
Improving Postgres’ Efficiency

Andres Freund

PostgreSQL Developer & Committer

Email: andres@anarazel.de

Email: andres.freund@enterprisedb.com

Twitter: @AndresFreundTec

anarazel.de/talks/pgconf-eu-warsaw-2017-10-26/efficiency.pdf

mailto:andres@anarazel.de
mailto:andres.freund@enterprisedb.com

Efficiency

Analytics

Choose Better Plan Smarter Execution Execute Plan Faster

P
a

st
 V

e
rs

io
n

s
F

u
tu

re
 V

e
rs

io
n

s

Multi-Column Statistics
(10)

Index-Only Scans (9.2)

Prefetching for Bitmap-
Scans (8.4)

Grouping Sets (9.5, 10)

BRIN (9.5) Sorting (9.5, 9.6)
Join Removal (9.5)

Custom Plans (9.2)

Better Hash-Tables
New Expression Engine

(10)

CTE Inlining
“Cached” Nest-Loop Joins /

“Probed” Hash Joins

Selectivity Estimation
Improvements

Partial JIT Compilation
(11?)

Vectorized / Batched
Execution (12?)

“Block” Nest-Loop Joins

The Past

Choose A Better Plan:
Multi-Column Statistics

● Selectivity Estimation
● Two Column Selectivity: likelihood(a) * likelihood(b)
● Correlation / Dependencies:

– WHERE city = ‘San Francisco’ AND zipcode = ‘94158’
– city = ‘San Francisco’ => 864k / 301M => 1/348
– zipcode = ‘94158’ => 4792 / 301M => 1/62184
– Result: 301M * (1/348 * 1/62184) => ~13

● Fix in PostgreSQL 10+:
CREATE STATISTICS zips_and_cities
ON (zipcode, city)
FROM us_citizens;

Smarter Execution: Index-Only Scan

● SELECT l_shipdate, count(*)
FROM lineitem
WHERE l_shipdate BETWEEN '...' AND '...'
GROUP BY l_shipdate
ORDER BY count(*)
LIMIT 1;
CREATE INDEX "i_l_shipdate" ON lineitem(l_shipdate);

● Bitmap-Scan: 109900.866 ms, 1099789 buffers accessed
● Index-Only-Scan: 1317.177 ms, 38470 buffers accessed
● Requires: Regular (auto-)vacuum, index over all columns
● PostgreSQL 11: “covering indexes”

Smarter Execution: Prefetching

● SELECT l_shipdate, SUM(quantity),
FROM lineitem
WHERE l_shipdate BETWEEN '...' AND '...'
GROUP BY l_shipdate
ORDER BY sum(quantity) DESC
LIMIT 1;
CREATE INDEX "i_l_shipdate" ON lineitem(l_shipdate);

● Good on rotational disks, awesome on SSDs
● No-Prefetching: SET effective_io_concurrency = 0;

Buffers: shared hit=3 read=1119735
Time: 30032.860 ms
Average-IO: ~260 MB/Sec
Utilization: ~60%

● Prefetching: SET effective_io_concurrency = 512;
Buffers: shared hit=3 read=1119735
Time: 17688.256 ms
Average-IO: ~525 MB/Sec
Utilization: 100.00%

SELECT
l_returnflag,
l_linestatus,
sum(l_quantity) AS sum_qty,
sum(l_extendedprice) AS sum_base_price,
sum(l_extendedprice * (1 - l_discount)) AS sum_disc_price,
sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) AS sum_charge,
avg(l_quantity) AS avg_qty,
avg(l_extendedprice) AS avg_price,
avg(l_discount) AS avg_disc,
count(*) AS count_order

FROM lineitem
WHERE l_shipdate <= date '1998-12-01' - interval '74 days'
GROUP BY l_returnflag, l_linestatus
ORDER BY l_returnflag, l_linestatus;

Faster Execution:
New Hash-Table & Expression Engine

 Sort (cost=4313533.34..4313533.36 rows=6 width=68)
 Sort Key: l_returnflag, l_linestatus
 -> HashAggregate (cost=4313533.16..4313533.26 rows=6 width=68)
 Group Key: l_returnflag, l_linestatus
 Output: …, sum(l_quantity), sum(l_extendedprice), sum(…), ...
 -> Seq Scan on lineitem (cost=0.00..1936427.80 rows=59427634 width=36)
 Filter: (l_shipdate <= '1998-09-18 00:00:00'::timestamp without time zone)

