_tid = *tid;
    2499 CBC      410615 :     norm = bt_normalize_tuple(state, itup);
    2500 ECB             : 
    2501                 :     /* Probe Bloom filter -- tuple should be present */
    2502 GIC      410615 :     if (bloom_lacks_element(state->filter, (unsigned char *) norm,
    2503          410615 :                             IndexTupleSize(norm)))
    2504 LBC           0 :         ereport(ERROR,
    2505 ECB             :                 (errcode(ERRCODE_DATA_CORRUPTED),
    2506 EUB             :                  errmsg("heap tuple (%u,%u) from table \"%s\" lacks matching index tuple within index \"%s\"",
    2507                 :                         ItemPointerGetBlockNumber(&(itup->t_tid)),
    2508                 :                         ItemPointerGetOffsetNumber(&(itup->t_tid)),
    2509                 :                         RelationGetRelationName(state->heaprel),
    2510                 :                         RelationGetRelationName(state->rel)),
    2511                 :                  !state->readonly
    2512                 :                  ? errhint("Retrying verification using the function bt_index_parent_check() might provide a more specific error.")
    2513                 :                  : 0));
    2514                 : 
    2515 GIC      410615 :     state->heaptuplespresent++;
    2516          410615 :     pfree(itup);
    2517 ECB             :     /* Cannot leak memory here */
    2518 CBC      410615 :     if (norm != itup)
    2519 GIC           1 :         pfree(norm);
    2520 CBC      410615 : }
    2521 ECB             : 
    2522                 : /*
    2523                 :  * Normalize an index tuple for fingerprinting.
    2524                 :  *
    2525                 :  * In general, index tuple formation is assumed to be deterministic by
    2526                 :  * heapallindexed verification, and IndexTuples are assumed immutable.  While
    2527                 :  * the LP_DEAD bit is mutable in leaf pages, that's ItemId metadata, which is
    2528                 :  * not fingerprinted.  Normalization is required to compensate for corner
    2529                 :  * cases where the determinism assumption doesn't quite work.
    2530                 :  *
    2531                 :  * There is currently one such case: index_form_tuple() does not try to hide
    2532                 :  * the source TOAST state of input datums.  The executor applies TOAST
    2533                 :  * compression for heap tuples based on different criteria to the compression
    2534                 :  * applied within btinsert()'s call to index_form_tuple(): it sometimes
    2535                 :  * compresses more aggressively, resulting in compressed heap tuple datums but
    2536                 :  * uncompressed corresponding index tuple datums.  A subsequent heapallindexed
    2537                 :  * verification will get a logically equivalent though bitwise unequal tuple
    2538                 :  * from index_form_tuple().  False positive heapallindexed corruption reports
    2539                 :  * could occur without normalizing away the inconsistency.
    2540                 :  *
    2541                 :  * Returned tuple is often caller's own original tuple.  Otherwise, it is a
    2542                 :  * new representation of caller's original index tuple, palloc()'d in caller's
    2543                 :  * memory context.
    2544                 :  *
    2545                 :  * Note: This routine is not concerned with distinctions about the
    2546                 :  * representation of tuples beyond those that might break heapallindexed
    2547                 :  * verification.  In particular, it won't try to normalize opclass-equal
    2548                 :  * datums with potentially distinct representations (e.g., btree/numeric_ops
    2549                 :  * index datums will not get their display scale normalized-away here).
    2550                 :  * Caller does normalization for non-pivot tuples that have a posting list,
    2551                 :  * since dummy CREATE INDEX callback code generates new tuples with the same
    2552                 :  * normalized representation.
    2553                 :  */
    2554                 : static IndexTuple
    2555 GIC      821272 : bt_normalize_tuple(BtreeCheckState *state, IndexTuple itup)
    2556                 : {
    2557 CBC      821272 :     TupleDesc   tupleDescriptor = RelationGetDescr(state->rel);
    2558                 :     Datum       normalized[INDEX_MAX_KEYS];
    2559 ECB             :     bool        isnull[INDEX_MAX_KEYS];
    2560                 :     bool        toast_free[INDEX_MAX_KEYS];
    2561 GIC      821272 :     bool        formnewtup = false;
    2562                 :     IndexTuple  reformed;
    2563 ECB             :     int         i;
    2564                 : 
    2565                 :     /* Caller should only pass "logical" non-pivot tuples here */
    2566 GIC      821272 :     Assert(!BTreeTupleIsPosting(itup) && !BTreeTupleIsPivot(itup));
    2567                 : 
    2568 ECB             :     /* Easy case: It's immediately clear that tuple has no varlena datums */
    2569 GIC      821272 :     if (!IndexTupleHasVarwidths(itup))
    2570          821270 :         return itup;
    2571 ECB             : 
    2572 CBC           4 :     for (i = 0; i < tupleDescriptor->natts; i++)
    2573                 :     {
    2574 ECB             :         Form_pg_attribute att;
    2575                 : 
    2576 GIC           2 :         att = TupleDescAttr(tupleDescriptor, i);
    2577                 : 
    2578 ECB             :         /* Assume untoasted/already normalized datum initially */
    2579 GIC           2 :         toast_free[i] = false;
    2580               2 :         normalized[i] = index_getattr(itup, att->attnum,
    2581 ECB             :                                       tupleDescriptor,
    2582                 :                                       &isnull[i]);
    2583 GIC           2 :         if (att->attbyval || att->attlen != -1 || isnull[i])
    2584 UIC           0 :             continue;
    2585 ECB             : 
    2586 EUB             :         /*
    2587                 :          * Callers always pass a tuple that could safely be inserted into the
