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Shared Buffers
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Clock-Sweep
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Writing Data Out
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TPS

pgbench -M prepared -c 32 -] 32

shared_buffers = 16GB, max_wal_size = 100GB
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Problem — Dirty Buffers in Kernel

Massive Latency Spikes, up to hundreds of
seconds

No actually efficient merging of 10 requests

latency spikes every dirty _writeback centisecs
spikes when reaching dirty {background ,}ratio
latency spikes after checkpoint's fsync()

citusdata



Kernel Dirty Buffer Control

* Use sync_file_range(), mmap/msync() to force
OS to write back buffers

* Correctly configured machine — faster

» Unfortunately some workloads with bad config
- Slower

- workload bigger than shared buffers, smaller than
OS page cache

- lots of re-dirtying of already dirtied pages
- fundamental tradeoff
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pgbench -M prepared -c 32 -j 32

shared_buffers = 16GB, max_wal_size = 100GB, target = 0.9; 9.6 flushing
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Problem: Hashtable

* Expensive Lookups
- Wide keys need to be compared (20 bytes)
- Cache Inefficient datastructure (spatial locality)

« Can't efficiently search for the next buffer

— can't scan for all buffers of a relation
(DROP/TRUNCATE!)

— can't write combine to reduce total number of writes

e Possible Solution
- Open relations table
— Tree structure for block lookups
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typedef struct BufferTag
{

struct RelFileNode

{
Oid spcNode;
Oid dbNode;
Oid reINode;
} rnode;

ForkNumber forkNum:

BlockNumber blockNum;
} BufferTag;

/* tablespace */

[* database */

[* relation */

[* physical relation identifier */

[* blknum relative to begin of reln */
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Tree of Trees

Upper Hash-Table / Tree (tablespace, database, relfilenode)

@ @ @ @ cached in SmgrRelation
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Lower Tree (block number)
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Open Relations Table

e Store relation/fork size
- no Iseeks() anymore
— shrink files without exclusive lock?

« Extend files without exclusive lock
- track “next unallocated block”, increment atomically
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Radix Tree “Linux Style”
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Solution: Lock-less / fewer locks

e Hash and radix tree can be made lock-free

 Memory reclamation tricky
- Hazard-Pointers

- Epoch-based reclamation
- RCU

e lock-free reads / locked writes?
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Problem: Backends do the writes

Only if workload > shared_buffers
Slows down queries

Increases randomness of writes
_imiting kernel dirty buffers hard

ogwriter inefficient / hard to tune
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Problem - Cache Replacement
Scales Badly
» Single Lock for Clock Sweep!
- fixed in 9.5
* Every Backend performs Clock Sweep

» Algorithm is fundamentally expensive
- UH, Oh.

- Worst case essentially is having to touch
NBuffers * 5 Buffers
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Clock-Sweep

CNT: 4
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Solution-ish: sweeper process

» perform ClockSweep in background
process(es)

o fill ringbuffer of reusable & clean pages
- lock-less implementation

* tries to keep at least low_watermark reusable
buffers

» stops at high_watermark reusable buffers
» fall back to sweep in backends
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Problem: too many random/small
writes

e random writes are slow, even on SSDs

* throughput scales near linearly with request
size on SSDs

» always generate random and small writes on >
shared buffers workloads
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Solution: write combining

look for neighbouring dirty

write out neighouring C

Irty

nages

nages In file-order

or as one big write (using pwrite)

dirty hack: ~40% write throughput in tpc-b like
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Problem - Cache Replacement
Replaces Badly

» Usagecount of 5 (max) reached very quickly
— Often all buffers have 5

- only works well if replacement rate is higher than
average usage rate

- very expensive form of random replacement

* |ncreasing max usagecount increases cost, the
worst case essentially Is

O(NBuffer * max_usagecount)
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Possible Solutions

* |ncrease usagecount intelligently
- Immediately go from0-1,1-2

- separate counter slowing increment from 2 - 3, 3 -4,
4-5

- always decrement usagecount by one

» Different data-structure / replacement strategy
- Segmented list based LRU?
- random replacement?

 Force clock ticks on buffer access
- expensive for (mostly) cached workloads

citusdata



Problem: Kernel Page Cache

Double buffering decreases effective memory
utilization

memory copying between kernel / shared
ouffers expensive

nave to work around issues with buffered kernel
1O

Avoiding double-buffering makes restarts more
expensive
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Solutions: Kernel Page Cache

* Hint aggressively to forget pages
- forgoes extended read cache
- allow to gift cache contents??? (yes, throw me out)

e Use O DIRECT?

- Requires lots of performance work on our side
e synchronous writes

- Considerably faster in some scenarios
- Less Adaptive (resizable shared buffers)?
- Very OS specific (to be fast)
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