
State of JIT – 2018 Edition

Andres Freund

PostgreSQL Developer & Committer

Email: andres@anarazel.de

Email: andres.freund@enterprisedb.com

Twitter: @AndresFreundTec

anarazel.de/talks/2018-06-01-pgcon-state-of-jit/state-of-jit.pdf

mailto:andres@anarazel.de
mailto:andres.freund@enterprisedb.com

PostgreSQL 11 will have basic JIT
compilation

v10+ Expression Evaluation Engine
● WHERE a.col < 10 AND a.another = 3

– EEOP_SCAN_FETCHSOME (deform necessary cols)
– EEOP_SCAN_VAR (a.col)
– EEOP_CONST (10)
– EEOP_FUNCEXPR_STRICT (int4lt)
– EEOP_BOOL_AND_STEP_FIRST
– EEOP_SCAN_VAR (a.another)
– EEOP_CONST (3)
– EEOP_FUNCEXPR_STRICT (int4eq)

– EEOP_BOOL_AND_STEP_LAST (AND)

● direct threaded
● lots of indirect jumps

JITed expressions
● directly emit LLVM IR for common opcodes
● emit calls to functions implementing less common opcodes

– can be inlined

● indirect opcode→opcode jumps become direct
● indirect funcexpr calls become direct

– can be inlined

● TPCH Q01 non-jitted vs jitted:
– 28759 ms vs 22309 ms
– branch misses: 0.38% vs 0.07%
– iTLB load misses: 58,903,279 vs 48,986 (yes, really)

Tuple Deforming
● deforming := turn on-disk tuple into in-memory representation
● Often most significant bottleneck
● TupleDesc (“tuple format”) can be made known at JIT time in many cases
● Optimizable:

– Number of columns to deform - constant
– Number of columns in tuple – if to-deform below last NOT NULL
– column type - constant
– column width – known for fixed width types
– Variable alignment requirements – known for fixed width (depending on NULLness)
– NULL bitmap – no need to check if NOT NULL

● Resulting code often very pipelineable, previously lots of stalls
● Access to tuple’s t_hoff / HeapTupleHeaderGetNatts() still major source of stalls

– reorder tuple accesses on page!

● TPC-H Q01: unjitted deform vs jitted
– time: 22277 ms vs 19580 ms
– branches: 1396.318 M/sec vs 1161.628M/sec (despite higher throughput)

Good Cases / Bad Cases
● OLTP → bad, short query → bad
● OLAP → good, long query → good
● IO bound → not necessarily good
● CPU bound → likely good
● lots of aggregates → good
● wide relations → good

SELECT
l_returnflag,
l_linestatus,
sum(l_quantity) AS sum_qty,
sum(l_extendedprice) AS sum_base_price,
sum(l_extendedprice * (1 - l_discount)) AS sum_disc_price,
sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) AS sum_charge,
avg(l_quantity) AS avg_qty,
avg(l_extendedprice) AS avg_price,
avg(l_discount) AS avg_disc,
count(*) AS count_order

FROM lineitem
WHERE l_shipdate <= date '1998-12-01' - interval '74 days'
GROUP BY l_returnflag, l_linestatus
ORDER BY l_returnflag, l_linestatus;

TPC-H Q01

Samples: 87K of event 'cycles:ppp', cnt (approx.): 71706618234
 Overhead Command Shared Object Symbol
- 35.96% postgres postgres [.] ExecInterpExpr
 + 72.86% ExecAgg
 - 18.33% tuplehash_insert
 LookupTupleHashEntry
 ExecAgg
 ExecSort
 + 8.81% ExecScan
- 10.79% postgres postgres [.] slot_deform_tuple
 slot_getsomeattrs
 - ExecInterpExpr
 + 77.31% ExecScan
 + 22.69% tuplehash_insert
+ 4.96% postgres postgres [.] tuplehash_insert
+ 4.53% postgres postgres [.] float8_accum
+ 3.21% postgres postgres [.] float8pl
+ 2.61% postgres postgres [.] bpchareq
+ 2.40% postgres postgres [.] hashbpchar

Inlining
CREATE OPERATOR pg_catalog.= (

 PROCEDURE = int8eq,

 LEFTARG = bigint,

 RIGHTARG = bigint,

...