    2588                 :          * index without further processing, so an external varlena header
    2589                 :          * should never be encountered here
    2590                 :          */
    2591 GIC           2 :         if (VARATT_IS_EXTERNAL(DatumGetPointer(normalized[i])))
    2592 UIC           0 :             ereport(ERROR,
    2593 ECB             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    2594 EUB             :                      errmsg("external varlena datum in tuple that references heap row (%u,%u) in index \"%s\"",
    2595                 :                             ItemPointerGetBlockNumber(&(itup->t_tid)),
    2596                 :                             ItemPointerGetOffsetNumber(&(itup->t_tid)),
    2597                 :                             RelationGetRelationName(state->rel))));
    2598 GIC           2 :         else if (VARATT_IS_COMPRESSED(DatumGetPointer(normalized[i])))
    2599                 :         {
    2600 CBC           1 :             formnewtup = true;
    2601 GIC           1 :             normalized[i] = PointerGetDatum(PG_DETOAST_DATUM(normalized[i]));
    2602 CBC           1 :             toast_free[i] = true;
    2603 ECB             :         }
    2604                 :     }
    2605                 : 
    2606                 :     /* Easier case: Tuple has varlena datums, none of which are compressed */
    2607 GIC           2 :     if (!formnewtup)
    2608               1 :         return itup;
    2609 ECB             : 
    2610                 :     /*
    2611                 :      * Hard case: Tuple had compressed varlena datums that necessitate
    2612                 :      * creating normalized version of the tuple from uncompressed input datums
    2613                 :      * (normalized input datums).  This is rather naive, but shouldn't be
    2614                 :      * necessary too often.
    2615                 :      *
    2616                 :      * Note that we rely on deterministic index_form_tuple() TOAST compression
    2617                 :      * of normalized input.
    2618                 :      */
    2619 GIC           1 :     reformed = index_form_tuple(tupleDescriptor, normalized, isnull);
    2620               1 :     reformed->t_tid = itup->t_tid;
    2621 ECB             : 
    2622                 :     /* Cannot leak memory here */
    2623 GIC           2 :     for (i = 0; i < tupleDescriptor->natts; i++)
    2624               1 :         if (toast_free[i])
    2625 CBC           1 :             pfree(DatumGetPointer(normalized[i]));
    2626 ECB             : 
    2627 CBC           1 :     return reformed;
    2628                 : }
    2629 ECB             : 
    2630                 : /*
    2631                 :  * Produce palloc()'d "plain" tuple for nth posting list entry/TID.
    2632                 :  *
    2633                 :  * In general, deduplication is not supposed to change the logical contents of
    2634                 :  * an index.  Multiple index tuples are merged together into one equivalent
    2635                 :  * posting list index tuple when convenient.
    2636                 :  *
    2637                 :  * heapallindexed verification must normalize-away this variation in
    2638                 :  * representation by converting posting list tuples into two or more "plain"
    2639                 :  * tuples.  Each tuple must be fingerprinted separately -- there must be one
    2640                 :  * tuple for each corresponding Bloom filter probe during the heap scan.
    2641                 :  *
    2642                 :  * Note: Caller still needs to call bt_normalize_tuple() with returned tuple.
    2643                 :  */
    2644                 : static inline IndexTuple
    2645 GIC        9369 : bt_posting_plain_tuple(IndexTuple itup, int n)
    2646                 : {
    2647 CBC        9369 :     Assert(BTreeTupleIsPosting(itup));
    2648                 : 
    2649 ECB             :     /* Returns non-posting-list tuple */
    2650 GIC        9369 :     return _bt_form_posting(itup, BTreeTupleGetPostingN(itup, n), 1);
    2651                 : }
    2652 ECB             : 
    2653                 : /*
    2654                 :  * Search for itup in index, starting from fast root page.  itup must be a
    2655                 :  * non-pivot tuple.  This is only supported with heapkeyspace indexes, since
    2656                 :  * we rely on having fully unique keys to find a match with only a single
    2657                 :  * visit to a leaf page, barring an interrupted page split, where we may have
    2658                 :  * to move right.  (A concurrent page split is impossible because caller must
    2659                 :  * be readonly caller.)
    2660                 :  *
    2661                 :  * This routine can detect very subtle transitive consistency issues across
    2662                 :  * more than one level of the tree.  Leaf pages all have a high key (even the
    2663                 :  * rightmost page has a conceptual positive infinity high key), but not a low
    2664                 :  * key.  Their downlink in parent is a lower bound, which along with the high
    2665                 :  * key is almost enough to detect every possible inconsistency.  A downlink
    2666                 :  * separator key value won't always be available from parent, though, because
    2667                 :  * the first items of internal pages are negative infinity items, truncated
    2668                 :  * down to zero attributes during internal page splits.  While it's true that
    2669                 :  * bt_child_check() and the high key check can detect most imaginable key
    2670                 :  * space problems, there are remaining problems it won't detect with non-pivot
    2671                 :  * tuples in cousin leaf pages.  Starting a search from the root for every
    2672                 :  * existing leaf tuple detects small inconsistencies in upper levels of the
    2673                 :  * tree that cannot be detected any other way.  (Besides all this, this is
    2674                 :  * probably also useful as a direct test of the code used by index scans
    2675                 :  * themselves.)
