Postgres' |O
Architecture, Tuning, Problems

Andres Freund
PostgreSQL Developer & Committer
Citus Data — citusdata.com - @citusdata

http://anarazel.de/talks/pgconf-nyc-2016-04-20/io.pdf

citusdata



TPS

2000

1800

1600

1400

1200

1000

800

600

400

200

pgbench -M prepared -c 32 -j 32

standard settings

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

— TPS
= | gtency

Latency (ms)

citusdata



Memory Architecture

/’ \\\
// \\
/

\\\

Process local Memory
~ Postmaster

\ \ //
\ /
/
\ /
e
~ ~

Shared Memory

< Buffer Cache

User Connection Backend

\ |
Checkpointer
\ |

Wal writer

Background writer
\ \

Autovac Launcher

~ Locking
~_Information

_ Transaction

. 4
AN /
N

State

citusdata



Shared Buffers

citusdata



a|geiyseH buidde 1ayng

Reading Data

AT
N

Storage

-

v

OS PageCache

citusdata



Clock-Sweep

citusdata



a|geiyseH buidde 1ayng

Writing Data Out

OS PageCache

uaao

()arm

citusdata



Recovery & Checkpoints

———

Startup Restart CHECKPOINT
CHECKPOINT
Time >

citusdata



Checkpoints

1)Remember current position in WAL

2)Do some boring things

3)Write out all dirty buffers

4)Fsync all fles modified since last checkpoint
5)Write checkpoint WAL record, pg_control etc.
6)Remove old WAL

citusdata



Triggering Checkpoints

checkpoint_timeout = 5min
- LOG: checkpoint starting: time
checkpoint_segments = 3/ max_wal_size = 1GB

- LOG: checkpoint starting: xlog

- LOG: checkpoints are occurring too frequently (2 seconds
apart)

shutdown
- LOG: checkpoint starting: shutdown immediate

manually (CHECKPOINT,;)
- LOG: checkpoint starting: immediate force wait

citusdata



Spreading Checkpoints

checkpoint_completion_target = 0.5

estimation based on
- checkpoint_timeout
- checkpoint_segments/max_wal_size

Spread checkpoints over completion_target *
timeout/segments till next checkpoint

Try to keep pace

citusdata



TPS

2000

1800

1600

1400

1200

1000

800

600

400

200

pgbench -M prepared -c 32 -j 32

standard settings

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

— TPS
= | gtency

Latency (ms)

citusdata



TPS

pgbench -M prepared -c 32 -j 32

shared_buffers = 16GB

2000 10000

1800 v ~ 9000

1600 8000

1400 7000

1200 6000

1000 5000 £ | gtency
3
c
2
S

800 4000

600 3000

400 2000

200 1000

AL | O e T

citusdata



TPS

2000

1800

1600

1400

1200

1000

800

600

400

200

|
|
0 gAAAAAAAAAAAAJ MJJJJLQU;_UUJFQLLLPKLWMJJJJJJJ_uHJ WL AR A AN A JJ MJJ_mLLLLQMKUdQL

k

© A> (P > D
© R U P PG P S

pgbench -M prepared -c 32 -] 32

shared_buffers = 16GB, max_wal_size = 100GB

F P L <,,0

N

© AQ & D
g:w;, "/ng,\« <oqu Kylg

seconds

v

1

'
UL g

Q
> m\”ﬂ/

1t HJ“ Jb‘u"d‘JJJJJuU

b“b ‘b
bﬁb

7S

0 >
¥

P

I

I

® ’L

ﬂ
UILAN N

i

UL

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

— TPS
—— Latency

Latency (ms)

citusdata



bytes

1000000

900000

800000

700000

600000

500000

400000

300000

200000

100000

0

Dirty Data

—— Dirty
— Writeback

IJ W

T \‘\ 1L \‘\H HHH\HH\HHH\H\H\HHHHH\HHH\HHHH\HHH\H\HHH [T \\HH\HHHHH\H\HH\h\\ T I \HH\HH\HHH\HHH\HHHHHH\\\HHH\HHH\HHHH\H\H I HH\HHH\H\HHH\HHHHHHH‘HH\H\HHHHHHHHHHHHHH\H TITTITTTITITTIT T

RN TP PRSI BRI I AR I A Q0D 2 A N PO DN O

L2 P o i PP B & AP D B S @A L S W 55 P S (@ & P &
v T FEE PP FFGEELEF TP F P @ (PSS

time (seconds)

citusdata



OS Dirty Data Tuning

 dirty_writeback centisecs => lower
- how often to check for writeback

o dirty bytes/dirty ratio => lower
— when to block writing data

 dirty _background bytes => lower
- when to write data back in the background

e [ncreases random writes!

