
Just In Time Compilation in
PostgreSQL 11 and onward
Andres Freund

PostgreSQL Developer & Committer

Email: andres@anarazel.de

Email: andres.freund@enterprisedb.com

Twitter: @AndresFreundTec

anarazel.de/talks/2018-09-07-pgopen-jit/jit.pdf

mailto:andres@anarazel.de
mailto:andres.freund@enterprisedb.com

Motivation

SELECT
l_returnflag,
l_linestatus,
sum(l_quantity) AS sum_qty,
sum(l_extendedprice) AS sum_base_price,
sum(l_extendedprice * (1 - l_discount)) AS sum_disc_price,
sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) AS sum_charge,
avg(l_quantity) AS avg_qty,
avg(l_extendedprice) AS avg_price,
avg(l_discount) AS avg_disc,
count(*) AS count_order

FROM lineitem
WHERE l_shipdate <= date '1998-12-01' - interval '74 days'
GROUP BY l_returnflag, l_linestatus
ORDER BY l_returnflag, l_linestatus;

TPC-H Q01

TPC-H Q01

Sort (cost=4313208.98..4313209.00 rows=6 width=68)
 (actual time=33983.596..33983.596 rows=4 loops=1)
 Sort Key: l_returnflag, l_linestatus
 Sort Method: quicksort Memory: 25kB
 Buffers: shared hit=4 read=1186601
 I/O Timings: read=6124.546
 -> HashAggregate (cost=4313208.80..4313208.91 rows=6 width=68)
 (actual time=33982.837..33982.839 rows=4 loops=1)
 Group Key: l_returnflag, l_linestatus
 Buffers: shared hit=1 read=1186601
 I/O Timings: read=6124.546
 -> Seq Scan on lineitem (cost=0.00..1936377.20 rows=59420790)
 (..time=13841.766 rows=59414087 loops=1)
 Filter: (l_shipdate <= '1998-09-18 00:00:00'::timestamp)
 Rows Removed by Filter: 571965
 Buffers: shared hit=1 read=1186601
 I/O Timings: read=6124.546
Planning Time: 29.888 ms
Execution Time: 33984.546 ms

TPC-H Q01

Sort (cost=4313208.98..4313209.00 rows=6 width=68)
 (actual time=26509.669..26509.670 rows=4 loops=1)
 Sort Key: l_returnflag, l_linestatus
 Sort Method: quicksort Memory: 25kB
 Buffers: shared hit=1186602
 -> HashAggregate (cost=4313208.80..4313208.91 rows=6 width=68)
 (actual time=26509.622..26509.625 rows=4 loops=1)
 Group Key: l_returnflag, l_linestatus
 Buffers: shared hit=1186602
 -> Seq Scan on lineitem (cost=0.00..1936377.20 rows=59420790 width=36)
 (time=0.016..8132.990 rows=59414087 loops=1)
 Filter: (l_shipdate <= '1998-09-18 00:00:00'::timestamp)
 Rows Removed by Filter: 571965
 Buffers: shared hit=1186602
Planning Time: 5.161 ms
Execution Time: 26509.857 ms

Samples: 87K of event 'cycles:ppp', cnt (approx.): 71706618234
 Overhead Command Shared Object Symbol
- 35.96% postgres postgres [.] ExecInterpExpr
 + 72.86% ExecAgg
 - 18.33% tuplehash_insert
 LookupTupleHashEntry
 ExecAgg
 ExecSort
 + 8.81% ExecScan
- 10.79% postgres postgres [.] slot_deform_tuple
 slot_getsomeattrs
 - ExecInterpExpr
 + 77.31% ExecScan
 + 22.69% tuplehash_insert
+ 4.96% postgres postgres [.] tuplehash_insert
+ 4.53% postgres postgres [.] float8_accum
+ 3.21% postgres postgres [.] float8pl
+ 2.61% postgres postgres [.] bpchareq
+ 2.40% postgres postgres [.] hashbpchar

TPC-H Q01 Profile

Solutions
● Micro (and not so micro) Optimizations

– various pieces in v10, v11 and earlier releases, significant speedups
– further possibilities, bottlenecks currently elsewhere

● Parallelism (close to linear scale in v10/11)
– uses more resources

● Distributed Computation
– uses more resources, out of core

● Columnar Store / Vectorized Execution
– no mature, well integrated, postgres solutions exist
– not commonly suitable for hybrid OLTP / OLAP workloads

