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Shared Buffers
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Reading Data
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Writing Data
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Clock-Sweep
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Writing Data Out
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Recovery & Checkpoints

CHECKPOINT CHECKPOINT CHECKPOINT

Crash



  

Checkpoints

1)Remember current position in WAL

2)Do some boring things

3)Write out all dirty buffers

4)fsync() all files modified since last checkpoint

5)Write checkpoint WAL record, pg_control etc.

6)Remove old WAL
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Problem – Dirty Buffers in Kernel

● Massive Latency Spikes, up to hundreds of 
seconds

● No actually efficient merging of IO requests
● latency spikes every dirty_writeback_centisecs, 

 after dirty_background_ratio, dirty_ratio
● latency spikes after checkpoint's fsync()



  

OS Dirty Data Tuning

● dirty_writeback_centisecs => lower
– how often to check for writeback

● dirty_bytes/dirty_ratio => lower
– when to block writing data

● dirty_background_bytes => lower
– when to write data back in the background

● Increases random writes!
● Systemwide. Ooops.
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Dirty Buffers in Kernel

● Force flush using sync_file_range() or msync()
– Decreases jitter

– Increases randomness

– Flushes need to happen in checkpoint, bgwriter, 
backends

● Sort to-be-checkpointed buffers
– Decreases randomness

– Increases Throughput

● Hopefully 9.6
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Problem – Hashtable 

● Expensive Lookups
– Wide keys (20 bytes)

– Cache inefficient datastructure (spatial locality)

● Can't efficiently search for the next buffer
– need to sort for checkpoints

– can't write combine to reduce total number of writes

● Dropping relations very expensive
● Possible Solution: Tree of Radix Trees
● Hopefully 9.7



  

typedef struct BufferTag 
{

struct RelFileNode
{

Oid spcNode; /* tablespace */
Oid dbNode; /* database */
Oid relNode; /* relation */

} rnode; /* physical relation identifier */

ForkNumber forkNum;

BlockNumber blockNum; /* blknum relative to begin of reln */
} BufferTag;
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Upper Tree (tablespace, database, relfilenode, fork)

Tree of Trees

Lower Tree (block number)

Buffer

cached in SmgrRelation / permanent datastructure?



  

Problem - Cache Replacement 
Scales Badly

● Single Lock for Clock Sweep!
– fixed in 9.5

● Every Backend performs Clock Sweep
– can be moved to separate process (patches exist)

● Algorithm is fundamentally expensive
– UH, Oh.

– Worst case essentially is having to touch 
NBuffers * 5 Buffers



  

Problem - Cache Replacement 
Replaces Badly

● Usagecount of 5 (max) reached very quickly
– Often all buffers have 5

– only works well if replacement rate is higher than 
average usage rate

– very expensive form of random replacement

● Increasing max usagecount increases cost, the 
worst case essentially is

O(NBuffer * max_usagecount)
● Hard to solve
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Problem: Kernel Page Cache

● Double buffering decreases effective memory 
utilization

● Use O_DIRECT?
– Requires lots of performance work on our side

– Considerably faster in some scenarios

– Less Adaptive

– Very OS specific (to be fast)
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