PostgreSQL's Buffer Manager
Problems & Improvements

Andres Freund
PostgreSQL Developer & Committer
Citus Data — citusdata.com - @citusdata

http://anarazel.de/talks/pgcon-2016-05-20/i0.pdf

citusdata

Shared Buffers

citusdata

a|geiyseH buidde 1ayng

Reading Data

AT
N

Storage

-

v

OS PageCache

citusdata

Writing Data

A 4 A M 4

T

Buffer Mapping Hashtable

citusdata

Clock-Sweep

citusdata

Writing Data Out

citusdata

TPS

pgbench -M prepared -c 32 -] 32

shared_buffers = 16GB, max_wal_size = 100GB

2000 2000
- O O 0 o 6 o~
1600 1600
1400 1400
1200 1200
~ ——TPS
1000 1000 £ Latency
800 800 %
600 & ‘ J((| | " 600
400 ’ ’ ” 400
200 | 200
r M mn W 'w e
I I ML JLJM TR T JLJU M il \U Mgt [wu {W WTIR htﬂ M Muutd‘ T 0
° PP PP S, Q\, &%N‘f’b\f’ «Pr‘bé” %@Q’bé(\ & \9%%'9(1%/ g fﬂ s, &"’q’ m“’vq’,\« q/&ﬁ,b‘b
seconds

citusdata

bytes

1000000

900000

800000

700000

600000

500000

400000

300000

200000

100000

0

Dirty Data

—— Dirty
— Writeback

IJ W

T \‘\ 1L \‘\H HHH\HH\HHH\H\H\HHHHH\HHH\HHHH\HHH\H\HHH [T \\HH\HHHHH\H\HH\h\\ T I \HH\HH\HHH\HHH\HHHHHH\\\HHH\HHH\HHHH\H\H I HH\HHH\H\HHH\HHHHHHH‘HH\H\HHHHHHHHHHHHHH\H TITTITTTITITTIT T

RN TP PRSI BRI I AR I A Q0D 2 A N PO DN O

L2 P o i PP B & AP D B S @A L S W 55 P S (@ & P &
v T FEE PP FFGEELEF TP F P @ (PSS

time (seconds)

citusdata

Problem — Dirty Buffers in Kernel

Massive Latency Spikes, up to hundreds of
seconds

No actually efficient merging of 10 requests

latency spikes every dirty _writeback centisecs
spikes when reaching dirty {background ,}ratio
latency spikes after checkpoint's fsync()

citusdata

Kernel Dirty Buffer Control

* Use sync_file_range(), mmap/msync() to force
OS to write back buffers

* Correctly configured machine — faster

» Unfortunately some workloads with bad config
- Slower

- workload bigger than shared buffers, smaller than
OS page cache

- lots of re-dirtying of already dirtied pages
- fundamental tradeoff

citusdata

TPS

2000

1800

1600

1400

1200

1000

800

600

400

200

0

\

\
|

I\ .
e d NNt

pgbench -M prepared -c 32 -j 32

shared_buffers = 16GB, max_wal_size = 100GB, target = 0.9; 9.6 flushing

P

1

° DO
WP

|

R \
WA AN Aot Mo A A ’ b
WA AGAANI A g A AN AT My AN, pn MU

XV
>

\
H il

A Mo A \ \
A AT AAMAAMAAAAA A N A~
A |

© DO > o© D O b O WD O © D O >
S P WS L PP PRSP

seconds

1200

1000

800

600

400

200

0

— TPS
— Latency

Latency (ms)

citusdata

Problem: Hashtable

* Expensive Lookups
- Wide keys need to be compared (20 bytes)
- Cache Inefficient datastructure (spatial locality)

« Can't efficiently search for the next buffer

— can't scan for all buffers of a relation
(DROP/TRUNCATE!)