    2676                 :  */
    2677                 : static bool
    2678 GIC      200041 : bt_rootdescend(BtreeCheckState *state, IndexTuple itup)
    2679                 : {
    2680 ECB             :     BTScanInsert key;
    2681                 :     BTStack     stack;
    2682                 :     Buffer      lbuf;
    2683                 :     bool        exists;
    2684                 : 
    2685 GNC      200041 :     key = _bt_mkscankey(state->rel, state->heaprel, itup);
    2686 GIC      200041 :     Assert(key->heapkeyspace && key->scantid != NULL);
    2687 ECB             : 
    2688                 :     /*
    2689                 :      * Search from root.
    2690                 :      *
    2691                 :      * Ideally, we would arrange to only move right within _bt_search() when
    2692                 :      * an interrupted page split is detected (i.e. when the incomplete split
    2693                 :      * bit is found to be set), but for now we accept the possibility that
    2694                 :      * that could conceal an inconsistency.
    2695                 :      */
    2696 GIC      200041 :     Assert(state->readonly && state->rootdescend);
    2697          200041 :     exists = false;
    2698 GNC      200041 :     stack = _bt_search(state->rel, state->heaprel, key, &lbuf, BT_READ, NULL);
    2699 ECB             : 
    2700 CBC      200041 :     if (BufferIsValid(lbuf))
    2701                 :     {
    2702 ECB             :         BTInsertStateData insertstate;
    2703                 :         OffsetNumber offnum;
    2704                 :         Page        page;
    2705                 : 
    2706 GIC      200041 :         insertstate.itup = itup;
    2707          200041 :         insertstate.itemsz = MAXALIGN(IndexTupleSize(itup));
    2708 CBC      200041 :         insertstate.itup_key = key;
    2709          200041 :         insertstate.postingoff = 0;
    2710          200041 :         insertstate.bounds_valid = false;
    2711          200041 :         insertstate.buf = lbuf;
    2712 ECB             : 
    2713                 :         /* Get matching tuple on leaf page */
    2714 GIC      200041 :         offnum = _bt_binsrch_insert(state->rel, &insertstate);
    2715                 :         /* Compare first >= matching item on leaf page, if any */
    2716 CBC      200041 :         page = BufferGetPage(lbuf);
    2717                 :         /* Should match on first heap TID when tuple has a posting list */
    2718          200041 :         if (offnum <= PageGetMaxOffsetNumber(page) &&
    2719 GIC      400082 :             insertstate.postingoff <= 0 &&
    2720 CBC      200041 :             _bt_compare(state->rel, key, page, offnum) == 0)
    2721          200041 :             exists = true;
    2722          200041 :         _bt_relbuf(state->rel, lbuf);
    2723 ECB             :     }
    2724                 : 
    2725 GIC      200041 :     _bt_freestack(stack);
    2726          200041 :     pfree(key);
    2727 ECB             : 
    2728 CBC      200041 :     return exists;
    2729                 : }
    2730 ECB             : 
    2731                 : /*
    2732                 :  * Is particular offset within page (whose special state is passed by caller)
    2733                 :  * the page negative-infinity item?
    2734                 :  *
    2735                 :  * As noted in comments above _bt_compare(), there is special handling of the
    2736                 :  * first data item as a "negative infinity" item.  The hard-coding within
    2737                 :  * _bt_compare() makes comparing this item for the purposes of verification
    2738                 :  * pointless at best, since the IndexTuple only contains a valid TID (a
    2739                 :  * reference TID to child page).
    2740                 :  */
    2741                 : static inline bool
    2742 GIC     2075457 : offset_is_negative_infinity(BTPageOpaque opaque, OffsetNumber offset)
    2743                 : {
    2744 ECB             :     /*
    2745                 :      * For internal pages only, the first item after high key, if any, is
    2746                 :      * negative infinity item.  Internal pages always have a negative infinity
    2747                 :      * item, whereas leaf pages never have one.  This implies that negative
    2748                 :      * infinity item is either first or second line item, or there is none
    2749                 :      * within page.
    2750                 :      *
    2751                 :      * Negative infinity items are a special case among pivot tuples.  They
    2752                 :      * always have zero attributes, while all other pivot tuples always have
    2753                 :      * nkeyatts attributes.
    2754                 :      *
    2755                 :      * Right-most pages don't have a high key, but could be said to
    2756                 :      * conceptually have a "positive infinity" high key.  Thus, there is a
    2757                 :      * symmetry between down link items in parent pages, and high keys in
    2758                 :      * children.  Together, they represent the part of the key space that
    2759                 :      * belongs to each page in the index.  For example, all children of the
    2760                 :      * root page will have negative infinity as a lower bound from root
    2761                 :      * negative infinity downlink, and positive infinity as an upper bound
    2762                 :      * (implicitly, from "imaginary" positive infinity high key in root).
    2763                 :      */
    2764 GIC     2075457 :     return !P_ISLEAF(opaque) && offset == P_FIRSTDATAKEY(opaque);
    2765                 : }
    2766 ECB             : 
    2767                 : /*
    2768                 :  * Does the invariant hold that the key is strictly less than a given upper
    2769                 :  * bound offset item?
    2770                 :  *
    2771                 :  * Verifies line pointer on behalf of caller.
    2772                 :  *
    2773                 :  * If this function returns false, convention is that caller throws error due
    2774                 :  * to corruption.
