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Scalability

“Scalability is the capability of a system, network, 
or process to handle a growing amount of work, or 

its potential to be enlarged in order to 
accommodate that growth”

Wikipedia
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Vertical

Lenovo x3950-x6



  

Horizontal

HP DL60  * 5



  

Vertically Scalable Systems

● Easier to use
● Easier to maintain
● Stronger Consistency

– Nearly all horizontally scalable systems are in some 
form eventually consistent

– some problems are very hard to solve with lower 
consistency models

● Often faster than horizontally scalable system
● But there's definitely an upper limit



  

When not to scale vertically

● cost(horizontal) < cost(vertical)
● bigger hardware, even bigger hardware cost
● latency across the world is a critical issue
● current/expected scale bigger than vertically 

achievable



  

When to scale horizontally

● Little/No shared state
– webservers

– cache servers

– computations

● Shared state changes infrequently
● Consistency is not paramount
● Global latency is an issue



  

Mix & Mash

● Web-Servers: Horizontally
● Caching Infrastructure: Horizontally
● Critical Data: Vertical
● Bulk Data: Vertical if possible, horizontal 

otherwise



  

WHY ARE YOU 
TELLING ME THIS?!



  

PostgreSQL and Vertical Scalability

● Used to be very good – ca. 2003
● Important fixes have been made since 2009

– Locking tables scales very good (9.2)

– Low Level Locks scale better (9.5)

– Cache Management scales a bit better (9.5)

– Parallel Short Read/Write Xacts scale better (9.6)

● Very good for many concurrent workloads
● Several important problems remain
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● readonly pgbench scale 300
● EC2 m4.8xlarge - 2 x E5-2676 (2 x 10 cores/20 threads)
● master @ aa6b2e6
● fastpath disabled in code



  

Acquiring a Heavyweight Lock
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Heavyweight Lock - Fastpath
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Heavyweight Lock – Slow Path
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● readonly pgbench scale 300
● EC2 m4.8xlarge - 2 x E5-2676 (2 x 10 cores/20 threads)
● master @ aa6b2e6
● fastpath disabled in code



  

LWLock scalability

# perf top az
     89.53%  postgres  postgres  [.] s_lock
      2.53%  postgres  postgres  [.] LWLockAcquire
      1.79%  postgres  postgres  [.] LWLockRelease
      0.63%  postgres  postgres  [.] hash_search_..._value
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● readonly pgbench
● 4xE5-4620
● scale 100



  

LWLockAcquire(LWLock *l, LWLockMode mode?)
{
  retry:
    SpinLockAcquire(&lock>mutex);
    
    if (mode == LW_SHARED)
    {
        if (!lock>exclusive)
        {
            lock>shared++;
        }
        else
        {
            QueueSelf(l);
            SpinLockRelease(&lock>mutex);
            WaitForRelease(l);
            goto retry;
        }   
    }
    ...  
    SpinLockRelease(&lock>mutex);
}
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● readonly pgbench
● 4xE5-4620
● scale 100



  

Not Fixed – Query Parallelism

● Each query only use one core
– fine for transactional workloads

– horrible for analytics workloads

● Initial parallelism Infrastructure in 9.5 u. 9.6
● First parallel queries hopefully in 9.6

– will take a while to work for many types of query 
constructs



  

Further Scalability Issues

● Expensive Snapshot Computation
– Problematic: High QPS (combined read & write) workloads, 

many clients

– Solution: connection pooler

● Extension Lock
– Problematic: Parallel bulk write workloads to single table

– Workaround: Uh.

– Fix hopefully in 9.6

● Buffer Replacement Complexity & Accuracy
– Problematic: Larger than memory workloads

– Solution: Try higher or lower shared_buffers



  

Extension Lock Scalability
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● pgbench of COPY commands to the same table (1.7MB each)
● 4xE5-4620 (32 cores, 64 threads)
● 48 GB shared memory, 256 GB in total



  

Horizontal Scalability & Postgres

● Manually shard
● Slony & Londiste (uh, forever)
● Streaming Replication / Hot Standby (9.0)

– scale reads

● Logical Decoding (9.4)
– coordinate systems

– basis for logical replication solutions

● BDR & UDR (9.4)
● Foreign Data Wrappers (9.1, 9.5)
● postgres-xc / postgres-xl
● pg_shard



  

Scaling Analytics Workloads

● Commercial Forks of Postgres:
– Redshift

– Greenplum

– CitusDB

– …



  

Help!

● Contribute Problems
– detailed descriptions of things being to slow

– detailed descriptions of things you'd like to do

● Contribute Solutions
– fix things that are too slow

● Contribute Contributions
– help others to contribute


