

PostgreSQL's Buffer Manager
Problems & Improvements

Andres Freund
PostgreSQL Developer & Committer

Citus Data – citusdata.com - @citusdata

http://anarazel.de/talks/pgcon-2016-05-20/io.pdf

Shared Buffers

8 KB
DATA

T
A
G

L
O
C
K

0

8 KB
DATA

T
A
G

L
O
C
K

1

8 KB
DATA

T
A
G

L
O
C
K

2

8 KB
DATA

T
A
G

L
O
C
K

3

8 KB
DATA

T
A
G

L
O
C
K

4

F
L
A
G

F
L
A
G

F
L
A
G

F
L
A
G

F
L
A
GB

uffer M
apping H

asht able

C
N
T
S

C
N
T
S

C
N
T
S

C
N
T
S

C
N
T
S

Reading Data

8 KB
DATA

T
A
G

L
O
C
K

3

F
L
A
G

B
uffer M

apping H
asht able T

A
G

L
O
C
K

F
L
A
G

OS PageCache

open()
read()

8 KB
DATA

C
N
T
S

C
N
T
S

Storage

Writing Data

8 KB
DATA

T
A
G

L
O
C
K

3

F
L
A
G

B
uffer M

apping H
asht able L

O
C
K

F
L
A
G

8 KB
DATA

C
N
T
S

Clock-Sweep

0 1
2

3
4

5

6

35
CNT: 4CNT: 3

CNT: 0

Writing Data Out

8 KB
DATA

T
A
G

L
O
C
K

3

F
L
A
G

B
uffer M

apping H
asht able L

O
C
K

F
L
A
G

C
N
T
S

OS PageCache
open()
w

rite()

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

pgbench -M prepared -c 32 -j 32

shared_buffers = 16GB, max_wal_size = 100GB

TPS

Latency

seconds

T
P

S

L
a

te
n

cy
 (

m
s

)

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

Dirty Data

Dirty

Writeback

time (seconds)

b
yt

e
s

Problem – Dirty Buffers in Kernel

● Massive Latency Spikes, up to hundreds of
seconds

● No actually efficient merging of IO requests
● latency spikes every dirty_writeback_centisecs
● spikes when reaching dirty_{background_,}ratio
● latency spikes after checkpoint's fsync()

Kernel Dirty Buffer Control

● Use sync_file_range(), mmap/msync() to force
OS to write back buffers

● Correctly configured machine → faster
● Unfortunately some workloads with bad config

→ slower
– workload bigger than shared buffers, smaller than

OS page cache

– lots of re-dirtying of already dirtied pages

– fundamental tradeoff

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0

200

400

600

800

1000

1200

pgbench -M prepared -c 32 -j 32

shared_buffers = 16GB, max_wal_size = 100GB, target = 0.9; 9.6 flushing

TPS

Latency

seconds

T
P

S

L
a

te
n

cy
 (

m
s

)

Problem: Hashtable

● Expensive Lookups
– Wide keys need to be compared (20 bytes)

– Cache inefficient datastructure (spatial locality)

● Can't efficiently search for the next buffer
– can't scan for all buffers of a relation

(DROP/TRUNCATE!)

– can't write combine to reduce total number of writes

● Possible Solution
– Open relations table

– Tree structure for block lookups

typedef struct BufferTag
{

struct RelFileNode
{

Oid spcNode; /* tablespace */
Oid dbNode; /* database */
Oid relNode; /* relation */

} rnode; /* physical relation identifier */

ForkNumber forkNum;

BlockNumber blockNum; /* blknum relative to begin of reln */
} BufferTag;

Upper Hash-Table / Tree (tablespace, database, relfilenode)

Tree of Trees

Lower Tree (block number)

Buffer

Main cached in SmgrRelationFSM INIT FSM

Open Relations Table

● Store relation/fork size
– no lseeks() anymore

– shrink files without exclusive lock?

● Extend files without exclusive lock
– track “next unallocated block”, increment atomically

6b 6b 6b 6b 6b2b

1 2 3 4 5 6

0x3464
0x5440

...

...
0x9520

0
1

2^6

0x3464
0x5440

...

...
0x9520

0
1

2^6

0x...
0x...
...
...

0x...

0
1

2^6

0x3464
0x5440

...

...
0x9520

0
1

2^6

0x...
0x...
...
...

0x...

0
1

2^6

0x3464
0x5440

...

...
0x9520

0
1

2^6

0x...
0x...
...
...

0x...

0
1

2^6

...

…….

0x3464
0x5440

...

...

0
1

P1
P990
P7

P9343

0
1
2
3

Radix Tree “Linux Style”

Solution: Lock-less / fewer locks

● Hash and radix tree can be made lock-free
● Memory reclamation tricky

– Hazard-Pointers

– Epoch-based reclamation

– RCU

● lock-free reads / locked writes?

Problem: Backends do the writes

● Only if workload > shared_buffers
● Slows down queries
● Increases randomness of writes
● Limiting kernel dirty buffers hard
● bgwriter inefficient / hard to tune

Problem - Cache Replacement
Scales Badly

● Single Lock for Clock Sweep!
– fixed in 9.5

● Every Backend performs Clock Sweep
● Algorithm is fundamentally expensive

– UH, Oh.

– Worst case essentially is having to touch
NBuffers * 5 Buffers

Clock-Sweep

0 1
2

3
4

5

6

35
CNT: 4

Solution-ish: sweeper process

● perform ClockSweep in background
process(es)

● fill ringbuffer of reusable & clean pages
– lock-less implementation

● tries to keep at least low_watermark reusable
buffers

● stops at high_watermark reusable buffers
● fall back to sweep in backends

Problem: too many random/small
writes

● random writes are slow, even on SSDs
● throughput scales near linearly with request

size on SSDs
● always generate random and small writes on >

shared_buffers workloads

Solution: write combining

● look for neighbouring dirty pages
● write out neighouring dirty pages in file-order
● or as one big write (using pwrite)
● dirty hack: ~40% write throughput in tpc-b like

Problem - Cache Replacement
Replaces Badly

● Usagecount of 5 (max) reached very quickly
– Often all buffers have 5

– only works well if replacement rate is higher than
average usage rate

– very expensive form of random replacement

● Increasing max usagecount increases cost, the
worst case essentially is

O(NBuffer * max_usagecount)

Possible Solutions

● Increase usagecount intelligently
– immediately go from 0→1, 1→2

– separate counter slowing increment from 2→3, 3→4,
4→5

– always decrement usagecount by one

● Different data-structure / replacement strategy
– Segmented list based LRU?

– random replacement?

● Force clock ticks on buffer access
– expensive for (mostly) cached workloads

Problem: Kernel Page Cache

● Double buffering decreases effective memory
utilization

● memory copying between kernel / shared
buffers expensive

● have to work around issues with buffered kernel
IO

● Avoiding double-buffering makes restarts more
expensive

Solutions: Kernel Page Cache

● Hint aggressively to forget pages
– forgoes extended read cache

– allow to gift cache contents??? (yes, throw me out)

● Use O_DIRECT?
– Requires lots of performance work on our side

● synchronous writes

– Considerably faster in some scenarios

– Less Adaptive (resizable shared_buffers)?

– Very OS specific (to be fast)

PostgreSQL's Buffer Manager
Problems & Improvements

Andres Freund
PostgreSQL Developer & Committer

Citus Data – citusdata.com - @citusdata

http://anarazel.de/talks/pgcon-2016-05-20/io.pdf

