

Postgres' IO
Architecture, Tuning, Problems

Andres Freund
PostgreSQL Developer & Committer

Citus Data – citusdata.com - @citusdata

http://anarazel.de/talks/pgdevday-prague-2016-02-18/io.pdf

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

pgbench -M prepared -c 32 -j 32

standard settings

TPS

Latency

seconds

T
P

S

L
a

te
n

cy
 (

m
s

)

Memory Architecture

Postmaster

Background writer

Checkpointer

Wal writer

User Connection Backend

Shared Memory

Buffer Cache

Locking
Information

Transaction
State

…

Sorting

Plans

Temporary
Tables

Bitmap
Scans

Process local Memory

Shared Buffers

8 KB
DATA

T
A
G

L
O
C
K

0

8 KB
DATA

T
A
G

L
O
C
K

1

8 KB
DATA

T
A
G

L
O
C
K

2

8 KB
DATA

T
A
G

L
O
C
K

3

8 KB
DATA

T
A
G

L
O
C
K

4

F
L
A
G

F
L
A
G

F
L
A
G

F
L
A
G

F
L
A
GB

uffer M
apping H

asht able

C
N
T
S

C
N
T
S

C
N
T
S

C
N
T
S

C
N
T
S

Reading Data

8 KB
DATA

T
A
G

L
O
C
K

3

F
L
A
G

B
uffer M

apping H
asht able T

A
G

L
O
C
K

F
L
A
G

OS PageCache

open()
read()

8 KB
DATA

C
N
T
S

C
N
T
S

Storage

Writing Data

8 KB
DATA

T
A
G

L
O
C
K

3

F
L
A
G

B
uffer M

apping H
asht able L

O
C
K

F
L
A
G

8 KB
DATA

C
N
T
S

Clock-Sweep

0 1
2

3
4

5

6

35
CNT: 4CNT: 3

CNT: 0

Writing Data Out

8 KB
DATA

T
A
G

L
O
C
K

3

F
L
A
G

B
uffer M

apping H
asht able L

O
C
K

F
L
A
G

C
N
T
S

OS PageCache
open()
w

rite()

Recovery & Checkpoints

CHECKPOINT CHECKPOINT CHECKPOINT

Crash

Checkpoints

1)Remember current position in WAL

2)Do some boring things

3)Write out all dirty buffers

4)Fsync all files modified since last checkpoint

5)Write checkpoint WAL record, pg_control etc.

6)Remove old WAL

Triggering Checkpoints

● checkpoint_timeout = 5min
– LOG: checkpoint starting: time

● checkpoint_segments = 3 / max_wal_size = 1GB
– LOG: checkpoint starting: xlog

– LOG: checkpoints are occurring too frequently (2
seconds apart)

● shutdown
– LOG: checkpoint starting: shutdown immediate

● manually (CHECKPOINT;)

Spreading Checkpoints

● checkpoint_completion_target = 0.5
● estimation based on

– checkpoint_timeout

– checkpoint_segments/max_wal_size

● Spread checkpoints over completion_target *
timeout/segments till next checkpoint

● Try to keep pace

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

pgbench -M prepared -c 32 -j 32

standard settings

TPS

Latency

seconds

T
P

S

L
a

te
n

cy
 (

m
s

)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

pgbench -M prepared -c 32 -j 32

shared_buffers = 16GB

TPS

Latency

seconds

T
P

S

L
a

te
n

cy
 (

m
s

)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

pgbench -M prepared -c 32 -j 32

shared_buffers = 16GB, max_wal_size = 100GB

TPS

Latency

seconds

T
P

S

L
a

te
n

cy
 (

m
s

)

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

Dirty Data

Dirty

Writeback

time (seconds)

b
yt

e
s

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0

100

200

300

400

500

600

700

800

pgbench -M prepared -c 32 -j 32

shared_buffers = 16GB, max_wal_size = 100GB, OS tuning (no dirty)

TPS

Latency

seconds

T
P

S

L
a

te
n

cy
 (

m
s

)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0

200

400

600

800

1000

1200

pgbench -M prepared -c 32 -j 32

shared_buffers = 16GB, max_wal_size = 100GB, target = 0.9; OS tuning (no dirty)

TPS

Latency

seconds

T
P

S

L
a

te
n

cy
 (

m
s

)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0

200

400

600

800

1000

1200

pgbench -M prepared -c 32 -j 32

shared_buffers = 16GB, max_wal_size = 100GB, target = 0.9; 9.6 flushing

TPS

Latency

seconds

T
P

S

L
a

te
n

cy
 (

m
s

)

Shared Buffers Tuning

● Hot data fits into shared_buffers => increase
s_b

● Bulk-Writes in a bigger than shared_buffers
workload => measure decreasing s_b

● Large Shared Buffers => enable huge pages
● Frequent Relation DROP/REINDEX =>

decrease s_b

OS Dirty Data Tuning

● dirty_writeback_centisecs => lower
– how often to check for writeback

● dirty_bytes/dirty_ratio => lower
– when to block writing data

● dirty_background_bytes => lower
– when to write data back in the background

● Increases random writes!
● Often slows total throughput, but improves

latency

WAL tuning

● Checkpoints should be triggered by time!
– high enough checkpoint_segments/wal_max_size

– Monitor!

● Except maybe at night, during batch runs or such
● Consider recovery time → less frequent

checkpoints, crash recovery takes longer
● Consider full page writes → more frequent

checkpoints mean much much more WAL
● separate pg_xlog can help a lot!

WAL Writer

● Writes WAL instead backends
● Important for synchronous_commit = off
● Otherwise boring

Background Writer

● Write dirty buffers before backends
● Not very good
● All random writes
● Defaults write max 4MB/s
● bgwriter_delay → lower, wakes up more often
● bgwriter_lru_maxpages → increases, writes

more at once

Problem – Bad Benchmarks

● pgbench has unrealistic workload
● hard to measure regressions
● contribute!

Problem – Dirty Buffers in Kernel

● Massive Latency Spikes, up to hundreds of
seconds

● Force flush using sync_file_range() or msync()
– Decreases jitter

– Increases randomness

● Sort checkpointed buffers
– Decreases randomness

– Increases Throughput

● Hopefully 9.6

Problem – Hashtable

● Can't efficiently search for the next buffer
– need to sort for checkpoints

– can't write combine to reduce total number of writes

● Expensive Lookups
– Cache inefficient datastructure

● Possible Solution: Radix Tree
● Hopefully 9.7

Problem - Cache Replacement
Scales Badly

● Single Lock for Clock Sweep!
– fixed in 9.5

● Every Backend performs Clock Sweep
– fixed in 9.6

● Algorithm is fundamentally expensive
– UH, Oh.

Problem - Cache Replacement
Replaces Badly

● Usagecount of 5 (max) reached very quickly
– Often all buffers have 5

● Increasing max usagecount increases cost, the
worst case essentially is

O(NBuffer * max_usagecount)
● Hard to solve, patent issues

Problem: Kernel Page Cache

● Double buffering decreases effective memory
utilization

● Use O_DIRECT?
– Requires lots of performance work on our side

– Considerably faster in some scenarios

– Less Adaptive

– Very OS specific

