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Memory Architecture
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Shared Buffers
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Reading Data
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Writing Data
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Clock-Sweep
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Writing Data Out
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Recovery & Checkpoints

CHECKPOINT CHECKPOINT CHECKPOINT

Crash



  

Checkpoints

1)Remember current position in WAL

2)Do some boring things

3)Write out all dirty buffers

4)Fsync all files modified since last checkpoint

5)Write checkpoint WAL record, pg_control etc.

6)Remove old WAL



  

Triggering Checkpoints

● checkpoint_timeout = 5min
– LOG:  checkpoint starting: time

● checkpoint_segments = 3 / max_wal_size = 1GB
– LOG:  checkpoint starting: xlog

– LOG:  checkpoints are occurring too frequently (2 
seconds apart)

● shutdown
– LOG:  checkpoint starting: shutdown immediate

● manually (CHECKPOINT;)



  

Spreading Checkpoints

● checkpoint_completion_target = 0.5
● estimation based on

– checkpoint_timeout

– checkpoint_segments/max_wal_size

● Spread checkpoints over completion_target * 
timeout/segments till next checkpoint

● Try to keep pace 
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Shared Buffers Tuning

● Hot data fits into shared_buffers => increase 
s_b

● Bulk-Writes in a bigger than shared_buffers 
workload => measure decreasing s_b

● Large Shared Buffers => enable huge pages
● Frequent Relation DROP/REINDEX => 

decrease s_b



  

OS Dirty Data Tuning

● dirty_writeback_centisecs => lower
– how often to check for writeback

● dirty_bytes/dirty_ratio => lower
– when to block writing data

● dirty_background_bytes => lower
– when to write data back in the background

● Increases random writes!
● Often slows total throughput, but improves 

latency



  

WAL tuning

● Checkpoints should be triggered by time!
– high enough checkpoint_segments/wal_max_size

– Monitor!

● Except maybe at night, during batch runs or such
● Consider recovery time → less frequent 

checkpoints, crash recovery takes longer
● Consider full page writes → more frequent 

checkpoints mean much much more WAL
● separate pg_xlog can help a lot!



  

WAL Writer

● Writes WAL instead backends
● Important for synchronous_commit = off
● Otherwise boring



  

Background Writer

● Write dirty buffers before backends
● Not very good
● All random writes
● Defaults write max 4MB/s
● bgwriter_delay → lower, wakes up more often
● bgwriter_lru_maxpages → increases, writes 

more at once



  

Problem – Bad Benchmarks

● pgbench has unrealistic workload
● hard to measure regressions
● contribute!



  

Problem – Dirty Buffers in Kernel

● Massive Latency Spikes, up to hundreds of 
seconds

● Force flush using sync_file_range() or msync()
– Decreases jitter

– Increases randomness

● Sort checkpointed buffers
– Decreases randomness

– Increases Throughput

● Hopefully 9.6



  

Problem – Hashtable 

● Can't efficiently search for the next buffer
– need to sort for checkpoints

– can't write combine to reduce total number of writes

● Expensive Lookups
– Cache inefficient datastructure

● Possible Solution: Radix Tree
● Hopefully 9.7



  

Problem - Cache Replacement 
Scales Badly

● Single Lock for Clock Sweep!
– fixed in 9.5

● Every Backend performs Clock Sweep
– fixed in 9.6

● Algorithm is fundamentally expensive
– UH, Oh.



  

Problem - Cache Replacement 
Replaces Badly

● Usagecount of 5 (max) reached very quickly
– Often all buffers have 5

● Increasing max usagecount increases cost, the 
worst case essentially is

O(NBuffer * max_usagecount)
● Hard to solve, patent issues



  

Problem: Kernel Page Cache

● Double buffering decreases effective memory 
utilization

● Use O_DIRECT?
– Requires lots of performance work on our side

– Considerably faster in some scenarios

– Less Adaptive

– Very OS specific