    2775                 :  */
    2776                 : static inline bool
    2777 GIC     1568987 : invariant_l_offset(BtreeCheckState *state, BTScanInsert key,
    2778                 :                    OffsetNumber upperbound)
    2779 ECB             : {
    2780                 :     ItemId      itemid;
    2781                 :     int32       cmp;
    2782                 : 
    2783 GIC     1568987 :     Assert(key->pivotsearch);
    2784                 : 
    2785 ECB             :     /* Verify line pointer before checking tuple */
    2786 GIC     1568987 :     itemid = PageGetItemIdCareful(state, state->targetblock, state->target,
    2787                 :                                   upperbound);
    2788 ECB             :     /* pg_upgrade'd indexes may legally have equal sibling tuples */
    2789 GIC     1568987 :     if (!key->heapkeyspace)
    2790 UIC           0 :         return invariant_leq_offset(state, key, upperbound);
    2791 ECB             : 
    2792 GBC     1568987 :     cmp = _bt_compare(state->rel, key, state->target, upperbound);
    2793                 : 
    2794 ECB             :     /*
    2795                 :      * _bt_compare() is capable of determining that a scankey with a
    2796                 :      * filled-out attribute is greater than pivot tuples where the comparison
    2797                 :      * is resolved at a truncated attribute (value of attribute in pivot is
    2798                 :      * minus infinity).  However, it is not capable of determining that a
    2799                 :      * scankey is _less than_ a tuple on the basis of a comparison resolved at
    2800                 :      * _scankey_ minus infinity attribute.  Complete an extra step to simulate
    2801                 :      * having minus infinity values for omitted scankey attribute(s).
    2802                 :      */
    2803 GIC     1568987 :     if (cmp == 0)
    2804                 :     {
    2805 ECB             :         BTPageOpaque topaque;
    2806                 :         IndexTuple  ritup;
    2807                 :         int         uppnkeyatts;
    2808                 :         ItemPointer rheaptid;
    2809                 :         bool        nonpivot;
    2810                 : 
    2811 UIC           0 :         ritup = (IndexTuple) PageGetItem(state->target, itemid);
    2812               0 :         topaque = BTPageGetOpaque(state->target);
    2813 UBC           0 :         nonpivot = P_ISLEAF(topaque) && upperbound >= P_FIRSTDATAKEY(topaque);
    2814 EUB             : 
    2815                 :         /* Get number of keys + heap TID for item to the right */
    2816 UIC           0 :         uppnkeyatts = BTreeTupleGetNKeyAtts(ritup, state->rel);
    2817               0 :         rheaptid = BTreeTupleGetHeapTIDCareful(state, ritup, nonpivot);
    2818 EUB             : 
    2819                 :         /* Heap TID is tiebreaker key attribute */
    2820 UIC           0 :         if (key->keysz == uppnkeyatts)
    2821               0 :             return key->scantid == NULL && rheaptid != NULL;
    2822 EUB             : 
    2823 UBC           0 :         return key->keysz < uppnkeyatts;
    2824                 :     }
    2825 EUB             : 
    2826 GIC     1568987 :     return cmp < 0;
    2827                 : }
    2828 ECB             : 
    2829                 : /*
    2830                 :  * Does the invariant hold that the key is less than or equal to a given upper
    2831                 :  * bound offset item?
    2832                 :  *
    2833                 :  * Caller should have verified that upperbound's line pointer is consistent
    2834                 :  * using PageGetItemIdCareful() call.
    2835                 :  *
    2836                 :  * If this function returns false, convention is that caller throws error due
    2837                 :  * to corruption.
    2838                 :  */
    2839                 : static inline bool
    2840 GIC     1450460 : invariant_leq_offset(BtreeCheckState *state, BTScanInsert key,
    2841                 :                      OffsetNumber upperbound)
    2842 ECB             : {
    2843                 :     int32       cmp;
    2844                 : 
    2845 GIC     1450460 :     Assert(key->pivotsearch);
    2846                 : 
    2847 CBC     1450460 :     cmp = _bt_compare(state->rel, key, state->target, upperbound);
    2848                 : 
    2849         1450460 :     return cmp <= 0;
    2850                 : }
    2851 ECB             : 
    2852                 : /*
    2853                 :  * Does the invariant hold that the key is strictly greater than a given lower
    2854                 :  * bound offset item?
    2855                 :  *
    2856                 :  * Caller should have verified that lowerbound's line pointer is consistent
    2857                 :  * using PageGetItemIdCareful() call.
    2858                 :  *
    2859                 :  * If this function returns false, convention is that caller throws error due
    2860                 :  * to corruption.
    2861                 :  */
    2862                 : static inline bool
    2863 GIC        5155 : invariant_g_offset(BtreeCheckState *state, BTScanInsert key,
    2864                 :                    OffsetNumber lowerbound)
    2865 ECB             : {
    2866                 :     int32       cmp;
    2867                 : 
    2868 GIC        5155 :     Assert(key->pivotsearch);
    2869                 : 
    2870 CBC        5155 :     cmp = _bt_compare(state->rel, key, state->target, lowerbound);
    2871                 : 
    2872 ECB             :     /* pg_upgrade'd indexes may legally have equal sibling tuples */
    2873 GIC        5155 :     if (!key->heapkeyspace)
    2874 UIC           0 :         return cmp >= 0;
    2875 ECB             : 
    2876 EUB             :     /*
    2877                 :      * No need to consider the possibility that scankey has attributes that we
    2878                 :      * need to force to be interpreted as negative infinity.  _bt_compare() is
    2879                 :      * able to determine that scankey is greater than negative infinity.  The
    2880                 :      * distinction between "==" and "<" isn't interesting here, since
    2881                 :      * corruption is indicated either way.
    2882                 :      */
    2883 GIC        5155 :     return cmp > 0;
    2884                 : }
    2885 ECB             : 
    2886                 : /*
    2887                 :  * Does the invariant hold that the key is strictly less than a given upper
    2888                 :  * bound offset item, with the offset relating to a caller-supplied page that
    2889                 :  * is not the current target page?