Faster Execution:
New Hash-Table & Expression Engine

PG 9.4 PG 9.5 PG 9.6 PG 10
0

5

10

15

20

25

30

35

40

45

TPCH Q-01

scale 5, fully cached

#Processes=1
#Processes=4

Version

T
im

e
 in

 S
e

co
n

d
s

Faster Execution:
New Hash-Table & Expression Engine

The Future

SELECT SUM(l_extendedprice * l_discount * l_quantity), count(*)
FROM lineitem
WHERE l_shipmode != 'MAIL'

● This executes:
● tuple deforming / accessing a row’s columns
● bpcharne (character(xx) != character(xx))
● float8mul
● int8inc, float8pl

● PG 10, fully cached, best of three:
● 12856 ms
● branches: 1616.296 M/sec
● iTLB-load-misses: 126.42% of all iTLB cache hits

● JIT, fully cached, best of three
● 6526 ms
● branches: 1053.995 M/sec
● iTLB-load-misses: 8.42% of all iTLB cache hits

Faster Execution:
JIT Compilation

Faster Execution:
JIT Compilation
SELECT

l_returnflag,
l_linestatus,
sum(l_quantity) AS sum_qty,
sum(l_extendedprice) AS sum_base_price,
sum(l_extendedprice * (1 - l_discount)) AS sum_disc_price,
sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) AS sum_charge,
avg(l_quantity) AS avg_qty,
avg(l_extendedprice) AS avg_price,
avg(l_discount) AS avg_disc,
count(*) AS count_order

FROM lineitem
WHERE l_shipdate <= date '1998-12-01' - interval '74 days'
GROUP BY l_returnflag, l_linestatus
ORDER BY l_returnflag, l_linestatus;

Faster Execution:
JIT Compilation

0 1 2 4 8 16
0

200000

400000

600000

800000

1000000

1200000

TPCH Q01 timing

scale 100, fully cached

9.5
9.6
HEAD
jit=0
jit=1

parallelism

tim
e

 in
 m

s

Faster Execution:
JIT Compilation

9.5 9.6 HEAD jit=0 jit=1
0

0.5

1

1.5

2

2.5

TPCH Q01, Improvement to Previous

scale 100, fully cached

0
1
2
4
8
16

version

fa
ct

o
r

Parallelism

Faster Execution:
JIT Compilation

q01 q02 q03 q04 q05 q06 q07 q08 q09 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q22
0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

TPC-H Improvements

scale 100, fully cached, no parallelism

HEAD→jit

query

fa
ct

o
r

Smarter Execution:
“Cached” Nested-Loop Joins

Nested-Loop-Join
 orders o JOIN shipments s

USING (shipment_id)

Sequential-Scan on orders o
WHERE orders.date = …

Index-Scan on shipments s
WHERE s.shipment_id = $1

$1 = orders.shipment_id

Smarter Execution:
“Cached” Nested-Loop Joins

Hash-Join
 orders o JOIN shipments s

USING (shipment_id)

Sequential-Scan on orders o
WHERE orders.date = …

Sequential-Scan on shipments s

Hash

Smarter Execution:
“Cached” Nested-Loop Joins

Cached-Nested-Loop
 orders o JOIN shipments s

USING (shipment_id)

Sequential-Scan on orders o
WHERE orders.date = …

On-Demand Hash

Index-Scan on shipments s
WHERE s.shipment_id = $1

$1 = orders.shipment_id

Better Planning: CTE Inlining / Barrier

WITH per_day AS (
 SELECT l_shipdate, count(*)
 FROM lineitem
 GROUP BY l_shipdate
)
 SELECT *
 FROM per_day
 WHERE l_shipdate = '1998-01-01'
UNION ALL
 SELECT *
 FROM per_day
 WHERE l_shipdate = '1998-01-02';

● Non-Inlined, fully-cached: 162376 ms, 2558910 buffer accesses
● Inlined, fully-cached: 148 ms, 2098 buffer accesses

Improving Postgres’ Efficiency

Andres Freund

PostgreSQL Developer & Committer

Email: andres@anarazel.de

Email: andres.freund@enterprisedb.com

Twitter: @AndresFreundTec

anarazel.de/talks/pgconf-eu-warsaw-2017-10-26/efficiency.pdf

mailto:andres@anarazel.de
mailto:andres.freund@enterprisedb.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

