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Memory Architecture
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Shared Buffers
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Clock-Sweep
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Recovery & Checkpoints
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Checkpoints

1)Remember current position in WAL

2)Do some boring things

3)Write out all dirty buffers

4)Fsync all fles modified since last checkpoint
5)Write checkpoint WAL record, pg_control etc.
6)Remove old WAL
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Triggering Checkpoints

checkpoint_timeout = 5min
- LOG: checkpoint starting: time
checkpoint_segments = 3/ max_wal_size = 1GB

- LOG: checkpoint starting: xlog

- LOG: checkpoints are occurring too frequently (2 seconds
apart)

shutdown
- LOG: checkpoint starting: shutdown immediate

manually (CHECKPOINT,;)
- LOG: checkpoint starting: immediate force wait
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Spreading Checkpoints

checkpoint_completion_target = 0.5

estimation based on
- checkpoint_timeout
- checkpoint_segments/max_wal_size

Spread checkpoints over completion_target *
timeout/segments till next checkpoint

Try to keep pace
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TPS
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OS Dirty Data Tuning

 dirty_writeback centisecs => lower
- how often to check for writeback

o dirty bytes/dirty ratio => lower
— when to block writing data

 dirty _background bytes => lower
- when to write data back in the background

e [ncreases random writes!

» Often slows total throughput, but improves
latency
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TPS

pgbench -M prepared -c 32 -j 32

shared_buffers = 16GB, max_wal_size = 100GB, target = 0.9; OS tuning (no dirty)
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Shared Buffers Tuning

_eave memory for queries / other work

Hot data fits into shared buffers => increase
s b

Bulk-Writes in a bigger than shared buffers
workload => measure decreasings b

_arge Shared Buffers => enable huge pages

~requent Relation DROP/REINDEX =>
decreases b
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WAL tuning

Checkpoints should be triggered by time!
- high enough checkpoint_segments/wal _max_size
- Monitor!

Except maybe at night, during batch runs or such

Consider recovery time — less frequent
checkpoints, crash recovery takes longer

Consider full page writes — more frequent
checkpoints mean much much more WAL

separate pg_xlog can help a lot!
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WAL Writer

* Writes WAL Iinstead backends
* Important for synchronous_commit = off
* Otherwise boring

citusdata



Clock-Sweep
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Background Writer

Write dirty buffers before backends
Not very good

All random writes

Defaults write max 4MB/s

more at once

ogwriter_delay — lower, wakes up more often
ogwriter_Iru_maxpages — increases, writes
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Autovacuum

 Limited read/write rate — too low
- ~4MB/s

» Cost calculated with
- vacuum_cost_page miss =20
— vacuum_cost _page hit=1
- vacuum_cost_page miss = 20

e Limited by
- {autovacuum_,}vacuum_cost_limit = 200
- autovacuum_vacuum_cost _delay = 20ms
— vacuum_cost _delay =0
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Problem — Dirty Buffers in Kernel

Massive Latency Spikes, up to hundreds of
seconds

Force flush using sync_file _range() or msync()
- Decreases |jitter
- Increases randomness

Sort checkpointed buffers
- Decreases randomness
- Increases Throughput

In 9.6 for some OSs
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Problem — Hashtable

Can't efficiently search for the next buffer

- need to sort for checkpoints

- can't write combine to reduce total number of writes
— can't efficiently drop relation/... bufers

Expensive Lookups
— Cache / pipeline inefficient datastructure
- some locking issues: Improved 9.5, 9.6

Possible Solution: Radix Tree
Hopefully 9.7
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Problem - Cache Replacement
Scales Badly
» Single Lock for Clock Sweep!
- fixed In 9.5

* Every Backend performs Clock Sweep
- potentially 9.77?

« Algorithm Is fundamentally expensive
- UH, Onh.
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Problem - Cache Replacement
Replaces Badly

» Usagecount of 5 (max) reached very quickly
- Often all buffers have 5/0

* Increasing max usagecount increases cost, the
worst case essentially is

O(NBuffer * max_usagecount)
 Hard to solve
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Problem: Kernel Page Cache

* Double buffering decreases effective memory
utilization

e Use O DIRECT?
- Requires lots of performance work on our side
- Considerably faster in some scenarios
- Less Adaptive
- Very OS specific
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