    2890                 :  *
    2891                 :  * Caller's non-target page is a child page of the target, checked as part of
    2892                 :  * checking a property of the target page (i.e. the key comes from the
    2893                 :  * target).  Verifies line pointer on behalf of caller.
    2894                 :  *
    2895                 :  * If this function returns false, convention is that caller throws error due
    2896                 :  * to corruption.
    2897                 :  */
    2898                 : static inline bool
    2899 GIC      498218 : invariant_l_nontarget_offset(BtreeCheckState *state, BTScanInsert key,
    2900                 :                              BlockNumber nontargetblock, Page nontarget,
    2901 ECB             :                              OffsetNumber upperbound)
    2902                 : {
    2903                 :     ItemId      itemid;
    2904                 :     int32       cmp;
    2905                 : 
    2906 GIC      498218 :     Assert(key->pivotsearch);
    2907                 : 
    2908 ECB             :     /* Verify line pointer before checking tuple */
    2909 GIC      498218 :     itemid = PageGetItemIdCareful(state, nontargetblock, nontarget,
    2910                 :                                   upperbound);
    2911 CBC      498218 :     cmp = _bt_compare(state->rel, key, nontarget, upperbound);
    2912                 : 
    2913 ECB             :     /* pg_upgrade'd indexes may legally have equal sibling tuples */
    2914 GIC      498218 :     if (!key->heapkeyspace)
    2915 UIC           0 :         return cmp <= 0;
    2916 ECB             : 
    2917 EUB             :     /* See invariant_l_offset() for an explanation of this extra step */
    2918 GIC      498218 :     if (cmp == 0)
    2919                 :     {
    2920 ECB             :         IndexTuple  child;
    2921                 :         int         uppnkeyatts;
    2922                 :         ItemPointer childheaptid;
    2923                 :         BTPageOpaque copaque;
    2924                 :         bool        nonpivot;
    2925                 : 
    2926 GIC        1584 :         child = (IndexTuple) PageGetItem(nontarget, itemid);
    2927            1584 :         copaque = BTPageGetOpaque(nontarget);
    2928 CBC        1584 :         nonpivot = P_ISLEAF(copaque) && upperbound >= P_FIRSTDATAKEY(copaque);
    2929 ECB             : 
    2930                 :         /* Get number of keys + heap TID for child/non-target item */
    2931 GIC        1584 :         uppnkeyatts = BTreeTupleGetNKeyAtts(child, state->rel);
    2932            1584 :         childheaptid = BTreeTupleGetHeapTIDCareful(state, child, nonpivot);
    2933 ECB             : 
    2934                 :         /* Heap TID is tiebreaker key attribute */
    2935 GIC        1584 :         if (key->keysz == uppnkeyatts)
    2936            1584 :             return key->scantid == NULL && childheaptid != NULL;
    2937 ECB             : 
    2938 LBC           0 :         return key->keysz < uppnkeyatts;
    2939                 :     }
    2940 EUB             : 
    2941 GIC      496634 :     return cmp < 0;
    2942                 : }
    2943 ECB             : 
    2944                 : /*
    2945                 :  * Given a block number of a B-Tree page, return page in palloc()'d memory.
    2946                 :  * While at it, perform some basic checks of the page.
    2947                 :  *
    2948                 :  * There is never an attempt to get a consistent view of multiple pages using
    2949                 :  * multiple concurrent buffer locks; in general, we only acquire a single pin
    2950                 :  * and buffer lock at a time, which is often all that the nbtree code requires.
    2951                 :  * (Actually, bt_recheck_sibling_links couples buffer locks, which is the only
    2952                 :  * exception to this general rule.)
    2953                 :  *
    2954                 :  * Operating on a copy of the page is useful because it prevents control
    2955                 :  * getting stuck in an uninterruptible state when an underlying operator class
    2956                 :  * misbehaves.
    2957                 :  */
    2958                 : static Page
    2959 GIC       16494 : palloc_btree_page(BtreeCheckState *state, BlockNumber blocknum)
    2960                 : {
    2961 ECB             :     Buffer      buffer;
    2962                 :     Page        page;
    2963                 :     BTPageOpaque opaque;
    2964                 :     OffsetNumber maxoffset;
    2965                 : 
    2966 GIC       16494 :     page = palloc(BLCKSZ);
    2967                 : 
    2968 ECB             :     /*
    2969                 :      * We copy the page into local storage to avoid holding pin on the buffer
    2970                 :      * longer than we must.