What is “Just In Time” compilation
● “just-in-time (JIT) compilation, is a way of executing computer code that involves

compilation during execution of a program – at run time – rather than prior to
execution.” *

● Convert forms of “interpreted” code into native code
– removes interpretation overhead

● Specialize code for specific constant arguments
– removes entire “branches” of work

● Achieve speedups via:
– reduced total number of executed instructions
– reduced number of executed branches
– reduced number of executed indirect jumps / calls

● Well known from browsers for javascripts, java VMs and the like

* https://en.wikipedia.org/wiki/Just-in-time_compilation

https://en.wikipedia.org/wiki/Just-in-time_compilation

How does JIT compilation work in PostgreSQL
● Uses LLVM (llvm.org)
● Optional Feature (./configure --with-llvm)
● Doesn’t work on Windows at this point
● Packagers can install support separately (e.g postgresql11-

llvmjit for yum.postgresql.org)
● jit = on && SELECT pg_jit_available();
● Extensible – other implementations / providers / extensions can

replace (jit_provider = ‘llvmjit’)

SELECT
l_returnflag,
l_linestatus,
sum(l_quantity) AS sum_qty,
sum(l_extendedprice) AS sum_base_price,
sum(l_extendedprice * (1 - l_discount)) AS sum_disc_price,
sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) AS sum_charge,
avg(l_quantity) AS avg_qty,
avg(l_extendedprice) AS avg_price,
avg(l_discount) AS avg_disc,
count(*) AS count_order

FROM lineitem
WHERE l_shipdate <= date '1998-12-01' - interval '74 days'
GROUP BY l_returnflag, l_linestatus
ORDER BY l_returnflag, l_linestatus;

Just-in-Time Compilation in v11

Deforming / Parsing

Predicates

Grouping

Aggregate Input

Select List

Parts of JIT Compilation in v11
● JIT compilation of expressions

– removes interpretation of expressions, JIT compiles them

– jit = on/off

● JIT compilation of tuple deforming
– accellerates on-disk / buffer → in memory representation

– jit_tuple_deforming = on/off

● Optimization of JIT compiled functions using LLVM
● Inlining of SQL level functions / operators

– SQL defined operators have overhead that can be significant portion of
time for simple functions

– Available to extensions

0 1 2 4 8 16
0

100000

200000

300000

400000

500000

600000

TPCH Q01 timing

scale 100, fully cached

jit=0

jit=1

parallelism

tim
e

 in
 m

s

Planning JIT Compilation – Why not always

JIT JITed Query Execution

Query Execution

JIT JITed Query ExecutionJITed Query Execution

Planning JIT Compilation
● Naive!
● jit = off => no JIT compilation (default: on, but might change)
● Perform JIT if query_cost > jit_above_cost

– default: 100000

● Optimize if query_cost > jit_optimize_above_cost
– default: 500000

● Inline if query_cost > jit_inline_above_cost
– default: 500000

● -1 disables
● Whole query decision
● *NOT* a tracing JIT:

– costing makes tracing somewhat superflous
– tracing decreases overall gains

Planning JIT Compilation - Example

Sort (cost=4313208.98..4313209.00 rows=6 width=68)
 Sort Key: l_returnflag, l_linestatus
 Sort Method: quicksort Memory: 25kB
 -> HashAggregate (cost=4313208.80..4313208.91 rows=6 width=68)
 Group Key: l_returnflag, l_linestatus
 -> Seq Scan on lineitem (cost=0.00..1936377.20 rows=59420790 width=36)
 Filter: (l_shipdate <= '1998-09-18 00:00:00'::timestamp)
Planning Time: 5.161 ms

Planning JIT Compilation – Example EXPLAIN

JIT:
 Functions: 9
 Generation Time: 5.174 ms
 Inlining: true
 Inlining Time: 75.291 ms
 Optimization: true
 Optimization Time: 124.676 ms
 Emission Time: 122.556 ms

Good Cases / Bad Cases
● CPU bound → likely good

– JIT compilation can only help alleviate CPU usage

● OLTP / short query → bad
– Overhead of JITing too high, bottlenecks elsewhere

● IO bound → not necessarily good, often not harmful
– IO isn’t accelerated by JIT

● OLAP / long query→ good
– Overhead of JITing lower portion of time, more likely to have CPU

intensive aggregates

● wide relations → good
– tuple deforming benefits, especially with lots of NOT NULL columns