— can't write combine to reduce total number of writes

e Possible Solution
- Open relations table
— Tree structure for block lookups

citusdata

typedef struct BufferTag
{

struct RelFileNode

{
Oid spcNode;
Oid dbNode;
Oid reINode;
} rnode;

ForkNumber forkNum:

BlockNumber blockNum;
} BufferTag;

/* tablespace */

[* database */

[* relation */

[* physical relation identifier */

[* blknum relative to begin of reln */

citusdata

Tree of Trees

Upper Hash-Table / Tree (tablespace, database, relfilenode)

@ @ @ @ cached in SmgrRelation

\\\\\\\\\\\\\\\\\\\\\\s.

Lower Tree (block number)

~ Buffer |

citusdata

Open Relations Table

e Store relation/fork size
- no Iseeks() anymore
— shrink files without exclusive lock?

« Extend files without exclusive lock
- track “next unallocated block”, increment atomically

citusdata

Radix Tree “Linux Style”

1 2 3 4 56

6b 6b

6b

6b

6b 2b

RO

2"6

0x3464

0x5440

0x9520

;/

4

AN

276

0x...

Ox...

0X...

wiNh -~ O

citusdata

Solution: Lock-less / fewer locks

e Hash and radix tree can be made lock-free

 Memory reclamation tricky
- Hazard-Pointers

- Epoch-based reclamation
- RCU

e lock-free reads / locked writes?

citusdata

Problem: Backends do the writes

Only if workload > shared_buffers
Slows down queries

Increases randomness of writes
_imiting kernel dirty buffers hard

ogwriter inefficient / hard to tune

citusdata

Problem - Cache Replacement
Scales Badly
» Single Lock for Clock Sweep!
- fixed in 9.5
* Every Backend performs Clock Sweep

» Algorithm is fundamentally expensive
- UH, Oh.

- Worst case essentially is having to touch
NBuffers * 5 Buffers

citusdata

Clock-Sweep

CNT: 4

citusdata

Solution-ish: sweeper process

» perform ClockSweep in background
process(es)

o fill ringbuffer of reusable & clean pages
- lock-less implementation

* tries to keep at least low_watermark reusable
buffers

» stops at high_watermark reusable buffers
» fall back to sweep in backends

citusdata

Problem: too many random/small
writes

e random writes are slow, even on SSDs

* throughput scales near linearly with request
size on SSDs

» always generate random and small writes on >
shared buffers workloads

citusdata

Solution: write combining

look for neighbouring dirty

write out neighouring C

Irty

nages

nages In file-order

or as one big write (using pwrite)

dirty hack: ~40% write throughput in tpc-b like

citusdata

Problem - Cache Replacement
Replaces Badly

» Usagecount of 5 (max) reached very quickly
— Often all buffers have 5

- only works well if replacement rate is higher than
average usage rate

- very expensive form of random replacement

* |ncreasing max usagecount increases cost, the
worst case essentially Is

O(NBuffer * max_usagecount)

citusdata

Possible Solutions

* |ncrease usagecount intelligently
- Immediately go from0-1,1-2

- separate counter slowing increment from 2 - 3, 3 -4,
4-5

- always decrement usagecount by one

» Different data-structure / replacement strategy
- Segmented list based LRU?
- random replacement?

 Force clock ticks on buffer access
- expensive for (mostly) cached workloads

citusdata

Problem: Kernel Page Cache

Double buffering decreases effective memory
utilization

memory copying between kernel / shared
ouffers expensive

nave to work around issues with buffered kernel
1O

Avoiding double-buffering makes restarts more
expensive

citusdata

Solutions: Kernel Page Cache

* Hint aggressively to forget pages
- forgoes extended read cache
- allow to gift cache contents??? (yes, throw me out)

e Use O DIRECT?

- Requires lots of performance work on our side
e synchronous writes

- Considerably faster in some scenarios
- Less Adaptive (resizable shared buffers)?
- Very OS specific (to be fast)

citusdata

PostgreSQL's Buffer Manager
Problems & Improvements

Andres Freund
PostgreSQL Developer & Committer
Citus Data — citusdata.com - @citusdata

http://anarazel.de/talks/pgcon-2016-05-20/i0.pdf

citusdata