    2971                 :      */
    2972 GIC       16494 :     buffer = ReadBufferExtended(state->rel, MAIN_FORKNUM, blocknum, RBM_NORMAL,
    2973                 :                                 state->checkstrategy);
    2974 CBC       16484 :     LockBuffer(buffer, BT_READ);
    2975                 : 
    2976 ECB             :     /*
    2977                 :      * Perform the same basic sanity checking that nbtree itself performs for
    2978                 :      * every page:
    2979                 :      */
    2980 GIC       16484 :     _bt_checkpage(state->rel, buffer);
    2981                 : 
    2982 ECB             :     /* Only use copy of page in palloc()'d memory */
    2983 GIC       16484 :     memcpy(page, BufferGetPage(buffer), BLCKSZ);
    2984           16484 :     UnlockReleaseBuffer(buffer);
    2985 ECB             : 
    2986 CBC       16484 :     opaque = BTPageGetOpaque(page);
    2987                 : 
    2988           16484 :     if (P_ISMETA(opaque) && blocknum != BTREE_METAPAGE)
    2989 UIC           0 :         ereport(ERROR,
    2990 ECB             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    2991 EUB             :                  errmsg("invalid meta page found at block %u in index \"%s\"",
    2992                 :                         blocknum, RelationGetRelationName(state->rel))));
    2993                 : 
    2994                 :     /* Check page from block that ought to be meta page */
    2995 GIC       16484 :     if (blocknum == BTREE_METAPAGE)
    2996                 :     {
    2997 CBC        2862 :         BTMetaPageData *metad = BTPageGetMeta(page);
    2998                 : 
    2999            2862 :         if (!P_ISMETA(opaque) ||
    3000 GIC        2862 :             metad->btm_magic != BTREE_MAGIC)
    3001 LBC           0 :             ereport(ERROR,
    3002 ECB             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    3003 EUB             :                      errmsg("index \"%s\" meta page is corrupt",
    3004                 :                             RelationGetRelationName(state->rel))));
    3005                 : 
    3006 GIC        2862 :         if (metad->btm_version < BTREE_MIN_VERSION ||
    3007            2862 :             metad->btm_version > BTREE_VERSION)
    3008 LBC           0 :             ereport(ERROR,
    3009 ECB             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    3010 EUB             :                      errmsg("version mismatch in index \"%s\": file version %d, "
    3011                 :                             "current version %d, minimum supported version %d",
    3012                 :                             RelationGetRelationName(state->rel),
    3013                 :                             metad->btm_version, BTREE_VERSION,
    3014                 :                             BTREE_MIN_VERSION)));
    3015                 : 
    3016                 :         /* Finished with metapage checks */
    3017 GIC        2862 :         return page;
    3018                 :     }
    3019 ECB             : 
    3020                 :     /*
    3021                 :      * Deleted pages that still use the old 32-bit XID representation have no
    3022                 :      * sane "level" field because they type pun the field, but all other pages
    3023                 :      * (including pages deleted on Postgres 14+) have a valid value.
    3024                 :      */
    3025 GIC       13622 :     if (!P_ISDELETED(opaque) || P_HAS_FULLXID(opaque))
    3026                 :     {
    3027 ECB             :         /* Okay, no reason not to trust btpo_level field from page */
    3028                 : 
    3029 GIC       13622 :         if (P_ISLEAF(opaque) && opaque->btpo_level != 0)
    3030 UIC           0 :             ereport(ERROR,
    3031 ECB             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    3032 EUB             :                      errmsg_internal("invalid leaf page level %u for block %u in index \"%s\"",
    3033                 :                                      opaque->btpo_level, blocknum,
    3034                 :                                      RelationGetRelationName(state->rel))));
    3035                 : 
    3036 GIC       13622 :         if (!P_ISLEAF(opaque) && opaque->btpo_level == 0)
    3037 UIC           0 :             ereport(ERROR,
    3038 ECB             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    3039 EUB             :                      errmsg_internal("invalid internal page level 0 for block %u in index \"%s\"",
    3040                 :                                      blocknum,
    3041                 :                                      RelationGetRelationName(state->rel))));
    3042                 :     }
    3043                 : 
    3044                 :     /*
    3045                 :      * Sanity checks for number of items on page.
    3046                 :      *
    3047                 :      * As noted at the beginning of _bt_binsrch(), an internal page must have
    3048                 :      * children, since there must always be a negative infinity downlink
    3049                 :      * (there may also be a highkey).  In the case of non-rightmost leaf
    3050                 :      * pages, there must be at least a highkey.  The exceptions are deleted
    3051                 :      * pages, which contain no items.
    3052                 :      *
    3053                 :      * This is correct when pages are half-dead, since internal pages are
    3054                 :      * never half-dead, and leaf pages must have a high key when half-dead
    3055                 :      * (the rightmost page can never be deleted).  It's also correct with
    3056                 :      * fully deleted pages: _bt_unlink_halfdead_page() doesn't change anything
    3057                 :      * about the target page other than setting the page as fully dead, and
    3058                 :      * setting its xact field.  In particular, it doesn't change the sibling
    3059                 :      * links in the deletion target itself, since they're required when index
    3060                 :      * scans land on the deletion target, and then need to move right (or need
    3061                 :      * to move left, in the case of backward index scans).
    3062                 :      */
    3063 GIC       13622 :     maxoffset = PageGetMaxOffsetNumber(page);
    3064           13622 :     if (maxoffset > MaxIndexTuplesPerPage)
    3065 LBC           0 :         ereport(ERROR,
    3066 ECB             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3067 EUB             :                  errmsg("Number of items on block %u of index \"%s\" exceeds MaxIndexTuplesPerPage (%u)",
    3068                 :                         blocknum, RelationGetRelationName(state->rel),
    3069                 :                         MaxIndexTuplesPerPage)));
    3070                 : 
    3071 GIC       13622 :     if (!P_ISLEAF(opaque) && !P_ISDELETED(opaque) && maxoffset < P_FIRSTDATAKEY(opaque))
    3072 UIC           0 :         ereport(ERROR,
    3073 ECB             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3074 EUB             :                  errmsg("internal block %u in index \"%s\" lacks high key and/or at least one downlink",
    3075                 :                         blocknum, RelationGetRelationName(state->rel))));
    3076                 : 
    3077 GIC       13622 :     if (P_ISLEAF(opaque) && !P_ISDELETED(opaque) && !P_RIGHTMOST(opaque) && maxoffset < P_HIKEY)
    3078 UIC           0 :         ereport(ERROR,
    3079 ECB             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3080 EUB             :                  errmsg("non-rightmost leaf block %u in index \"%s\" lacks high key item",
    3081                 :                         blocknum, RelationGetRelationName(state->rel))));
    3082                 : 
    3083                 :     /*
    3084                 :      * In general, internal pages are never marked half-dead, except on
    3085                 :      * versions of Postgres prior to 9.4, where it can be valid transient
    3086                 :      * state.  This state is nonetheless treated as corruption by VACUUM on
    3087                 :      * from version 9.4 on, so do the same here.  See _bt_pagedel() for full
    3088                 :      * details.