);

CREATE OR REPLACE FUNCTION pg_catalog.int8eq(bigint, bigint)

 RETURNS boolean

 LANGUAGE internal

 IMMUTABLE PARALLEL SAFE STRICT LEAKPROOF

AS $function$int8eq$function$

Inlining
● All operators in postgres are functions! Lots of external function calls
● Postgres function calls are expensive, lots of memory indirection
● Convert sourcecode to bitcode at buildtime, install into

$pkglibdir/bitcode/<module>.index.bc

$pkglibdir/bitcode/<module>/path/to/file.bc

● LLVM’s cross-module inlining not suitable
– requires exporting of symbols at compile time, unknown which needed

● Postgres specific inlining logic:
– lookup symbol in summary corresponding to function
– inlining safety check (no mutable static variables referenced)
– cost analysis
– inline function, referenced static functions, referenced constant static variables (mainly strings)

– use llvm::IRMover to move relevant globals
– can’t cache modules in memory, cloning expensive and incomplete

● Avoids need to implement direct JIT emission for lots of semi critical code
● Function call interface significantly limits benefits

Faster Execution:
JIT Compilation

0 1 2 4 8 16
0

100000

200000

300000

400000

500000

600000

TPCH Q01 timing

scale 100, fully cached

jit=0

jit=1

parallelism

tim
e

 in
 m

s

Planning JIT
● Naive!
● Perform JIT if query_cost > jit_above_cost
● Optimize if query_cost > jit_optimize_above_cost
● Inline if query_cost > jit_inline_above_cost
● -1 disables
● Whole query decision
● *NOT* a tracing JIT:

– costing makes tracing somewhat superflous
– tracing decreases overall gains

Switch to shell already

Profiling JIT
● Requires patches to LLVM, about to be integrated into LLVM

trunk
– debugger is same

● jit_profiling_support = 1

● Use:
perf record -k1 --call-graph lbr -p 7170 -o /tmp/perf.data

perf inject --jit -i /tmp/perf.data -o /tmp/perf.jit.data

perf report -i /tmp/perf.jit.data

JIT Improvements: Code Generation
● Expressions refer to per-query allocated memory

– generated code references memory locations

– lots of superflous memory reads/writes for arguments, optimizer can’t eliminate in most cases
● massively reduces benefits of inlining

– optimizer can’t optimize away memory lots of memory references

– FIX: separate permanent and per eval memory

● Expression step results refer to persistent memory

– move to temporary memory

● Function Call Interface references persistent memory

– FIX: pass FunctionCallInfoData and FmgrInfo separately to functions
● remove FunctionCallInfoData->flinfo

● move context, resultinfo, fncollation to FmgrInfo

● move isnull field to separate argument? Return struct?

– Non JITed expression evaluation will benefit too

JIT Improvements: Caching
● Optimizer overhead significant

– TPCH Q01: unopt, noinline: time to optimize: 0.002s, emit: 0.036s

– TPCH Q01: time to inline: 0.080s, optimize: 0.163s, emit 0.082s

● references to memory locations prevent caching (i.e. expression codegen
has to be optimized first)

● Introduce per-backend LRU cache of functions keyed by hash of emitted
LRU (plus comparator)
– What to use as cache key?

● IR? - requires generating it
● Expression Trees?
● Prepared Statement?

● Shared / Non-Shared / Persistent?
● whole query decision – allows to eliminate redundancies, reduce mmap

overhead, etc.
● relatively easy task, once pointers removed

JIT Improvements: Incremental JITing

JIT JITed Query Execution

Query Execution

JIT JITed Query Execution

JIT

Query Execution

JITed Query Execution

JITed Query Execution

JIT Improvements: Planning
● Whole Query decision too coarse

– use estimates about total number of each function evaluation?

● Some expressions guaranteed to only be evaluated once
– VALUES()

– SQL functions

● JIT more aggressively when using prepared statements?

Future things to JIT
● Executor control flow

– hard, but lots of other benefits (asynchronous execution, non-JITed will
be faster, less memory)

● COPY parsing, input / output function invocation
– easy – medium

● Aggregate & Hashjoin hash computation
– easy

● in-memory tuplesort
– including tuple deforming (from MinimalTuple)
– easy

State of JIT – 2018 Edition

Andres Freund

PostgreSQL Developer & Committer

Email: andres@anarazel.de

Email: andres.freund@enterprisedb.com

Twitter: @AndresFreundTec

anarazel.de/talks/2018-06-01-pgcon-state-of-jit/state-of-jit.pdf

mailto:andres@anarazel.de
mailto:andres.freund@enterprisedb.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

