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Motivation



SELECT
l_returnflag,
l_linestatus,
sum(l_quantity) AS sum_qty,
sum(l_extendedprice) AS sum_base_price,
sum(l_extendedprice * (1 - l_discount)) AS sum_disc_price,
sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) AS sum_charge,
avg(l_quantity) AS avg_qty,
avg(l_extendedprice) AS avg_price,
avg(l_discount) AS avg_disc,
count(*) AS count_order

FROM lineitem
WHERE l_shipdate <= date '1998-12-01' - interval '74 days'
GROUP BY l_returnflag, l_linestatus
ORDER BY l_returnflag, l_linestatus;

TPC-H Q01



TPC-H Q01

Sort  (cost=4313208.98..4313209.00 rows=6 width=68)
      (actual time=33983.596..33983.596 rows=4 loops=1)
  Sort Key: l_returnflag, l_linestatus
  Sort Method: quicksort  Memory: 25kB
  Buffers: shared hit=4 read=1186601
  I/O Timings: read=6124.546
  ->  HashAggregate  (cost=4313208.80..4313208.91 rows=6 width=68)  
                     (actual time=33982.837..33982.839 rows=4 loops=1)
        Group Key: l_returnflag, l_linestatus
        Buffers: shared hit=1 read=1186601
        I/O Timings: read=6124.546
        ->  Seq Scan on lineitem  (cost=0.00..1936377.20 rows=59420790)
                                  (..time=13841.766 rows=59414087 loops=1)
              Filter: (l_shipdate <= '1998-09-18 00:00:00'::timestamp)
              Rows Removed by Filter: 571965
              Buffers: shared hit=1 read=1186601
              I/O Timings: read=6124.546
Planning Time: 29.888 ms
Execution Time: 33984.546 ms



TPC-H Q01

Sort  (cost=4313208.98..4313209.00 rows=6 width=68)
      (actual time=26509.669..26509.670 rows=4 loops=1)
  Sort Key: l_returnflag, l_linestatus
  Sort Method: quicksort  Memory: 25kB
  Buffers: shared hit=1186602
  ->  HashAggregate  (cost=4313208.80..4313208.91 rows=6 width=68)
                     (actual time=26509.622..26509.625 rows=4 loops=1)
        Group Key: l_returnflag, l_linestatus
        Buffers: shared hit=1186602
        ->  Seq Scan on lineitem  (cost=0.00..1936377.20 rows=59420790 width=36)
                                  (time=0.016..8132.990 rows=59414087 loops=1)
              Filter: (l_shipdate <= '1998-09-18 00:00:00'::timestamp)
              Rows Removed by Filter: 571965
              Buffers: shared hit=1186602
Planning Time: 5.161 ms
Execution Time: 26509.857 ms



Samples: 87K of event 'cycles:ppp', cnt (approx.): 71706618234
  Overhead  Command   Shared Object     Symbol
-   35.96%  postgres  postgres          [.] ExecInterpExpr
      + 72.86% ExecAgg
      - 18.33% tuplehash_insert
           LookupTupleHashEntry
           ExecAgg
           ExecSort
      + 8.81% ExecScan
-   10.79%  postgres  postgres          [.] slot_deform_tuple
        slot_getsomeattrs
      - ExecInterpExpr
         + 77.31% ExecScan
         + 22.69% tuplehash_insert
+    4.96%  postgres  postgres          [.] tuplehash_insert
+    4.53%  postgres  postgres          [.] float8_accum
+    3.21%  postgres  postgres          [.] float8pl
+    2.61%  postgres  postgres          [.] bpchareq
+    2.40%  postgres  postgres          [.] hashbpchar

TPC-H Q01 Profile



Solutions
● Micro (and not so micro) Optimizations

– various pieces in v10, v11 and earlier releases, significant speedups
– further possibilities, bottlenecks currently elsewhere

● Parallelism (close to linear scale in v10/11)
– uses more resources

● Distributed Computation
– uses more resources, out of core

● Columnar Store / Vectorized Execution
– no mature, well integrated, postgres solutions exist
– not commonly suitable for hybrid OLTP / OLAP workloads



What is “Just In Time” compilation
● “just-in-time (JIT) compilation, is a way of executing computer code that involves 

compilation during execution of a program – at run time – rather than prior to 
execution.” *