    3089                 :      */
    3090 GIC       13622 :     if (!P_ISLEAF(opaque) && P_ISHALFDEAD(opaque))
    3091 UIC           0 :         ereport(ERROR,
    3092 ECB             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3093 EUB             :                  errmsg("internal page block %u in index \"%s\" is half-dead",
    3094                 :                         blocknum, RelationGetRelationName(state->rel)),
    3095                 :                  errhint("This can be caused by an interrupted VACUUM in version 9.3 or older, before upgrade. Please REINDEX it.")));
    3096                 : 
    3097                 :     /*
    3098                 :      * Check that internal pages have no garbage items, and that no page has
    3099                 :      * an invalid combination of deletion-related page level flags
    3100                 :      */
    3101 GIC       13622 :     if (!P_ISLEAF(opaque) && P_HAS_GARBAGE(opaque))
    3102 UIC           0 :         ereport(ERROR,
    3103 ECB             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3104 EUB             :                  errmsg_internal("internal page block %u in index \"%s\" has garbage items",
    3105                 :                                  blocknum, RelationGetRelationName(state->rel))));
    3106                 : 
    3107 GIC       13622 :     if (P_HAS_FULLXID(opaque) && !P_ISDELETED(opaque))
    3108 UIC           0 :         ereport(ERROR,
    3109 ECB             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3110 EUB             :                  errmsg_internal("full transaction id page flag appears in non-deleted block %u in index \"%s\"",
    3111                 :                                  blocknum, RelationGetRelationName(state->rel))));
    3112                 : 
    3113 GIC       13622 :     if (P_ISDELETED(opaque) && P_ISHALFDEAD(opaque))
    3114 UIC           0 :         ereport(ERROR,
    3115 ECB             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3116 EUB             :                  errmsg_internal("deleted page block %u in index \"%s\" is half-dead",
    3117                 :                                  blocknum, RelationGetRelationName(state->rel))));
    3118                 : 
    3119 GIC       13622 :     return page;
    3120                 : }
    3121 ECB             : 
    3122                 : /*
    3123                 :  * _bt_mkscankey() wrapper that automatically prevents insertion scankey from
    3124                 :  * being considered greater than the pivot tuple that its values originated
    3125                 :  * from (or some other identical pivot tuple) in the common case where there
    3126                 :  * are truncated/minus infinity attributes.  Without this extra step, there
    3127                 :  * are forms of corruption that amcheck could theoretically fail to report.
    3128                 :  *
    3129                 :  * For example, invariant_g_offset() might miss a cross-page invariant failure
    3130                 :  * on an internal level if the scankey built from the first item on the
    3131                 :  * target's right sibling page happened to be equal to (not greater than) the
    3132                 :  * last item on target page.  The !pivotsearch tiebreaker in _bt_compare()
    3133                 :  * might otherwise cause amcheck to assume (rather than actually verify) that
    3134                 :  * the scankey is greater.
    3135                 :  */
    3136                 : static inline BTScanInsert
    3137 GNC     1580447 : bt_mkscankey_pivotsearch(Relation rel, Relation heaprel, IndexTuple itup)
    3138                 : {
    3139 ECB             :     BTScanInsert skey;
    3140                 : 
    3141 GNC     1580447 :     skey = _bt_mkscankey(rel, heaprel, itup);
    3142 GIC     1580447 :     skey->pivotsearch = true;
    3143 ECB             : 
    3144 CBC     1580447 :     return skey;
    3145                 : }
    3146 ECB             : 
    3147                 : /*
    3148                 :  * PageGetItemId() wrapper that validates returned line pointer.
    3149                 :  *
    3150                 :  * Buffer page/page item access macros generally trust that line pointers are
    3151                 :  * not corrupt, which might cause problems for verification itself.  For
    3152                 :  * example, there is no bounds checking in PageGetItem().  Passing it a
    3153                 :  * corrupt line pointer can cause it to return a tuple/pointer that is unsafe
    3154                 :  * to dereference.
    3155                 :  *
    3156                 :  * Validating line pointers before tuples avoids undefined behavior and
    3157                 :  * assertion failures with corrupt indexes, making the verification process
    3158                 :  * more robust and predictable.