» Often slows total throughput, but improves
latency

citusdata



TPS

2000

1800

1600

1400

1200

1000

800

600

400

200

pgbench -M prepared -c 32 -j 32

shared_buffers = 16GB, max_wal_size = 100GB, OS tuning (no dirty)

1200

1000

800

‘ 600

H 400

U 200
\

|

Ao 0
Vi Nk /|
‘wwu Al

e A e e e e P N e A A A e A )

A
m
WY

| M v
S GVSIY A

0

V“)
97
%
%
%

© D O © D O © D O > o© D O B O D O X O D (O >
WP S VR P o> B o 5 o B W S P PP P 4P & P F APV

seconds

— TPS
— Latency

Latency (ms)

citusdata



TPS

pgbench -M prepared -c 32 -j 32

shared_buffers = 16GB, max_wal_size = 100GB, target = 0.9; OS tuning (no dirty)

2000 1200
1800 ﬂ
1000
1600
1400
800
1200
o~ — TPS
1000 600 £ ~— Latency
3
c
L
S
800 H
|
400
600
400
200
200
\ il
e W et At p e A I A AN ‘ IMMARA ANt A A A A Asp A Yy

0 0
O D O © A O © DO O O DN % 00 & O X O QD Q Y O D D 3
VPP @ R RS PP o P (O P 1 WP PP P QPP P P F AL AR

seconds

citusdata



Shared Buffers Tuning

_eave memory for queries / other work

Hot data fits into shared buffers => increase
s b

Bulk-Writes in a bigger than shared buffers
workload => measure decreasings b

_arge Shared Buffers => enable huge pages

~requent Relation DROP/REINDEX =>
decreases b

citusdata



WAL tuning

Checkpoints should be triggered by time!
- high enough checkpoint_segments/wal _max_size
- Monitor!

Except maybe at night, during batch runs or such

Consider recovery time — less frequent
checkpoints, crash recovery takes longer

Consider full page writes — more frequent
checkpoints mean much much more WAL

separate pg_xlog can help a lot!

citusdata



WAL Writer

* Writes WAL Iinstead backends
* Important for synchronous_commit = off
* Otherwise boring

citusdata



Clock-Sweep

citusdata



Background Writer

Write dirty buffers before backends
Not very good

All random writes

Defaults write max 4MB/s

more at once

ogwriter_delay — lower, wakes up more often
ogwriter_Iru_maxpages — increases, writes

citusdata



Autovacuum

 Limited read/write rate — too low
- ~4MB/s

» Cost calculated with
- vacuum_cost_page miss =20
— vacuum_cost _page hit=1
- vacuum_cost_page miss = 20

e Limited by
- {autovacuum_,}vacuum_cost_limit = 200
- autovacuum_vacuum_cost _delay = 20ms
— vacuum_cost _delay =0

citusdata



Problem — Dirty Buffers in Kernel

Massive Latency Spikes, up to hundreds of
seconds

Force flush using sync_file _range() or msync()
- Decreases |jitter
- Increases randomness

Sort checkpointed buffers
- Decreases randomness
- Increases Throughput

In 9.6 for some OSs

citusdata



Problem — Hashtable

Can't efficiently search for the next buffer

- need to sort for checkpoints

- can't write combine to reduce total number of writes
— can't efficiently drop relation/... bufers

Expensive Lookups
— Cache / pipeline inefficient datastructure
- some locking issues: Improved 9.5, 9.6

Possible Solution: Radix Tree
Hopefully 9.7

citusdata



Problem - Cache Replacement
Scales Badly
» Single Lock for Clock Sweep!
- fixed In 9.5

* Every Backend performs Clock Sweep
- potentially 9.77?

« Algorithm Is fundamentally expensive
- UH, Onh.

citusdata



Problem - Cache Replacement
Replaces Badly

» Usagecount of 5 (max) reached very quickly
- Often all buffers have 5/0

* Increasing max usagecount increases cost, the
worst case essentially is

O(NBuffer * max_usagecount)
 Hard to solve

citusdata



Problem: Kernel Page Cache

* Double buffering decreases effective memory
utilization

e Use O DIRECT?
- Requires lots of performance work on our side
- Considerably faster in some scenarios
- Less Adaptive
- Very OS specific

citusdata



Postgres' |O
Architecture, Tuning, Problems

Andres Freund
PostgreSQL Developer & Committer
Citus Data — citusdata.com - @citusdata

http://anarazel.de/talks/pgconf-nyc-2016-04-20/io.pdf

citusdata