● Convert forms of “interpreted” code into native code
– removes interpretation overhead

● Specialize code for specific constant arguments
– removes entire “branches” of work

● Achieve speedups via:
– reduced total number of executed instructions
– reduced number of executed branches
– reduced number of executed indirect jumps / calls

● Well known from browsers for javascripts, java VMs and the like

* https://en.wikipedia.org/wiki/Just-in-time_compilation

https://en.wikipedia.org/wiki/Just-in-time_compilation


How does JIT compilation work in PostgreSQL
● Uses LLVM (llvm.org)
● Optional Feature (./configure --with-llvm)
● Doesn’t work on Windows at this point
● Packagers can install support separately (e.g postgresql11-

llvmjit for yum.postgresql.org)
● jit = on && SELECT pg_jit_available();
● Extensible – other implementations / providers / extensions can 

replace (jit_provider = ‘llvmjit’)



SELECT
l_returnflag,
l_linestatus,
sum(l_quantity) AS sum_qty,
sum(l_extendedprice) AS sum_base_price,
sum(l_extendedprice * (1 - l_discount)) AS sum_disc_price,
sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) AS sum_charge,
avg(l_quantity) AS avg_qty,
avg(l_extendedprice) AS avg_price,
avg(l_discount) AS avg_disc,
count(*) AS count_order

FROM lineitem
WHERE l_shipdate <= date '1998-12-01' - interval '74 days'
GROUP BY l_returnflag, l_linestatus
ORDER BY l_returnflag, l_linestatus;

Just-in-Time Compilation in v11

Deforming / Parsing

Predicates

Grouping

Aggregate Input

Select List



Parts of JIT Compilation in v11
● JIT compilation of expressions

– removes interpretation of expressions, JIT compiles them

– jit = on/off

● JIT compilation of tuple deforming
– accellerates on-disk / buffer → in memory representation

– jit_tuple_deforming = on/off

● Optimization of JIT compiled functions using LLVM 
● Inlining of SQL level functions / operators

– SQL defined operators have overhead that can be significant portion of 
time for simple functions

– Available to extensions
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Planning JIT Compilation – Why not always

JIT JITed Query Execution

Query Execution

JIT JITed Query ExecutionJITed Query Execution



Planning JIT Compilation
● Naive!
● jit = off => no JIT compilation (default: on, but might change)
● Perform JIT if query_cost > jit_above_cost

– default: 100000

● Optimize if query_cost > jit_optimize_above_cost
– default: 500000

● Inline if query_cost > jit_inline_above_cost
– default: 500000

● -1 disables
● Whole query decision
● *NOT* a tracing JIT:

– costing makes tracing somewhat superflous
– tracing decreases overall gains



Planning JIT Compilation - Example

Sort  (cost=4313208.98..4313209.00 rows=6 width=68)
  Sort Key: l_returnflag, l_linestatus
  Sort Method: quicksort  Memory: 25kB
  ->  HashAggregate  (cost=4313208.80..4313208.91 rows=6 width=68)
        Group Key: l_returnflag, l_linestatus
        ->  Seq Scan on lineitem  (cost=0.00..1936377.20 rows=59420790 width=36)
              Filter: (l_shipdate <= '1998-09-18 00:00:00'::timestamp)
Planning Time: 5.161 ms



Planning JIT Compilation – Example EXPLAIN

JIT:
  Functions: 9
  Generation Time: 5.174 ms
  Inlining: true
  Inlining Time: 75.291 ms
  Optimization: true
  Optimization Time: 124.676 ms
  Emission Time: 122.556 ms



Good Cases / Bad Cases
● CPU bound → likely good

– JIT compilation can only help alleviate CPU usage

● OLTP / short query → bad
– Overhead of JITing too high, bottlenecks elsewhere

● IO bound → not necessarily good, often not harmful
– IO isn’t accelerated by JIT

● OLAP / long query→ good
– Overhead of JITing lower portion of time, more likely to have CPU 

intensive aggregates

● wide relations → good
– tuple deforming benefits, especially with lots of NOT NULL columns



Good Cases / Bad Cases
● Sequential Scans → helpful

– tuple deforming and quals

● Index Scans → not helpful
– nothing to accelerate, if no filter
– indexing code often majority of time