    3159                 :  */
    3160                 : static ItemId
    3161 GIC     3661462 : PageGetItemIdCareful(BtreeCheckState *state, BlockNumber block, Page page,
    3162                 :                      OffsetNumber offset)
    3163 ECB             : {
    3164 GIC     3661462 :     ItemId      itemid = PageGetItemId(page, offset);
    3165                 : 
    3166 CBC     3661462 :     if (ItemIdGetOffset(itemid) + ItemIdGetLength(itemid) >
    3167                 :         BLCKSZ - MAXALIGN(sizeof(BTPageOpaqueData)))
    3168 LBC           0 :         ereport(ERROR,
    3169                 :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3170 EUB             :                  errmsg("line pointer points past end of tuple space in index \"%s\"",
    3171                 :                         RelationGetRelationName(state->rel)),
    3172                 :                  errdetail_internal("Index tid=(%u,%u) lp_off=%u, lp_len=%u lp_flags=%u.",
    3173                 :                                     block, offset, ItemIdGetOffset(itemid),
    3174                 :                                     ItemIdGetLength(itemid),
    3175                 :                                     ItemIdGetFlags(itemid))));
    3176                 : 
    3177                 :     /*
    3178                 :      * Verify that line pointer isn't LP_REDIRECT or LP_UNUSED, since nbtree
    3179                 :      * never uses either.  Verify that line pointer has storage, too, since
    3180                 :      * even LP_DEAD items should within nbtree.
    3181                 :      */
    3182 GIC     3661462 :     if (ItemIdIsRedirected(itemid) || !ItemIdIsUsed(itemid) ||
    3183         3661462 :         ItemIdGetLength(itemid) == 0)
    3184 LBC           0 :         ereport(ERROR,
    3185 ECB             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3186 EUB             :                  errmsg("invalid line pointer storage in index \"%s\"",
    3187                 :                         RelationGetRelationName(state->rel)),
    3188                 :                  errdetail_internal("Index tid=(%u,%u) lp_off=%u, lp_len=%u lp_flags=%u.",
    3189                 :                                     block, offset, ItemIdGetOffset(itemid),
    3190                 :                                     ItemIdGetLength(itemid),
    3191                 :                                     ItemIdGetFlags(itemid))));
    3192                 : 
    3193 GIC     3661462 :     return itemid;
    3194                 : }
    3195 ECB             : 
    3196                 : /*
    3197                 :  * BTreeTupleGetHeapTID() wrapper that enforces that a heap TID is present in
    3198                 :  * cases where that is mandatory (i.e. for non-pivot tuples)
    3199                 :  */
    3200                 : static inline ItemPointer
    3201 GIC        1584 : BTreeTupleGetHeapTIDCareful(BtreeCheckState *state, IndexTuple itup,
    3202                 :                             bool nonpivot)
    3203 ECB             : {
    3204                 :     ItemPointer htid;
    3205                 : 
    3206                 :     /*
    3207                 :      * Caller determines whether this is supposed to be a pivot or non-pivot
    3208                 :      * tuple using page type and item offset number.  Verify that tuple
    3209                 :      * metadata agrees with this.
    3210                 :      */
    3211 GIC        1584 :     Assert(state->heapkeyspace);
    3212            1584 :     if (BTreeTupleIsPivot(itup) && nonpivot)
    3213 LBC           0 :         ereport(ERROR,
    3214 ECB             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3215 EUB             :                  errmsg_internal("block %u or its right sibling block or child block in index \"%s\" has unexpected pivot tuple",
    3216                 :                                  state->targetblock,
    3217                 :                                  RelationGetRelationName(state->rel))));
    3218                 : 
    3219 GIC        1584 :     if (!BTreeTupleIsPivot(itup) && !nonpivot)
    3220 UIC           0 :         ereport(ERROR,
    3221 ECB             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3222 EUB             :                  errmsg_internal("block %u or its right sibling block or child block in index \"%s\" has unexpected non-pivot tuple",
    3223                 :                                  state->targetblock,
    3224                 :                                  RelationGetRelationName(state->rel))));
    3225                 : 
    3226 GIC        1584 :     htid = BTreeTupleGetHeapTID(itup);
    3227            1584 :     if (!ItemPointerIsValid(htid) && nonpivot)
    3228 LBC           0 :         ereport(ERROR,
    3229 ECB             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3230 EUB             :                  errmsg("block %u or its right sibling block or child block in index \"%s\" contains non-pivot tuple that lacks a heap TID",
    3231                 :                         state->targetblock,
    3232                 :                         RelationGetRelationName(state->rel))));
    3233                 : 
    3234 GIC        1584 :     return htid;
    3235                 : }
    3236 ECB             : 
    3237                 : /*
    3238                 :  * Return the "pointed to" TID for itup, which is used to generate a
    3239                 :  * descriptive error message.  itup must be a "data item" tuple (it wouldn't
    3240                 :  * make much sense to call here with a high key tuple, since there won't be a
    3241                 :  * valid downlink/block number to display).
    3242                 :  *
    3243                 :  * Returns either a heap TID (which will be the first heap TID in posting list
    3244                 :  * if itup is posting list tuple), or a TID that contains downlink block
    3245                 :  * number, plus some encoded metadata (e.g., the number of attributes present
    3246                 :  * in itup).
    3247                 :  */
    3248                 : static inline ItemPointer
    3249 UIC           0 : BTreeTupleGetPointsToTID(IndexTuple itup)
    3250                 : {
    3251 EUB             :     /*
    3252                 :      * Rely on the assumption that !heapkeyspace internal page data items will
    3253                 :      * correctly return TID with downlink here -- BTreeTupleGetHeapTID() won't
    3254                 :      * recognize it as a pivot tuple, but everything still works out because
    3255                 :      * the t_tid field is still returned
    3256                 :      */
    3257 UIC           0 :     if (!BTreeTupleIsPivot(itup))
    3258               0 :         return BTreeTupleGetHeapTID(itup);
    3259 EUB             : 
    3260                 :     /* Pivot tuple returns TID with downlink block (heapkeyspace variant) */
    3261 UIC           0 :     return &itup->t_tid;
    3262                 : }
        

Generated by: LCOV version v1.16-55-g56c0a2a