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Multi-Column Statistics 
(10)

Index-Only Scans (9.2)

Prefetching for Bitmap-
Scans (8.4)

Grouping Sets (9.5, 10)

BRIN (9.5) Sorting (9.5, 9.6)
Join Removal (9.5)

Custom Plans (9.2)

Better Hash-Tables
New Expression Engine

(10)

CTE Inlining
“Cached” Nest-Loop Joins /

“Probed” Hash Joins

Selectivity Estimation 
Improvements

Partial JIT Compilation 
(11?)

Vectorized / Batched 
Execution (12?)

“Block” Nest-Loop Joins
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Choose A Better Plan:
Multi-Column Statistics

● Selectivity Estimation
● Two Column Selectivity: likelihood(a) * likelihood(b)
● Correlation / Dependencies:

– WHERE city = ‘San Francisco’ AND zipcode = ‘94158’ 
– city = ‘San Francisco’ => 864k / 301M => 1/348
– zipcode = ‘94158’ => 4792 / 301M => 1/62184
– Result: 301M * (1/348 * 1/62184) => ~13

● Fix in PostgreSQL 10+:
CREATE STATISTICS zips_and_cities
ON (zipcode, city)
FROM us_citizens;



Smarter Execution: Index-Only Scan

● SELECT l_shipdate, count(*)
FROM lineitem
WHERE l_shipdate BETWEEN '...' AND '...'
GROUP BY l_shipdate
ORDER BY count(*)
LIMIT 1;
CREATE INDEX "i_l_shipdate" ON lineitem(l_shipdate);

● Bitmap-Scan: 109900.866 ms, 1099789 buffers accessed
● Index-Only-Scan: 1317.177 ms,      38470 buffers accessed
● Requires: Regular (auto-)vacuum, index over all columns
● PostgreSQL 11: “covering indexes”



Smarter Execution: Prefetching

● SELECT l_shipdate, SUM(quantity),
FROM lineitem
WHERE l_shipdate BETWEEN '...' AND '...'
GROUP BY l_shipdate
ORDER BY sum(quantity) DESC
LIMIT 1;
CREATE INDEX "i_l_shipdate" ON lineitem(l_shipdate);

● Good on rotational disks, awesome on SSDs
● No-Prefetching: SET effective_io_concurrency = 0;

Buffers:  shared hit=3 read=1119735
Time: 30032.860 ms
Average-IO: ~260 MB/Sec
Utilization: ~60%

● Prefetching: SET effective_io_concurrency = 512;
Buffers: shared hit=3 read=1119735
Time: 17688.256 ms
Average-IO: ~525 MB/Sec
Utilization: 100.00%                                                                         



SELECT
l_returnflag,
l_linestatus,
sum(l_quantity) AS sum_qty,
sum(l_extendedprice) AS sum_base_price,
sum(l_extendedprice * (1 - l_discount)) AS sum_disc_price,
sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) AS sum_charge,
avg(l_quantity) AS avg_qty,
avg(l_extendedprice) AS avg_price,
avg(l_discount) AS avg_disc,
count(*) AS count_order

FROM lineitem
WHERE l_shipdate <= date '1998-12-01' - interval '74 days'
GROUP BY l_returnflag, l_linestatus
ORDER BY l_returnflag, l_linestatus;

Faster Execution:
New Hash-Table & Expression Engine



 Sort  (cost=4313533.34..4313533.36 rows=6 width=68)
   Sort Key: l_returnflag, l_linestatus
   ->  HashAggregate  (cost=4313533.16..4313533.26 rows=6 width=68)
         Group Key: l_returnflag, l_linestatus
         Output: …, sum(l_quantity), sum(l_extendedprice), sum(…), ...
         ->  Seq Scan on lineitem  (cost=0.00..1936427.80 rows=59427634 width=36)
               Filter: (l_shipdate <= '1998-09-18 00:00:00'::timestamp without time zone)

Faster Execution:
New Hash-Table & Expression Engine
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Faster Execution:
New Hash-Table & Expression Engine



The Future



SELECT SUM(l_extendedprice * l_discount * l_quantity), count(*)
FROM lineitem
WHERE l_shipmode != 'MAIL'

● This executes:
● tuple deforming / accessing a row’s columns
● bpcharne (character(xx) != character(xx))
● float8mul
● int8inc, float8pl

● PG 10, fully cached, best of three:
● 12856 ms
● branches: 1616.296 M/sec
● iTLB-load-misses: 126.42% of all iTLB cache hits   

● JIT, fully cached, best of three
● 6526 ms
● branches: 1053.995 M/sec
● iTLB-load-misses: 8.42% of all iTLB cache hits

Faster Execution:
JIT Compilation



Faster Execution:
JIT Compilation
SELECT

l_returnflag,
l_linestatus,
sum(l_quantity) AS sum_qty,
sum(l_extendedprice) AS sum_base_price,
sum(l_extendedprice * (1 - l_discount)) AS sum_disc_price,
sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) AS sum_charge,
avg(l_quantity) AS avg_qty,
avg(l_extendedprice) AS avg_price,
avg(l_discount) AS avg_disc,
count(*) AS count_order

FROM lineitem
WHERE l_shipdate <= date '1998-12-01' - interval '74 days'
GROUP BY l_returnflag, l_linestatus
ORDER BY l_returnflag, l_linestatus;



Faster Execution:
JIT Compilation
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Faster Execution:
JIT Compilation
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Faster Execution:
JIT Compilation
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Smarter Execution:
“Cached” Nested-Loop Joins

Nested-Loop-Join
 orders o JOIN shipments s

USING (shipment_id)

Sequential-Scan on orders o
WHERE orders.date = …

Index-Scan on shipments s
WHERE s.shipment_id = $1

$1 = orders.shipment_id



Smarter Execution:
“Cached” Nested-Loop Joins

Hash-Join
 orders o JOIN shipments s

USING (shipment_id)

Sequential-Scan on orders o
WHERE orders.date = …

Sequential-Scan on shipments s

Hash



Smarter Execution:
“Cached” Nested-Loop Joins

Cached-Nested-Loop
 orders o JOIN shipments s

USING (shipment_id)

Sequential-Scan on orders o
WHERE orders.date = …

On-Demand Hash

Index-Scan on shipments s
WHERE s.shipment_id = $1

$1 = orders.shipment_id



Better Planning: CTE Inlining / Barrier

WITH per_day AS (
    SELECT l_shipdate, count(*)
    FROM lineitem
    GROUP BY l_shipdate
)
  SELECT *
  FROM per_day 
  WHERE l_shipdate = '1998-01-01'
UNION ALL
  SELECT *
  FROM per_day
  WHERE l_shipdate = '1998-01-02';

● Non-Inlined, fully-cached: 162376 ms, 2558910 buffer accesses
● Inlined, fully-cached: 148 ms, 2098 buffer accesses
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