Good Cases / Bad Cases
● Sequential Scans → helpful

– tuple deforming and quals

● Index Scans → not helpful
– nothing to accelerate, if no filter
– indexing code often majority of time

● Bitmap Index Scans → helpful
– tuple deforming and recheck

● Hash / Group Aggregate → helpful
– nearly all of work JITed
– aggregation work accelerated, but sorting is not

● Sort → not helpful
– sorting not currently accelerated

● Joins → less helpful
– join conditions often not accelerated (index nested loop, merge join, hashjoin)
– non join quals & projection are accelerated

TPC-H Q01

Sort (cost=4313208.98..4313209.00 rows=6 width=68)
 (actual time=26509.669..26509.670 rows=4 loops=1)
 Sort Key: l_returnflag, l_linestatus
 Sort Method: quicksort Memory: 25kB
 Buffers: shared hit=1186602
 -> HashAggregate (cost=4313208.80..4313208.91 rows=6 width=68)
 (actual time=26509.622..26509.625 rows=4 loops=1)
 Group Key: l_returnflag, l_linestatus
 Buffers: shared hit=1186602
 -> Seq Scan on lineitem (cost=0.00..1936377.20 rows=59420790 width=36)
 (time=0.016..8132.990 rows=59414087 loops=1)
 Filter: (l_shipdate <= '1998-09-18 00:00:00'::timestamp)
 Rows Removed by Filter: 571965
 Buffers: shared hit=1186602
Planning Time: 5.161 ms
Execution Time: 26509.857 ms

Identifying Queries / Workloads where helpful
● top → cpu bound or not
● iostat -xm → IO bound
● pg_stat_activity → queries run for long or not
● track_io_timing = on
● pg_stat_statements

– SELECT blk_read_time, total_time, calls,

 total_time / calls AS avg_time,

 query

FROM pg_stat_statements;

● EXPLAIN (ANALYZE, BUFFERS)
– most of the time IO → probably not

– most of time in “helpful” nodes → probably helpful

– short → not helpful

– really wrong costs → oops

Problems / Improvements: Query Planning
● Simplistic Costing

– cost calculation constant – but actual time cost is not

– enable_* GUCs wreak havoc, reach limit

– might be cheaper overall to run plan “touching” more tuples after JITing

– bad cost estimates → unnecessary JITing

● Whole Query decision too coarse
– use estimates about total number of each function evaluation?

● JIT more aggressively when using prepared statements?
– but ….

JIT Improvements: Caching
● Optimizer overhead significant

– TPCH Q01: unopt, noinline: time to optimize: 0.002s, emit: 0.036s
– TPCH Q01: time to inline: 0.080s, optimize: 0.163s, emit 0.082s

● Non-Shared / Shared / Persistent?
● But ...

JIT Improvements: Code Generation
● Expressions refer to per-query allocated memory

– Lots of superflous memory reads/writes for arguments, optimizer can’t eliminate in most cases
● massively reduces benefits of inlining

– Optimizer can’t optimize away memory lots of memory references

– FIX: separate permanent and per eval memory

● Expression step results refer to external memory by pointer
– Move to on-stack allocation

● Function Call Interface references external memory
– Move to on-stack allocation

– Non JITed expression evaluation will benefit too

● Allows Caching, including sharing JITed functions between
leader & worker

● Prototype: 2.2x improvement for TPC-H Q01

JIT Improvements: Incremental JITing

JIT JITed Query Execution

Query Execution

JIT JITed Query Execution

JIT

Query Execution

JITed Query Execution

JITed Query Execution

Future things to JIT

● COPY parsing, input / output function invocation
– easy – medium

● Aggregate & Hashjoin hash computation
– easy

● Tuple Sorting (in-memory)
– including tuple deforming (from MinimalTuple)
– easy

● Executor control flow
– hard, but lots of other benefits (asynchronous execution, non-JITed will

be faster, less memory)

JIT – how to test
● Debian:

– apt.postgresql.org has v11 beta 3 packages
– https://wiki.postgresql.org/wiki/Apt/

FAQ#I_want_to_try_the_beta_version_of_the_next_PostgreSQL_release
– Install postgresql-11

● RHEL:
– yum.postgresql.org has v11 beta 3 packages
– https://yum.postgresql.org/repopackages.php#pg11
– install postgresql11-server postgresql11-llvmjit

● depends on EPEL

● https://www.postgresql.org/docs/devel/static/jit.html
● Report Bugs & Problems!

https://www.postgresql.org/docs/devel/static/jit.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

