

Scalability
pgday.it 2015

Andres Freund
PostgreSQL Developer & Committer

Citus Data – citusdata.com - @citusdata

Scalability

“Scalability is the capability of a system, network,
or process to handle a growing amount of work, or

its potential to be enlarged in order to
accommodate that growth”

Wikipedia

1 4 8 16 32 48 64 96 128
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

a

b

clients

T
P

S

Vertical

Lenovo x3950-x6

Horizontal

HP DL60 * 5

Vertically Scalable Systems

● Easier to use
● Easier to maintain
● Stronger Consistency

– Nearly all horizontally scalable systems are in some
form eventually consistent

– some problems are very hard to solve with lower
consistency models

● Often faster than horizontally scalable system
● But there's definitely an upper limit

When not to scale vertically

● cost(horizontal) < cost(vertical)
● bigger hardware, even bigger hardware cost
● latency across the world is a critical issue
● current/expected scale bigger than vertically

achievable

When to scale horizontally

● Little/No shared state
– webservers

– cache servers

– computations

● Shared state changes infrequently
● Consistency is not paramount
● Global latency is an issue

Mix & Mash

● Web-Servers: Horizontally
● Caching Infrastructure: Horizontally
● Critical Data: Vertical
● Bulk Data: Vertical if possible, horizontal

otherwise

WHY ARE YOU
TELLING ME THIS?!

PostgreSQL and Vertical Scalability

● Used to be very good – ca. 2003
● Important fixes have been made since 2009

– Locking tables scales very good (9.2)

– Low Level Locks scale better (9.5)

– Cache Management scales a bit better (9.5)

– Parallel Short Read/Write Xacts scale better (9.6)

● Very good for many concurrent workloads
● Several important problems remain

1 2 4 8 16 32 64 96 128 196 256
0

100000

200000

300000

400000

500000

600000

plain

clients

T
P

S

● readonly pgbench scale 300
● EC2 m4.8xlarge - 2 x E5-2676 (2 x 10 cores/20 threads)
● master @ aa6b2e6
● fastpath disabled in code

Acquiring a Heavyweight Lock

Free Lock

Free Lock

Free Lock

Free Lock

Free Lock

Free Lock

Free Lock

Shared Lock Table

Lock Lock Table

Lock by #7
Backend #7

Heavyweight Lock - Fastpath

Backend #7

C
onflict ing

Lock

Lock by #7

Heavyweight Lock – Slow Path

Backend #7

C
onflict ing

Lock

Backend #1

Lock by #1

Backend #2

Backend #3

F
F
F

F
F
F

L #7

1 2 4 8 16 32 64 96 128 196 256
0

100000

200000

300000

400000

500000

600000

fastpath

plain

clients

T
P

S

● readonly pgbench scale 300
● EC2 m4.8xlarge - 2 x E5-2676 (2 x 10 cores/20 threads)
● master @ aa6b2e6
● fastpath disabled in code

LWLock scalability

perf top az
 89.53% postgres postgres [.] s_lock
 2.53% postgres postgres [.] LWLockAcquire
 1.79% postgres postgres [.] LWLockRelease
 0.63% postgres postgres [.] hash_search_..._value

1 4 8 16 32 48 64 96 128
0

50000

100000

150000

200000

250000

300000

350000

400000

old

clients

T
P

S

● readonly pgbench
● 4xE5-4620
● scale 100

LWLockAcquire(LWLock *l, LWLockMode mode?)
{
 retry:
 SpinLockAcquire(&lock>mutex);

 if (mode == LW_SHARED)
 {
 if (!lock>exclusive)
 {
 lock>shared++;
 }
 else
 {
 QueueSelf(l);
 SpinLockRelease(&lock>mutex);
 WaitForRelease(l);
 goto retry;
 }
 }
 ...
 SpinLockRelease(&lock>mutex);
}

1 4 8 16 32 48 64 96 128
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

old

rlwock

clients

T
P

S

● readonly pgbench
● 4xE5-4620
● scale 100

Not Fixed – Query Parallelism

● Each query only use one core
– fine for transactional workloads

– horrible for analytics workloads

● Initial parallelism Infrastructure in 9.5 u. 9.6
● First parallel queries hopefully in 9.6

– will take a while to work for many types of query
constructs

Further Scalability Issues

● Expensive Snapshot Computation
– Problematic: High QPS (combined read & write) workloads,

many clients

– Solution: connection pooler

● Extension Lock
– Problematic: Parallel bulk write workloads to single table

– Workaround: Uh.

– Fix hopefully in 9.6

● Buffer Replacement Complexity & Accuracy
– Problematic: Larger than memory workloads

– Solution: Try higher or lower shared_buffers

Extension Lock Scalability

1 2 4 8 16 32 48 64 96 128 196 256 512
0

50

100

150

200

250

patched

unpatched

clients

C
O

P
Y

co
m

m
a

n
d

s
/s

e
c

● pgbench of COPY commands to the same table (1.7MB each)
● 4xE5-4620 (32 cores, 64 threads)
● 48 GB shared memory, 256 GB in total

Horizontal Scalability & Postgres

● Manually shard
● Slony & Londiste (uh, forever)
● Streaming Replication / Hot Standby (9.0)

– scale reads

● Logical Decoding (9.4)
– coordinate systems

– basis for logical replication solutions

● BDR & UDR (9.4)
● Foreign Data Wrappers (9.1, 9.5)
● postgres-xc / postgres-xl
● pg_shard

Scaling Analytics Workloads

● Commercial Forks of Postgres:
– Redshift

– Greenplum

– CitusDB

– …

Help!

● Contribute Problems
– detailed descriptions of things being to slow

– detailed descriptions of things you'd like to do

● Contribute Solutions
– fix things that are too slow

● Contribute Contributions
– help others to contribute

