
  

Improving Postgres' Buffer Manager

Andres Freund
PostgreSQL Developer & Committer

Citus Data – citusdata.com - @citusdata

http://anarazel.de/talks/fosdem-2016-01-31/io.pdf



  

Memory Architecture

Postmaster

Background writer

Checkpointer

Wal writer

User Connection Backend

Shared Memory

Buffer Cache

Locking
Information

Transaction
State

…

Sorting

Plans

Temporary
Tables

Bitmap
Scans

Process local Memory



  

Shared Buffers

8 KB
DATA

T
A
G

L
O
C
K

0

8 KB
DATA

T
A
G

L
O
C
K

1

8 KB
DATA

T
A
G

L
O
C
K

2

8 KB
DATA

T
A
G

L
O
C
K

3

8 KB
DATA

T
A
G

L
O
C
K

4

F
L
A
G

F
L
A
G

F
L
A
G

F
L
A
G

F
L
A
GB

uffer M
apping  H

asht able

C
N
T
S

C
N
T
S

C
N
T
S

C
N
T
S

C
N
T
S



  

Reading Data

8 KB
DATA

T
A
G

L
O
C
K

3

F
L
A
G

B
uffer M

apping  H
asht able T

A
G

L
O
C
K

F
L
A
G

OS PageCache

open()
read()

8 KB
DATA

C
N
T
S

C
N
T
S

Storage



  

Writing Data

8 KB
DATA

T
A
G

L
O
C
K

3

F
L
A
G

B
uffer M

apping  H
asht able L

O
C
K

F
L
A
G

8 KB
DATA

C
N
T
S



  

Clock-Sweep

0 1
2

3
4

5

6

35
CNT: 4CNT: 3

CNT: 0



  

Writing Data Out

8 KB
DATA

T
A
G

L
O
C
K

3

F
L
A
G

B
uffer M

apping  H
asht able L

O
C
K

F
L
A
G

C
N
T
S

OS PageCache
open()
w

rite()



  

Recovery & Checkpoints

CHECKPOINT CHECKPOINT CHECKPOINT

Crash



  

Checkpoints

1)Remember current position in WAL

2)Do some boring things

3)Write out all dirty buffers

4)fsync() all files modified since last checkpoint

5)Write checkpoint WAL record, pg_control etc.

6)Remove old WAL



  

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

pgbench -M prepared -c 32 -j 32

standard settings

TPS

Latency

seconds

T
P

S

L
a

te
n

cy
 (

m
s

)



  

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0

500

1000

1500

2000

2500

pgbench -M prepared -c 32 -j 32

shared_buffers = 16GB

TPS

Latency

seconds

T
P

S

L
a

te
n

cy
 (

m
s

)



  

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

pgbench -M prepared -c 32 -j 32

shared_buffers = 16GB, max_wal_size = 100GB

TPS

Latency

seconds

T
P

S

L
a

te
n

cy
 (

m
s

)



  

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

Dirty Data

Dirty

Writeback

time (seconds)

b
yt

e
s



  

Problem – Dirty Buffers in Kernel

● Massive Latency Spikes, up to hundreds of 
seconds

● No actually efficient merging of IO requests
● latency spikes every dirty_writeback_centisecs, 

 after dirty_background_ratio, dirty_ratio
● latency spikes after checkpoint's fsync()



  

OS Dirty Data Tuning

● dirty_writeback_centisecs => lower
– how often to check for writeback

● dirty_bytes/dirty_ratio => lower
– when to block writing data

● dirty_background_bytes => lower
– when to write data back in the background

● Increases random writes!
● Systemwide. Ooops.



  

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0

200

400

600

800

1000

1200

pgbench -M prepared -c 32 -j 32

shared_buffers = 16GB, max_wal_size = 100GB, target = 0.9; OS tuning (no dirty)

TPS

Latency

seconds

T
P

S

L
a

te
n

cy
 (

m
s

)



  

Dirty Buffers in Kernel

● Force flush using sync_file_range() or msync()
– Decreases jitter

– Increases randomness

– Flushes need to happen in checkpoint, bgwriter, 
backends

● Sort to-be-checkpointed buffers
– Decreases randomness

– Increases Throughput

● Hopefully 9.6



  

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0

200

400

600

800

1000

1200

pgbench -M prepared -c 32 -j 32

shared_buffers = 16GB, max_wal_size = 100GB, target = 0.9; 9.6 flushing

TPS

Latency

seconds

T
P

S

L
a

te
n

cy
 (

m
s

)



  

Problem – Hashtable 

● Expensive Lookups
– Wide keys (20 bytes)

– Cache inefficient datastructure (spatial locality)

● Can't efficiently search for the next buffer
– need to sort for checkpoints

– can't write combine to reduce total number of writes

● Dropping relations very expensive
● Possible Solution: Tree of Radix Trees
● Hopefully 9.7



  

typedef struct BufferTag 
{

struct RelFileNode
{

Oid spcNode; /* tablespace */
Oid dbNode; /* database */
Oid relNode; /* relation */

} rnode; /* physical relation identifier */

ForkNumber forkNum;

BlockNumber blockNum; /* blknum relative to begin of reln */
} BufferTag;



  

6b 6b 6b 6b 6b2b

1 2 3 4 5 6

0x3464
0x5440

...

...
0x9520

0
1

2^6

0x3464
0x5440

...

...
0x9520

0
1

2^6

0x...
0x...
...
...

0x...

0
1

2^6

0x3464
0x5440

...

...
0x9520

0
1

2^6

0x...
0x...
...
...

0x...

0
1

2^6

0x3464
0x5440

...

...
0x9520

0
1

2^6

0x...
0x...
...
...

0x...

0
1

2^6

...

…….

0x3464
0x5440

...

...

0
1

P1
P990
P7

P9343

0
1
2
3

Radix Tree “Linux Style”



  

Upper Tree (tablespace, database, relfilenode, fork)

Tree of Trees

Lower Tree (block number)

Buffer

cached in SmgrRelation / permanent datastructure?



  

Problem - Cache Replacement 
Scales Badly

● Single Lock for Clock Sweep!
– fixed in 9.5

● Every Backend performs Clock Sweep
– can be moved to separate process (patches exist)

● Algorithm is fundamentally expensive
– UH, Oh.

– Worst case essentially is having to touch 
NBuffers * 5 Buffers



  

Problem - Cache Replacement 
Replaces Badly

● Usagecount of 5 (max) reached very quickly
– Often all buffers have 5

– only works well if replacement rate is higher than 
average usage rate

– very expensive form of random replacement

● Increasing max usagecount increases cost, the 
worst case essentially is

O(NBuffer * max_usagecount)
● Hard to solve



  

0 1
2

3
4

5

6

35

CNT: 5



  

Problem: Kernel Page Cache

● Double buffering decreases effective memory 
utilization

● Use O_DIRECT?
– Requires lots of performance work on our side

– Considerably faster in some scenarios

– Less Adaptive

– Very OS specific (to be fast)



  

Improving Postgres' Buffer Manager

Andres Freund
PostgreSQL Developer & Committer

Citus Data – citusdata.com - @citusdata

http://anarazel.de/talks/fosdem-2016-01-31/io.pdf