● Bitmap Index Scans → helpful
– tuple deforming and recheck

● Hash / Group Aggregate → helpful
– nearly all of work JITed
– aggregation work accelerated, but sorting is not

● Sort → not helpful
– sorting not currently accelerated

● Joins → less helpful
– join conditions often not accelerated (index nested loop, merge join, hashjoin)
– non join quals & projection are accelerated



TPC-H Q01

Sort  (cost=4313208.98..4313209.00 rows=6 width=68)
      (actual time=26509.669..26509.670 rows=4 loops=1)
  Sort Key: l_returnflag, l_linestatus
  Sort Method: quicksort  Memory: 25kB
  Buffers: shared hit=1186602
  ->  HashAggregate  (cost=4313208.80..4313208.91 rows=6 width=68)
                     (actual time=26509.622..26509.625 rows=4 loops=1)
        Group Key: l_returnflag, l_linestatus
        Buffers: shared hit=1186602
        ->  Seq Scan on lineitem  (cost=0.00..1936377.20 rows=59420790 width=36)
                                  (time=0.016..8132.990 rows=59414087 loops=1)
              Filter: (l_shipdate <= '1998-09-18 00:00:00'::timestamp)
              Rows Removed by Filter: 571965
              Buffers: shared hit=1186602
Planning Time: 5.161 ms
Execution Time: 26509.857 ms



Identifying Queries / Workloads where helpful
● top → cpu bound or not
● iostat -xm → IO bound
● pg_stat_activity → queries run for long or not
● track_io_timing = on
● pg_stat_statements

– SELECT blk_read_time, total_time, calls, 

    total_time / calls AS avg_time,

    query

FROM pg_stat_statements;

● EXPLAIN (ANALYZE, BUFFERS)
– most of the time IO → probably not

– most of time in “helpful” nodes → probably helpful

– short → not helpful

– really wrong costs → oops



Problems / Improvements: Query Planning
● Simplistic Costing

– cost calculation constant – but actual time cost is not

– enable_* GUCs wreak havoc, reach limit

– might be cheaper overall to run plan “touching” more tuples after JITing

– bad cost estimates → unnecessary JITing

● Whole Query decision too coarse
– use estimates about total number of each function evaluation?

● JIT more aggressively when using prepared statements?
– but ….



JIT Improvements: Caching
● Optimizer overhead significant

– TPCH Q01: unopt, noinline: time to optimize: 0.002s, emit: 0.036s
– TPCH Q01: time to inline: 0.080s, optimize: 0.163s, emit 0.082s

● Non-Shared / Shared / Persistent?
● But ...



JIT Improvements: Code Generation
● Expressions refer to per-query allocated memory

– Lots of superflous memory reads/writes for arguments, optimizer can’t eliminate in most cases
● massively reduces benefits of inlining

– Optimizer can’t optimize away memory lots of memory references

– FIX: separate permanent and per eval memory

● Expression step results refer to external memory by pointer
– Move to on-stack allocation

● Function Call Interface references external memory
– Move to on-stack allocation

– Non JITed expression evaluation will benefit too

● Allows Caching, including sharing JITed functions between 
leader & worker

● Prototype: 2.2x improvement for TPC-H Q01



JIT Improvements: Incremental JITing

JIT JITed Query Execution

Query Execution

JIT JITed Query Execution

JIT

Query Execution

JITed Query Execution

JITed Query Execution



Future things to JIT

● COPY parsing, input / output function invocation
– easy – medium

● Aggregate & Hashjoin hash computation
– easy

● Tuple Sorting (in-memory)
– including tuple deforming (from MinimalTuple)
– easy

● Executor control flow
– hard, but lots of other benefits (asynchronous execution, non-JITed will 

be faster, less memory)



JIT – how to test
● Debian:

– apt.postgresql.org has v11 beta 3 packages
– https://wiki.postgresql.org/wiki/Apt/

FAQ#I_want_to_try_the_beta_version_of_the_next_PostgreSQL_release
– Install postgresql-11

● RHEL:
– yum.postgresql.org has v11 beta 3 packages
– https://yum.postgresql.org/repopackages.php#pg11
– install postgresql11-server postgresql11-llvmjit

● depends on EPEL

● https://www.postgresql.org/docs/devel/static/jit.html
● Report Bugs & Problems!

https://www.postgresql.org/docs/devel/static/jit.html
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